
20

21

19

22

18

23

17

24

16

25

15

26

14

27

13

28

12

29

11

30

10

31

9

32

8

33

7

34

6

35

5

36

4

37

3

38

2

39

1

40

CircuiTikZ

Massimo A. Redaelli
m.redaelli@gmail.com

Stefan Lindner
stefan.lindner@fau.de

Stefan Erhardt
stefan.erhardt@fau.de

Romano Giannetti
romano.giannetti@gmail.com

CircuiTikZ
version 1.6.3 (2023/06/23)

Massimo A. Redaelli (m.redaelli@gmail.com)
Stefan Lindner (stefan.lindner@fau.de)
Stefan Erhardt (stefan.erhardt@fau.de)

Romano Giannetti (romano.giannetti@gmail.com)

June 23, 2023

mailto:m.redaelli@gmail.com
mailto:stefan.lindner@fau.de
mailto:stefan.erhardt@fau.de
mailto:romano.giannetti@gmail.com
mailto:m.redaelli@gmail.com
mailto:stefan.lindner@fau.de
mailto:stefan.erhardt@fau.de
mailto:romano.giannetti@gmail.com

Contents

1 Introduction 9
1.1 About . 9
1.2 License . 9
1.3 Loading the package . 9
1.4 Installing a new version of the package. 10
1.5 Requirements . 10
1.6 Incompatible packages . 10
1.7 Known bugs and limitation . 11
1.8 Scale factor inaccuracies . 11
1.9 Incompabilities between versions . 12
1.10 Feedback . 15
1.11 Package options . 15

2 Tutorials 18
2.1 Getting started with CircuiTikZ: a current shunt 18
2.2 A non-inverting op-amp amplifier . 21

2.2.1 Reusing the circuit: the easy way . 23
2.3 A transistor-based amplifier . 24
2.4 A logic circuit . 29

3 The components: usage 32
3.1 Path-style components . 32

3.1.1 Anchors . 32
3.1.2 Border anchors . 33
3.1.3 Relative coordinates . 33
3.1.4 Customization . 34

3.1.4.1 Components size . 34
3.1.4.2 Mirroring and flipping path-style components 36
3.1.4.3 Thickness of the lines . 36
3.1.4.4 Shape of the components . 36

3.1.5 Descriptions . 37
3.2 Node-style components . 37

3.2.1 Mirroring and flipping . 38
3.2.2 Anchors . 38
3.2.3 Descriptions . 39

3.3 Styling circuits and components . 39
3.3.1 Relative size . 40
3.3.2 Fill color . 41
3.3.3 Line thickness . 42

1

3.3.4 Style files . 43
3.3.5 Style files: how to write them . 44

3.4 Subcircuits . 45
3.4.1 Subcircuit definition . 45
3.4.2 Using the subcircuit . 46

3.4.2.1 Scaling, flipping and rotating subcircuits 47
3.4.3 Parameters in subcircuits . 47

4 The components: list 48
4.1 Grounds and supply voltages . 48

4.1.1 Grounds . 48
4.1.1.1 Grounds anchors . 48
4.1.1.2 Grounds customization . 49

4.1.2 Power supplies . 49
4.1.2.1 Power supply anchors . 49
4.1.2.2 Power supplies customization . 49

4.2 Resistive bipoles . 50
4.2.1 Potentiometers: wiper position . 52
4.2.2 Generic sensors anchors . 53
4.2.3 Resistive components customization . 53

4.2.3.1 Geometry. 53
4.2.3.2 Thickness. 53
4.2.3.3 Arrows. 54

4.3 Capacitors and inductors: dynamical bipoles . 54
4.3.1 Capacitors . 54
4.3.2 Capacitive sensors anchors . 55
4.3.3 Capacitors customizations . 55
4.3.4 Inductors . 56
4.3.5 Inductors customizations . 57

4.3.5.1 Chokes . 57
4.3.6 Inductors anchors . 58

4.3.6.1 Taps. 58
4.3.6.2 Core anchors. 58
4.3.6.3 Dot anchors. 58

4.4 Diodes and such . 59
4.4.1 Tripole-like diodes . 62
4.4.2 Thyristors anchors and customization . 65
4.4.3 Diode customizations . 65

4.4.3.1 Optical devices arrows . 65
4.5 Sources and generators . 67

4.5.1 Batteries . 67

2

4.5.2 Stationary sources . 67
4.5.3 Sinusoidal sources . 68
4.5.4 Controlled sources . 69
4.5.5 Noise sources . 70
4.5.6 Special sources . 71
4.5.7 Nullator and norator . 72
4.5.8 DC sources . 73
4.5.9 Sources customizations . 73

4.5.9.1 Size. 73
4.5.9.2 Waveform symbols. 74
4.5.9.3 Polarity symbols. 74
4.5.9.4 Three-phase symbols. 74

4.5.10 Source borders . 75
4.6 Instruments . 75

4.6.1 Instruments customizations . 76
4.6.1.1 Oscilloscope waveform. 77

4.6.2 Rotation-invariant elements . 77
4.6.3 Instruments as node elements . 78
4.6.4 Measuring voltage and currents, multiple ways 79

4.7 Mechanical Analogy . 81
4.7.1 Mechanical elements customizations . 82

4.8 Miscellaneous bipoles . 82
4.8.1 Miscellaneous element customization . 84

4.9 Multiple wires (buses) . 84
4.10 Crossings . 85

4.10.1 Crossing customization . 86
4.11 Arrows . 86

4.11.1 Arrows size . 87
4.11.2 Generic Tunable Arrows . 87

4.12 Terminal shapes . 88
4.13 Connectors . 88

4.13.1 BNC connector/terminal . 89
4.13.2 IEC 60617 socket-plug connectors . 89

4.14 Block diagram components . 91
4.14.1 Blocks anchors . 95
4.14.2 Blocks customization . 97

4.14.2.1 Multi ports . 98
4.14.2.2 Labels and custom two-port boxes 98
4.14.2.3 Box option . 98
4.14.2.4 Dash optional parts . 98
4.14.2.5 Dashing the DC symbol in blocks. 99

3

4.15 Transistors . 99
4.15.1 Standard bipolar transistors . 99
4.15.2 Multi-terminal bipolar transistors . 100
4.15.3 Field-effect transistors . 101
4.15.4 Transistor texts (labels) . 105
4.15.5 Transistors customization . 106

4.15.5.1 Size. 106
4.15.5.2 Arrows. 106
4.15.5.3 Circles. 108
4.15.5.4 Body diodes and similar things. 108
4.15.5.5 HEMT customization. 109
4.15.5.6 Schottky transistors. 109
4.15.5.7 Ferroelectric transistors . 110
4.15.5.8 IGBT outer base. 110
4.15.5.9 UJT transistors. 111
4.15.5.10 Base/Gate terminal. 111
4.15.5.11 Bulk terminals. 112
4.15.5.12 Solder dots. 112
4.15.5.13 Simplified symbols for depletion-mode MOSFETs 113
4.15.5.14 Gate/Base gap coloring. 113

4.15.6 Multiple terminal transistors customization 114
4.15.7 Transistor circle customization . 114

4.15.7.1 Position and size. 114
4.15.7.2 Line and color. 115
4.15.7.3 Partially drawn circle borders . 115

4.15.8 Transistor bodydiode customization . 116
4.15.9 Transistors anchors . 117
4.15.10Transistor paths . 121

4.16 Electronic Tubes . 122
4.16.1 Tubes customization . 123
4.16.2 Tubes anchors . 125
4.16.3 Partially drawn tube borders . 125
4.16.4 Other tubes-like components . 126

4.16.4.1 Dynode customization. 127
4.17 RF components . 127

4.17.1 RF elements customization . 129
4.17.2 Microstrip customization . 129

4.18 Electro-Mechanical Devices . 130
4.18.1 Electro-Mechanical Devices anchors . 130

4.19 Double bipoles (transformers) . 131
4.19.1 Transformer anchors . 132

4

4.19.2 Transformers customization . 133
4.19.3 Styling transformer’s coils independently . 135
4.19.4 Generic double bipoles . 136

4.20 Amplifiers . 137
4.20.1 Amplifiers anchors . 139
4.20.2 Amplifiers customization . 140

4.20.2.1 Input polarity. 140
4.20.2.2 Input and output pins symbols. 141
4.20.2.3 Input and output pins length. 142
4.20.2.4 Main amplifier label. 142
4.20.2.5 European-style amplifier customization. 142

4.20.3 Designing your own amplifier . 144
4.21 Switches, buttons and jumpers . 144

4.21.1 Traditional switches . 144
4.21.2 Cute switches . 146

4.21.2.1 Cute switches anchors . 147
4.21.2.2 Cute switches customization . 147

4.21.3 Proximity switches . 148
4.21.4 Rotary switches . 149

4.21.4.1 Rotary switch anchors . 149
4.21.4.2 Rotary switch customization . 151

4.21.5 Switch arrows . 151
4.21.5.1 Rotary switch arrows. 152

4.21.6 Jumpers . 152
4.21.6.1 Simple jumpers. 152
4.21.6.2 Two-ways (three-pins) jumpers. 153

4.21.7 Solder jumpers. 154
4.22 Logic gates . 155

4.22.1 American Logic gates . 155
4.22.2 IEEE logic gates . 156
4.22.3 European Logic gates . 157
4.22.4 Path-style logic ports . 158
4.22.5 American ports usage . 159

4.22.5.1 American logic port customization 159
4.22.5.2 American logic port anchors . 161

4.22.6 IEEE logic gates usage. 162
4.22.6.1 Stacking and aligning IEEE standard gates. 164
4.22.6.2 IEEE standard ports customization 165
4.22.6.3 IEEE standard ports anchors . 166
4.22.6.4 Transmission gate symbols. 166

4.22.7 European logic port usage . 167

5

4.22.7.1 European logic port customization 167
4.22.7.2 European logic port anchors . 167

4.23 Flip-flops . 168
4.23.1 Custom flip-flops . 170
4.23.2 Flip-flops anchors . 170
4.23.3 Flip-flops customization . 171

4.24 Multiplexer and de-multiplexer . 172
4.24.1 Mux-Demux: design your own shape . 174
4.24.2 Mux-Demux customization . 175
4.24.3 Mux-Demux anchors . 175
4.24.4 Adding wedge or circular inversion markers 176
4.24.5 Mux-Demux special usage . 177

4.25 Chips (integrated circuits) . 178
4.25.1 DIP and QFP chips customization . 178
4.25.2 Chips anchors . 180
4.25.3 Chips rotation . 180
4.25.4 Chip special usage . 180

4.26 Seven segment displays . 181
4.26.1 Seven segments anchors . 182
4.26.2 Seven segments customization . 182

5 Labels, voltages and currents 183
5.1 Labels and Annotations . 183

5.1.1 Label and annotation position . 184
5.1.1.1 Adjust label and annotation position. 184

5.1.2 Special symbols in labels and annotations. 184
5.1.3 Labels and annotation orientation. 185
5.1.4 Stacked (two lines) labels. 186

5.2 Currents and voltages . 187
5.2.1 Common properties of voltages and currents 190
5.2.2 Special treatment for generators . 192

5.3 Currents . 194
5.4 Flows . 195
5.5 Voltages . 196

5.5.1 European style . 196
5.5.2 Straight European style . 198
5.5.3 American style . 199
5.5.4 Raised American style . 199
5.5.5 Voltage position . 200
5.5.6 American voltages customization . 201
5.5.7 Combining different styles . 202

6

5.6 Changing the style of labels, voltages, and other text ornaments 202
5.7 Accessing labels text nodes . 203
5.8 Advanced voltages, currents and flows . 204

5.8.1 Activating the anchors . 205
5.8.2 Auxiliary information . 207
5.8.3 Fixed voltage arrows: an example of advanced voltage usage 208

5.9 Integration with siunitx . 209

6 Using bipoles in circuits 210
6.1 Nodes (also called poles) . 210

6.1.1 Transparent poles . 212
6.2 Mirroring and Inverting . 212
6.3 Putting them together . 213
6.4 Line joins between Path Components . 213

7 Colors 215
7.1 Shape colors . 216
7.2 Fill colors . 218

7.2.1 Background colors different from white . 219

8 FAQ: Frequently asked questions 221
8.1 Using named nodes in circuits . 221
8.2 Using dashed (or colored) wires in circuits . 222
8.3 Errors when externalizing pictures . 223
8.4 Labels, voltages and currents woes . 223
8.5 Global scaling and rotating . 224
8.6 Tunable components . 224

9 Defining new components 225
9.1 Suggested setup . 225
9.2 Path-style component . 226
9.3 Node-style component . 229

9.3.1 The internal hook system . 230
9.3.2 Finishing your work . 230

10 Examples 231
10.1 A red diode . 231
10.2 Using the (experimental) siunitx syntax . 232
10.3 Photodiodes . 233
10.4 A Sallen-Key cell . 233
10.5 Mixing circuits and graphs . 234
10.6 RF circuit . 235
10.7 A styled low noise input stage . 236
10.8 An example with the compatibility option . 237
10.9 3-phases block schematic . 238

7

11 Changelog and Release Notes 239

Index of the components 254

8

1 Introduction

Lorenzo and Mirella, 57 years ago, started a trip
that eventually lead to a lot of things — among

them, CircuiTikZ v1.0.
In loving memory — R.G., 2020-02-04

1.1 About

CircuiTikZ was initiated by Massimo Redaelli in 2007, who was working as a research assistant
at the Polytechnic University of Milan, Italy, and needed a tool for creating exercises and exams.
After he left University in 2010 the development of CircuiTikZ slowed down, since LATEX is mainly
established in the academic world. In 2015 Stefan Lindner and Stefan Erhardt, both working as
research assistants at the University of Erlangen-Nürnberg, Germany, joined the team and now
maintain the project together with the initial author. In 2018 Romano Giannetti, full professor of
Electronics at Comillas Pontifical University of Madrid, joined the team.
The use of CircuiTikZ is, of course, not limited to academic teaching. The package gets widely
used by engineers for typesetting electronic circuits for articles and publications all over the world.

1.2 License

Copyright © 2007–2023 by Massimo Redaelli, 2013–2023 by Stefan Erhardt, 2015–2023 by Stefan
Lindner, and 2018–2023 by Romano Giannetti. This package is author-maintained. Permission
is granted to copy, distribute and/or modify this software under the terms of the LATEX Project
Public License, version 1.3.1, or the GNU Public License. This software is provided ‘as is’, without
warranty of any kind, either expressed or implied, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose.

1.3 Loading the package

LATEX ConTEXt1

\usepackage{circuitikz} \usemodule[circuitikz]

TikZ will be automatically loaded; additionally, the TikZ libraries calc, arrows.meta, bending,
and fpu are loaded (the last one is used only on demand).
CircuiTikZ commands are just TikZ commands, so a minimum usage example would be:

R1
1 \tikz \draw (0,0) to[R=R_1] (2,0);

There is really no support for Plain TeX — the maintainers are willing to consider patches if
somebody is interested.

1ConTEXt support was added mostly thanks to Mojca Miklavec and Aditya Mahajan.Please notice that since
ConTEXt switched to the new lmtx engine (March 2023), there can be problems to compile TikZ which some version;
in May 2023 the problem has been fixed. Please check this issue for details.

9

https://github.com/circuitikz/circuitikz/issues/706

1.4 Installing a new version of the package.

The stable version of the package should come with your LATEX distribution. Downloading the
files from CTAN and installing them locally is, unfortunately, a distribution-dependent task and
sometimes not so trivial. If you search for local texmf tree and the name of your distribution
on https://tex.stackexchange.com/ you will find a lot of hints.
Anyway, the easiest way of using whichever version of CircuiTikZ is to point to the GitHub
page https://circuitikz.github.io/circuitikz/ of the project, and download the version
you want. You will download a simple (biggish) file, called circuitikzgit.sty.
Now you can just put this file in your local texmf tree, if you have one, or simply adding it into
the same directory where your main file resides, and then use

\usepackage[...options...]{circuitikzgit}

instead of circuitikz. This is also advantageous for “future resilience”; the authors try hard not
to break backward compatibility with new versions, but sometimes, things happen.

1.5 Requirements

• tikz, version ≥ 3.1.5b (it should work with any version from 3.0 and up, but better use a
newer one);

• xstring, not older than 2009/03/13;

• siunitx, if using siunitx option (better v2 or newer).

A similar approach for ConTEXt is available, with the file t-circuitikzgit.tex; the compatibility
in this case is not guaranteed, but provided on a best effort base.
This manual has been typeset with CircuiTikZ 1.6.3 (2023/06/23) on TikZ 3.1.10 (2023-01-15).

1.6 Incompatible packages

TikZ’s own circuit library, which was based on CircuiTikZ, (re?)defines several styles used by
this library. In order to have them work together you can use the compatibility package option,
which basically prefixes the names of all CircuiTikZ to[] styles with an asterisk.
So, if loaded with said option, one must write (0,0) to[*R] (2,0) and, for transistors on a path,
(0,0) to[*Tnmos] (2,0), and so on (but (0,0) node[nmos] {}). See example at page 237.
Anyway, the compatibility code is a best effort task and only very lightly tested — the authors
advice is to choose one or the other, without mixing them.
Another thing to take into account is that any TikZ figure (and CircuiTikZ ones qualify) will
have problems if you use the babel package with a language that changes active characters (most
of them). The solution is normally to add the line \usetikzlibrary{babel} in your preamble,
after loading TikZ or CircuiTikZ. This will normally solve the problem; some languages also
require using \deactivatequoting or the option shorthands=off for babel. Please check the
documentation of TikZ or this question on TEX stackexchange site.
Finally, the TikZ library bending is loaded by the package, and its effects (the bending of the
arrows on curved paths) will also affect the rest of your drawings.

10

https://tex.stackexchange.com/
https://circuitikz.github.io/circuitikz/
https://tex.stackexchange.com/questions/166772/problem-with-babel-and-tikz-using-draw

1.7 Known bugs and limitation

CircuiTikZ will not work correctly with global (in the main circuitikz environment, or in
scope environments) negative scale parameters (scale, xscale or yscale), unless transform
shape is also used, and even in this cases the behavior is not guaranteed. Neither will it work
with angle-changing scaling (when xscale is different form yscale) and with the global rotate
parameter.
Correcting this will need a big rewrite of the path routines, and although the authors are thinking
about solving it, don’t hold your breath; it will need changing a lot of interwoven code (labels,
voltages, currents and so on). Contributions and help would be highly appreciated.
This same issue creates a lot of problems with compatibility between CircuiTikZ and the new pic
TikZ feature, so basically don’t put components into pics.
Also, notice that several components will interact in a funny way with global path options. De-
pending on the specific component, some parameters are inherited by the internal shape, and some
others are reset. This is not easy to fix in general. We want some options to go through — fill
color, dashed pattern for example — and some others to stay only in the outer path; and if the
background shape needs some option for drawing the internal shape, like for example a rounded
corner, it must reset the external option. So there is no perfect solution, although since v1.5.0
the shapes have been “robustified”, so that by default arced corners and arrows parameters will
not be propagated into the shape. Arrows with to[] components don’t work, anyway, so basically
avoid this situation.

1 \begin{circuitikz}[]
2 \draw (0,3) to[R] ++(3,0) node[npn, anchor=B]{};
3 % arrows will not work and give strange results
4 % so basically do not use them!
5 \draw[<->] (0,1.5) to[R] ++(3,0) node[npn, anchor=B]{};
6 \draw[shorten <=10pt] (0,0) to[R] ++(3,0)
7 node[npn, anchor=B]{};
8 \end{circuitikz}

Lastly, voltage styles interacts in strange ways with general (such as american, european style), in
the sense that sometimes the order in which you enact them is important. That should be arguably
fixed, but it will change (read break) a lot of existing code, so it’ll stay; more information and
workarounds in section 5.5.7.
As a final notice, if you want to use the externalize library, do not use the circuitikz environ-
ment: use tikzpicture (which is really the same thing, see the FAQ 8.3).

1.8 Scale factor inaccuracies

Sometimes, when using fractional scaling factors and big values for the coordinates, the basic layer
inaccuracies from TEX can bite you, producing results like the following one:

Vcc

1 \begin{circuitikz}[scale=1.2, transform shape,
2]
3 \draw (60,1) to [battery2, v_=V_{cc}, name=B] ++(0,2);
4 \node[draw,red,circle,inner sep=4pt] at(B.left) {};
5 \node[draw,red,circle,inner sep=4pt] at(B.right) {};
6 \end{circuitikz}

11

A general solution for this problem is difficult to find; probably the best approach is to use a
scalebox command to scale the circuit instead of relying on internal scaling.
Nevertheless, Schrödinger’s cat found a solution which has been ported to CircuiTikZ: you can
use the key use fpu reciprocal which will patch a standard low-level math routine with a more
precise one.

Vcc

1 \begin{circuitikz}[scale=1.2, transform shape,
2 use fpu reciprocal,
3]
4 \draw (60,1) to [battery2, v_=V_{cc}] ++(0,2);
5 \end{circuitikz}

The use fpu reciprocal key seems to have no side effects, but given that it is patching an
internal interface of TikZ it can break any time, so it is advisable to use it only if and when
needed.

1.9 Incompabilities between versions

Here, we will provide a list of incompatibilities between different versions of CircuiTikZ. We will
try to hold this list short, but sometimes it is easier to break with old syntax than include a lot of
switches and compatibility layers. In general, changes that would invalidate a circuit (changes of
polarity of components and so on) are almost always protected by a flag; the same is not true for
purely aesthetic changes. If unsure, you can check the version in your local installation by using
the macro \pgfcircversion{}.

• Since version 1.6.3 the default symbol for the minus sign changed from the simple $-$ to
$\vphantom{+}-$. The reason is that in some (most?) font, the minus sign is enclosed in a
smaller bounding box than the plus sign and that leads to poorly aligned minus symbols in
american and raised voltages. This was not noticed before because the two symbols share
the same bounding box in the default Computer Modern font. You can look at this issue on
GitHub for more details; if you want to go back to the previous definitions you can write

1 \ctikzset{amplifiers/minus=$-$}
2 \ctikzset{bipoles/cvsourceam/inner minus=$-$}
3 \ctikzset{bipoles/vsourceam/inner minus=$-$}
4 \ctikzset{voltage/american minus=$-$}

• Since version 1.6.3 the size of the solder dot and the connection dot of the body diodes
for transistors has changed (now they are the same and are configurable). The new default
scale of 0.7 makes the dots area more or less one half the one of the external connections.
You can go back to the previous values with

1 \ctikzset{transistor bodydiode/dot scale=0.5,
2 transistor solderdot scale=1.0}

• Since version 1.6.2 siunitx will not work anymore with ConTEXt (it was a very poor
simulation layer, anyway); it has been disabled in upstream ConTEXt, in favor of its own
units module.

• Version 1.6.0 has a big rewrite of the block’s code. In principle the changes are backward-
compatible, but there were several bugs (wrong anchors, errors with rotations, and so on)
that have been fixed in the process.

12

https://tex.stackexchange.com/a/529159/38080
https://github.com/circuitikz/circuitikz/issues/721
https://github.com/circuitikz/circuitikz/issues/721
https://www.pragma-ade.nl/general/manuals/units-mkiv.pdf
https://www.pragma-ade.nl/general/manuals/units-mkiv.pdf

• Since v1.5.12 color management (see section 7) and the details of how the shapes are drawn
and protected by the external drawing options has changed. There should be no substantial
changes to the circuits, though.

• The TikZ fix for to[...] +(x,y) behavior (see 3.1.3) uncovered a bug in the positioning of
the labels in CircuiTikZ that had been present since v0.8. So you must upgrade to v1.4.1
or better if you have TikZ newer than 3.1.8 (and you want/need to use the +(x,y) syntax).

• There have been changes in (internal) parameters for capacitors in v1.4.1; now to change
them you should use the style interface (see 4.3.3).

• CircuiTikZ v1.4.0 introduced the rollback system for the package when using LaTeX; that
(at least in principle) should be completely backward-compatible.

• The path construction in v1.4.0 has been changed a bit (again). The change shouldn’t
break any circuit and will correct a behavior that should have been fixed with the v1.2.1
change (see below).

• Version 1.3.6 fixes several problems with the stacked labels; the most important change is
that now the bracing of arguments is respected as in version 1.3.0 for the other labels. The
special treatment in stacked labels (and only in stacked labels!) for the (still experimental3)
siunitx compact syntax <...> has been removed: it was completely buggy before, and
silently ignored, now will throw an error.

• Version 1.3.3 fixes the direction of the arrows in tunable elements; before this version,
they were more or less random, now the arrow goes from bottom left to top right. You
have the option to go back to the old behavior with \ctikzset{bipoles/fix tunable
direction=false}. As a compensation for the fuss, now the arrows are configurable. To
learn more, see the FAQ: 8.6.

• Version 1.3.1 removes the warning if you do not specify a voltage direction.

• Version 1.3.0 fixes the buggy stripping of braces from labels and annotations (see 5.1.2).

• After 1.2.7 a big code reorganization (which had the collateral effect of fixing some bugs)
has been made; no changes should be visible, but a fallback point at 1.2.7 has been added.

• You must upgrade to v1.2.7 or newer if you use a TikZ 3.1.8 or 3.1.8a (but better upgrade
both packages to the current version). You can check the TikZ version installed using the
macro \pgfversion.

• After v1.2.1: Important: the routine that implements the to[...] component positioning
has been rewritten. That should enhance the line joins in paths, and it’s safer, but it can
potentially change some old behavior.
One of the changes is that the previous routine did the wrong thing if you used (node)
to[...] (you should use an anchor or a coordinate, not a node there — like (node.anchor)
to[...]).
The other one was that in the structure ... to[...] node[pos=something] (coord) the
value of pos was completely wrong (even if you don’t use pos explicitly, remember it’s
pos=0.5 by default).
Additionally, the old code disrupted the TikZ path-fill mechanism, so that you could get
away with using the fill option on paths and having just the components filled, not the
path. That was incorrect, although sometime it was handy (sorry).
See the FAQ at section 8.1 for more information.

2Do not use v1.5.0, it’s buggy.
3and, really, not advised…

13

• After v1.2.0: voltage arrows, symbols and label positions are calculated with a rewritten
routine. There should be little change, unless you touched internal values…

• After v1.1.3: from version 1.1.0 to version 1.1.2, the inverted Schmitt buffer in IEEE style
ports was called inv schmitt (with an additional space). The correct name is invschmitt
port (the same as the legacy american port).

• After v1.1.2: the position of american voltages for the open bipoles changed (you can revert
to the old behavior, see section 5.5.5).

• After v0.9.7: the position of the text of transistor nodes has changed; see section 4.15.4.

• After v0.9.4: added the concept of styling of circuits. It should be backward compatible, but
it’s a big change, so be ready to use the 0.9.3 snapshot (see below for details).

• After v0.9.0: the parameters tripoles/american or port/aaa, ...bbb, ...ccc and ...ddd
are no longer used and are silently ignored; the same stands for the similarly named param-
eters in nor, xor, and xnor ports.

• After v0.9.0: voltage and current directions/signs (plus and minus signs in case of american
voltages and arrows in case of european voltages) have been rationalized with a couple
of new options (see details in section 5.2). The default case is still the same as v0.8.3, to
avoid potentially wrong circuits, but you would be better off with one of the new voltage
directions (EFvoltages or RPvoltages) for newer circuits.

• Since v0.8.2: voltage and current label directions (v<= / i<=) do NOT change the orientation
of the drawn source shape anymore. Use the invert option to rotate the shape of the source.
Furthermore, from this version on, the current label (i=) at current sources can be used
independent of the regular label (l=).

• Since v0.7: The label behavior at mirrored bipoles has changed, this fixes the voltage drawing,
but perhaps you will have to adjust your label positions.

• Since v0.5.1: The parts pfet, pigfete, pigfetebulk, and pigfetd are now mirrored by
default. Please adjust your yscale-option to correct this.

• Since v0.5: New voltage counting direction, there exists an option to use the old behavior.

If you have older projects that show compatibility problems, you have two options:

• you can use an older version locally using the git-version and picking the correct commit
from the repository (branch gh-pages) or the main GitHub site directly;

• if you are using LATEX, the distribution has embedded several important old versions: 0.4,
0.6, 0.7, 0.8.3, 0.9.3, 0.9.6, 1.0, 1.1.2, 1.2.7, and 1.4.6. To switch to use them, since
v1.4.0 you simply use the new LaTeX kernel rollback system, changing your \usepackage
invocation to something like:

\usepackage[]{circuitikz}[=v0.8.3] % or v0.4, v0.6, ...

You can also specify a date instead of a version number: if you write
\usepackage[]{circuitikz}[=2020/02/05]

the rollback system will load the version that was current on February 5th, 2020 (in this
case it will be v1.0 which was released the day before).
If for whatever reasons your kernel is older, you can still use the old method of loading the
package-version package; for example:

\usepackage[]{circuitikz-0.8.3} % or circuitikz-0.4, 0.6...

14

https://www.latex-project.org/publications/2018-FMi-TUB-tb122mitt-version-rollback.pdf

which is an inferior solution because it can fool any package you use that depend on
circuitikz.
Either way, you have to take care of the options that may have changed between versions
(and sometime styles, if you use them).

• if you are using ConTEXt, only versions 0.8.3, 0.9.3, 0.9.6, 1.0, 1.1.2, 1.2.7, and 1.4.6
are packaged; you can use it with

\usemodule[circuitikz-0.8.3]

1.10 Feedback

The easiest way to contact the authors is via the official GitHub repository: https://github.
com/circuitikz/circuitikz/issues. For general help question, a lot of nice people are quite
active on https://tex.stackexchange.com/questions/tagged/circuitikz — be sure to read
the help pages for the site and ask!

1.11 Package options

Circuit people are very opinionated about their symbols. In order to satisfy the individual taste
you can set a bunch of package options.
There are arguably way too many options in CircuiTikZ, as you can see in the following list. Since
version 1.0, it is recommended to just use the basic ones — voltage directions (you should specify
one of them), siunitx (only for LATEX), the global style (american or european) and use styles
(see 3.3) for the remaining options.
The standard options are set by historical reason, and reflect the preferences of the author that
introduced them. For example you get this:

2Ω

84V

?

84V
1 \begin{circuitikz}
2 \draw (0,0) to[R=2<\ohm>, i=?, v=84<\volt>] (2,0) --
3 (2,2) to[V<=84<\volt>] (0,2)
4 -- (0,0);
5 \end{circuitikz}

Feel free to load the package with your own cultural options:

LATEX ConTEXt

\usepackage[american]{circuitikz} \usemodule[circuitikz][american]

2Ω

+ −
84V

?

+ −

84V
1 \begin{circuitikz}
2 \draw (0,0) to[R=2<\ohm>, i=?, v=84<\volt>] (2,0) --
3 (2,2) to[V<=84<\volt>] (0,2)
4 -- (0,0);
5 \end{circuitikz}

15

https://github.com/circuitikz/circuitikz/issues
https://github.com/circuitikz/circuitikz/issues
https://tex.stackexchange.com/questions/tagged/circuitikz

However, most of the global package options are not available in ConTEXt; in that case you can
always use the appropriate \tikzset{} or \ctikzset{} command after loading the package.

Here is the list of all the options:

• europeanvoltages: uses arrows to define voltages, and uses european-style voltage sources;

• straightvoltages: uses arrows to define voltages, and and uses straight voltage arrows;

• americanvoltages: uses − and + to define voltages, and uses american-style voltage sources;

• europeancurrents: uses european-style current sources;

• americancurrents: uses american-style current sources;

• europeanresistors: uses rectangular empty shape for resistors, as per european standards;

• americanresistors: uses zig-zag shape for resistors, as per american standards;

• europeaninductors: uses rectangular filled shape for inductors, as per european standards;

• americaninductors: uses “4-bumps” shape for inductors, as per american standards;

• cuteinductors: uses my personal favorite, “pig-tailed” shape for inductors;

• americanports: uses triangular logic ports, as per american standards;

• europeanports: uses rectangular logic ports, as per european standards;

• americangfsurgearrester: uses round gas filled surge arresters, as per american standards;

• europeangfsurgearrester: uses rectangular gas filled surge arresters, as per european
standards;

• european: equivalent to europeancurrents, europeanvoltages, europeanresistors,
europeaninductors, europeanports, europeangfsurgearrester;

• american: equivalent to americancurrents, americanvoltages, americanresistors,
americaninductors, americanports, americangfsurgearrester;

• siunitx: integrates with SIunitx package. If labels, currents or voltages are of the form
#1<#2> then what is shown is actually \SI{#1}{#2} (not supported in ConTEXt; it has been
disabled in upstream ConTEXt, in favor of its own units module);

• nosiunitx: labels are not interpreted as above;

• fulldiode: the various diodes are drawn and filled by default, i.e. when using styles such
as diode, D, sD, …Other diode styles can always be forced with e.g. Do, D-, …

• strokediode: the various diodes are drawn and stroke by default, i.e. when using styles
such as diode, D, sD, …Other diode styles can always be forced with e.g. Do, D*, …

• emptydiode: the various diodes are drawn but not filled by default, i.e. when using styles
such as D, sD, …Other diode styles can always be forced with e.g. Do, D-, …

• arrowmos: pmos and nmos have arrows analogous to those of pnp and npn transistors;

• noarrowmos: pmos and nmos do not have arrows analogous to those of pnp and npn tran-
sistors;

• fetbodydiode: draw the body diode of a FET;

16

https://www.pragma-ade.nl/general/manuals/units-mkiv.pdf

• nofetbodydiode: do not draw the body diode of a FET;

• fetsolderdot: draw solderdot at bulk-source junction of some transistors;

• nofetsolderdot: do not draw solderdot at bulk-source junction of some transistors;

• emptypmoscircle: the circle at the gate of a pmos transistor does not get filled;

• lazymos: draws lazy nmos and pmos transistors. Chip designers with huge circuits prefer
this notation;

• legacytransistorstext: the text of transistor nodes is typeset near the collector;

• nolegacytransistorstext or centertransistorstext: the text of transistor nodes is type-
set near the center of the component;

• straightlabels: labels on bipoles are always printed straight up, i.e. with horizontal base-
line;

• rotatelabels: labels on bipoles are always printed aligned along the bipole;

• smartlabels: labels on bipoles are rotated along the bipoles, unless the rotation is very
close to multiples of 90°;

• compatibility: makes it possibile to load CircuiTikZ and TikZ circuit library together.

• Voltage directions: until v0.8.3, there was an error in the coherence between american and
european voltages styles (see section 5.2) for the batteries. This has been fixed, but to
guarantee backward compatibility and to avoid nasty surprises, the fix is available with new
options:

– oldvoltagedirection: Use old way of voltage direction having a difference between
european and american direction, with wrong default labeling for batteries;

– nooldvoltagedirection: The standard from 0.5 onward, utilizes the (German?) stan-
dard of voltage arrows in the direction of electric fields (without fixing batteries);

– RPvoltages (meaning Rising Potential voltages): the arrow is in the direction of rising
potential, like in oldvoltagedirection, but batteries and current sources are fixed to
follow the passive/active standard;

– EFvoltages (meaning Electric Field voltages): the arrow is in the direction of the
electric field, like in nooldvoltagedirection, but batteries are fixed;

If none of these option are given, the package will default to nooldvoltagedirection. The
behavior is also selectable circuit by circuit with the voltage dir style.

• betterproportions4: nicer proportions of transistors in comparision to resistors; notice
that this option is superseded by styles and it’s kept just for compatibility, do not use it in
new projects;

The old options in the singular (like american voltage) are still available for compatibility, but
are discouraged.

Loading the package with no options is equivalent to the following options: [nofetsolderdot,
europeancurrents, europeanvoltages, americanports, americanresistors,
cuteinductors, europeangfsurgearrester, nosiunitx, noarrowmos, smartlabels,
nocompatibility, centertransistorstext].

In ConTEXt the options are similarly specified: current= european|american, voltage=
european|american, resistor= american|european, inductor= cute|american|european,
logic= american|european, arrowmos= false|true.

4May change in the future!

17

2 Tutorials

Before even starting with CircuiTikZ you should be sure to have understood the basics of TikZ.
It is hightly recommended that you read and go through at least the following parts of the TikZ
manual:

• “Tutorial: A Picture for Karl’s Students” (around page 30);

• “Specifying Coordinates” (around page 131)

• “Nodes and their shapes” (around page 220)

…but obviously a good knowledge of TikZ will help you a lot. Remember, a circuit drawn with
CircuiTikZ is nothing more than a tikzpicture with an (albeit powerful and extended) set of
shapes and commodity macros.
Said that, to draw a circuit, you have to load the CircuiTikZ package; this can be done with

1 \usepackage[siunitx, RPvoltages]{circuitikz}

somewhere in your document preamble. It will load automatically the needed packages if not
already done before.

2.1 Getting started with CircuiTikZ: a current shunt
Let’s say we want to prepare a circuit to teach how a current shunt works; the idea is to draw a
current generator, a couple of resistors in parallel, and the indication of currents and voltages for
the discussion.
A circuit in CircuiTikZ is drawn into a circuitikz environment (which is really an alias for
tikzpicture). In this first example we will use absolute coordinates. The electrical components
can be divided in two main categories: the ones that are bipoles and are placed along a path (also
known as to-style component, for their usage), and components that are nodes and can have any
number of poles or connections.
Let’s start with the first type of component, and build a basic mesh:

1 \begin{circuitikz}[]
2 \draw (0,0) to[isource] (0,3) -- (2,3)
3 to[R] (2,0) -- (0,0);
4 \end{circuitikz}

The symbol for the current source might surprise some; this is actually the european-style symbol,
and the type of symbol chosen reflects the default options of the package (see section 1.11). Let’s
change the style for now (the author of the tutorial, Romano, is European — but he has always
used American-style circuits, so…); and while we’re at it, let’s add the other branch and some
labels.

I0 R1 R2

1 \begin{circuitikz}[american]
2 \draw (0,0) to[isource, l=I_0] (0,3) -- (2,3)

3 to[R=R_1] (2,0) -- (0,0);
4 \draw (2,3) -- (4,3) to[R=R_2]
5 (4,0) -- (2,0);
6 \end{circuitikz}

18

You can use a single path or multiple paths when drawing your circuit, it’s just a question of style
(but be aware that closing paths perfectly could be non-trivial, see section 6.4), and you can use
standard TikZ lines (--, |- or similar) for the wires. Nonetheless, sometime using the CircuiTikZ
specific short component for the wires can be useful, because then we can add labels and poles
to them, as for example in the following circuit, where we add a current (with the key i=..., see
section 5.3) and a connection dot (with the special shortcut -* which adds a circ node at the end
of the connection, see sections 4.12 and 6.1).

I0

I0

R1

i1

R2

i2

1 \begin{circuitikz}[american]
2 \draw (0,0) to[isource, l=I_0] (0,3)
3 to[short, -*, i=I_0] (2,3)
4 to[R=R_1, i=i_1] (2,0) -- (0,0);
5 \draw (2,3) -- (4,3)
6 to[R=R_2, i=i_2]
7 (4,0) to[short, -*] (2,0);
8 \end{circuitikz}

One of the problems with this circuit is that we would like to have the current labels in a different
position, such as for example on the upper side of the resistors, so that Kirchoff’s Current Law at
the node is better shown to students. No problem; as you can see in section 5.2 you can use the
position specifiers <>^_ after the key i:

I0

I0

R1

i1

R2

i2

1 \begin{circuitikz}[american]
2 \draw (0,0) to[isource, l=I_0] (0,3)
3 to[short, -*, i=I_0] (2,3)
4 to[R=R_1, i>_=i_1] (2,0) -- (0,0);
5 \draw (2,3) -- (4,3)
6 to[R=R_2, i>_=i_2]
7 (4,0) to[short, -*] (2,0);
8 \end{circuitikz}

Finally, we would like to add voltages indication for carrying out the current formulas; as the
default position of the voltage signs seems a bit cramped to me, I am adding the voltage shift
parameter to make a bit more space for it…

I0

−

+

V0

I0

R1

i1

R2

i2

1 \begin{circuitikz}[american, voltage shift=0.5]
2 \draw (0,0)
3 to[isource, l=I_0, v=V_0] (0,3)
4 to[short, -*, i=I_0] (2,3)
5 to[R=R_1, i>_=i_1] (2,0) -- (0,0);
6 \draw (2,3) -- (4,3)
7 to[R=R_2, i>_=i_2]
8 (4,0) to[short, -*] (2,0);
9 \end{circuitikz}

Et voilà!. Remember that this is still LATEX, which means that you have done a description of
your circuit, which is, in a lot of way, independent of the visualization of it. If you ever have to
adapt the circuit to, say, a journal that forces European style and flows instead of currents, you
just change a couple of things and you have what seems a completely different diagram:

19

I0 V0

I0

R1

i1

R2

i2

1 \begin{circuitikz}[european, voltage shift=0.5]
2 \draw (0,0)
3 to[isourceC, l=I_0, v=V_0] (0,3)
4 to[short, -*, f=I_0] (2,3)
5 to[R=R_1, f>_=i_1] (2,0) -- (0,0);
6 \draw (2,3) -- (4,3)
7 to[R=R_2, f>_=i_2]
8 (4,0) to[short, -*] (2,0);
9 \end{circuitikz}

And finally, this is still TikZ, so that you can freely mix other graphics element to the circuit.

I0

−

+

V0

I0

R1

i1

R2

i2

KCL

1 \begin{circuitikz}[american, voltage shift=0.5]
2 \draw (0,0)
3 to[isource, l=I_0, v=V_0] (0,3)
4 to[short, -*, f=I_0] (2,3)
5 to[R=R_1, f>_=i_1] (2,0) -- (0,0);
6 \draw (2,3) -- (4,3)
7 to[R=R_2, f>_=i_2]
8 (4,0) to[short, -*] (2,0);
9 \draw[red, thick] (0.6,2.1) rectangle (4.2,3.8)

10 node[pos=0.5, above]{KCL};
11 \end{circuitikz}

20

2.2 A non-inverting op-amp amplifier

Let’s now try to draw a non-inverting amplifier based
on op-amps; the canonical implementation can be, for
example, this one from “electronics tutorials”. Obvi-
ously, the style and form of drawing a circuit is often
a matter of personal tastes and, maybe even more im-
portant, of the details you are focusing on; drawing
a non-inverting amplifier will be different if you are
drawing it to explain how it works or if you are simply
using it in a more complex circuit, assuming its op-
eration well known by the reader. Anyway, the final
objective is to have a circuit like the one on the right,
drawn so that it is easy to reuse.

vi
+

−
OA1

R1

R2

vo

We have to start the drawing from a generic point. Given that the idea is to have a reusable block,
instead of positioning the op-amp and build around it, we will start from the input “pole”:

vi
+

−
OA1

1 \begin{circuitikz}[]
2 \draw (0,0) node[above]{v_i} to[short, o-] ++(1,0)
3 node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}}
4 ;
5 \end{circuitikz}

In this snippet, notice that the only absolute coordinate is the first one; that will enable us to “copy
and paste” the circuit in several places, or create a macro for it. We position a text node above it,
and then draw a wire with a pole to a relative (1,0) coordinate: in other words, we move 1 unit
to the right drawing a short-circuit, which is the same as a wire. The usage of to[short...]
simplifies the position of the pole, but notice that we could have also written:

\draw (0,0) node[above]{v_i} node[ocirc]{} -- ++(1,0) ...

with the same result.
The second step is to position the op-amp. We can check the manual and see the component’s
description (section 4.20):

−

++

-
out

up

down

Operational amplifier, type: node, fillable (node[op
amp]{}). Class: amplifiers.

where we notice the type of the component (it is a node-type component, so we have to use node
to position it) and the available “anchors”: points we can use to position the shape or to connect
to. Not all the anchors are explicitly printed in the description box; you should read further in
the manual and you’ll see a “component anchors” (4.20.1) section with the relevant information.
Anyway, the op-amp must be connected with the + anchor to our input wire, so we say anchor=+
in the option lists; this shifts the whole element so that the named anchor will lie at the current
position of the path. Moreover, normally the shape has the inverting input on the bottom side,
and we want it the other way around, so we use also noinv input up in the keys defining the
node. We could also have flipped the shape with yscale=-1, but in this case we would need to
consider the effects on anchors and on the text; see section 3.2.1.

21

https://www.electronics-tutorials.ws/opamp/opamp_3.html

Now we can draw the resistors; let’s start with R1. We will draw it going down vertically from
the - anchor — we have named the node OA so that will be OA.-. We will need to connect the R2

also, so we do the following:

• draw a wire going down, and mark a point where we want the feedback resistor to connect;

• then draw R1 and finally

• draw the ground node.

vi
+

−
OA1

R1

1 \begin{circuitikz}[scale=0.8, transform shape]
2 \draw (0,0) node[above]{v_i} to[short, o-] ++(1,0)
3 node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}}
4 (OA.-) -- ++(0,-1) coordinate(FB)
5 to[R=R_1] ++(0,-2) node[ground]{}
6 ;
7 \end{circuitikz}

We are only missing the feedback resistor now. We will use orthogonal coordinates, writing:
\draw (FB) to[R=R_2] (FB -| OA.out) -- (OA.out)

The meaning is the following:

• move the current point to the coordinate named FB;

• put a resistor, with label R2, from here to…

• the coordinates, which are at the intersection of a horizontal line through FB and a vertical
line through OA.out: the -| coordinate operation is quite mnemonic;

• then continue drawing to OA.out.

You can use a separate \draw command or just continue the path you were writing; the choice
is just personal preference, but be warned that it can affect the drawing of poles (see section 6.1
about this if you notice strange things).
Finally, we add the output and a couple of nodes:

vi
+

−
OA1

R1

R2

vo
1 \begin{circuitikz}[scale=0.8, transform shape]
2 \draw (0,0) node[above]{v_i} to[short, o-] ++(1,0)
3 node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}}
4 (OA.-) -- ++(0,-1) coordinate(FB)
5 to[R=R_1] ++(0,-2) node[ground]{}
6 (FB) to[R=R_2, *-] (FB -| OA.out) -- (OA.out)
7 to [short, *-o] ++(1,0) node[above]{v_o}
8 ;
9 \end{circuitikz}

The last step to obtain the final look is to add a bit of styling. We want the op-amp filled with a
light cyan color, and we prefer to have the label aligned with the left side of the device:

22

vi
+

−
OA1

R1

R2

vo
1 \ctikzset{amplifiers/fill=cyan!20, component text=left}
2 \begin{circuitikz}[scale=0.8, transform shape]
3 \draw (0,0) node[above]{v_i} to[short, o-] ++(1,0)
4 node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}}
5 (OA.-) -- ++(0,-1) coordinate(FB)
6 to[R=R_1] ++(0,-2) node[ground]{}
7 (FB) to[R=R_2, *-] (FB -| OA.out) -- (OA.out)
8 to [short, *-o] ++(1,0) node[above]{v_o}
9 ;

10 \end{circuitikz}

The \ctikzset command choosing the style is better placed in the preamble, though. Style should
be coherent for all the document body, so avoiding stating it for every circuit is normally the best
strategy.

2.2.1 Reusing the circuit: the easy way

The easiest way to reuse the circuit is to put it in a macro. This is a very flexible way of doing it;
the only drawback is that the only easy way to position it is using the first coordinate: you will
not be able to move the component using “anchors”; that is more complex and will need the use
of subcircuits (but you will lose parameters…see section 3.4).
Defining a macro for our amplifier could be as easy as this:

1 \newcommand\myNIA[4]{%1: name of this amplifier, %2 start coordinate, %3 R1, %4 R2
2 \draw #2 coordinate(#1-in) to[short] ++(1,0)
3 node[op amp, noinv input up, anchor=+](#1-OA){\texttt{#1}}
4 (#1-OA.-) -- ++(0,-1) coordinate(#1-FB)
5 to[R=#3] ++(0,-2) node[ground]{}
6 (#1-FB) to[R=#4, *-] (#1-FB -| #1-OA.out) -- (#1-OA.out)
7 to [short, *-] ++(1,0) coordinate(#1-out)
8 ;
9 }

We remove the open poles (it’s better to draw them at the end to avoid artifacts) and then we
make the names of the coordinates and of the nodes unique, by prepending a parameter that we
will provide at every invocation. Then we remove the labels (for simplicity here) and add a couple
of coordinates that we will be able to use from the outside when building our circuit.
And we can use it like in the following:

+

−
OA1

R1

R2

+

−
OA2

R3

R4

vi

vo

1 \begin{circuitikz}[scale=0.7, transform shape
]

2 \myNIA{OA1}{(0,0)}{R_1}{R_2}
3 % start drawing from the output of OA1
4 \myNIA{OA2}{(OA1-out)}{R_3}{R_4}
5 \node [ocirc] at (OA1-in) {};
6 \node [above] at (OA1-in) {v_i};
7 \node [ocirc] at (OA2-out){};
8 \node [above] at (OA2-out) {v_o};
9 \draw (OA1-out) -| (OA2-in);

10 \end{circuitikz}

23

2.3 A transistor-based amplifier

The idea is to draw a two-stage amplifier for a lesson, or exercise, on the different qualities of BJT
and MOSFET transistors.
Please notice that this section uses the “new” position for transistor labels, enabled since version
0.9.7. You should refer to older manuals to see how to do the same with older versions; basically
the transistor’s names were output using an additional node{} command.
Also notice that this is a more “personal” tutorial, showing a way to draw circuits that is, in the
author’s opinion, highly reusable and easy to do. The idea is to use relative coordinates and named
nodes as much as possible, so that changes in the circuit are easily done by changing just a few
numbers that select relative positions and by using symmetries. Crucially, this kind of approach
makes each block reusable in other diagrams by just changing one coordinate.
First of all, let’s define a handy function to show the position of nodes:

1 \def\normalcoord(#1){coordinate(#1)}
2 \def\showcoord(#1){coordinate(#1) node[circle, red, draw, inner sep=1pt,
3 pin={[red, overlay, inner sep=0.5pt, font=\tiny, pin distance=0.1cm,
4 pin edge={red, overlay}]45:#1}](){}}
5 \let\coord=\normalcoord
6 \let\coord=\showcoord

The idea is that you can use \coord() instead of coordinate() in paths, and that will draw small
red markers showing them. For example:

centerB

C

E

1 \begin{circuitikz}[american,]
2 \draw (0,0) node[npn](Q){};
3 \path (Q.center) \coord(center)
4 (Q.B) \coord(B) (Q.C) \coord(C)
5 (Q.E) \coord(E);
6 \end{circuitikz}

After the circuit is drawn, simply commenting out the second \let command will hide all the
markers.
So let’s start with the first stage transistor; given that my preferred way of drawing a MOSFET
is with arrows, I’ll start with the command \ctikzset{tripoles/mos style/arrows}:

Q1

1 \begin{circuitikz}[american,]
2 \ctikzset{tripoles/mos style/arrows}
3 \def\killdepth#1{{\raisebox{0pt}[\height][0pt]{#1}}}
4 \path (0,0) -- (2,0); % bounding box
5 \draw (0,0) node[nmos](Q1){\killdepth{Q1}};
6 \end{circuitikz}

I had to do draw an invisible line to take into account the text for Q1 — the text is not taken
into account in calculating the bounding box. This is because the “geographical” anchors (north,
north west, …) are defined for the symbol only. In a complex circuit, this is rarely a problem.
Another thing I like to modify with respect to the standard is the position of the arrows in
transistors, which are normally in the middle of the symbol. Using the following setting (see
section 4.15.5) will move the arrows to the start or end of the corresponding pin.

1 \ctikzset{transistors/arrow pos=end}

The tricky thing about \killdepth{} macro is the finicky details. Without the \killdepth macro,
the labels of different transistors will be adjusted so that the vertical center of the box is at the
center anchor, and as an effect, labels with descenders (like Q) will have a different baseline than
labels without. You can see this here (it’s really subtle):

24

q1 m1

q1 m1

1 \begin{circuitikz}[american,]
2 \draw (0,0) node[nmos](Q1){q1} ++(2,0)
3 node[nmos](M1){m1};
4 \draw [red] (Q1.center) ++(0,-0.7ex) -- ++(3,0);
5 \draw (0,-2)node[nmos](Q1){\killdepth{q1}} ++(2,0)
6 node[nmos](M1){\killdepth{m1}};
7 \draw [red] (Q1.center) ++(0,-0.7ex) -- ++(3,0);
8 \end{circuitikz}

We will start connecting the first transistor with the power supply with a couple of resistors. Notice
that I am naming the nodes GND, VCC and VEE, so that I can use the coordinates to have all the
supply rails at the same vertical position (more on this later).

Q1

RS

5 kΩ

VEE = −10V

RD

10 kΩ

VCC = 10V

C1

GND

VCC

VEE

1 \begin{circuitikz}[american,]
2 \draw (0,0) node[nmos,](Q1){\killdepth{Q1}};
3 \draw (Q1.S) to[R, l2^=R_S and \SI{5}{k\ohm}]
4 ++(0,-3) node[vee](VEE){$V_{EE}=\SI{-10}{V}$};
5 \draw (Q1.D) to[R, l2_=R_D and \SI{10}{k\ohm}]
6 ++(0,3) node[vcc](VCC){$V_{CC}=\SI{10}{V}$};
7 \draw (Q1.S) to[short] ++(2,0) to[C=C_1]
8 ++(0,-1.5) node[ground](GND){};
9 % show the named coordinates!

10 \path (GND) \coord(GND)
11 (VCC) \coord(VCC)
12 (VEE) \coord(VEE);
13 \end{circuitikz}

After that, let’s add the input part. I will use a named node here, referring to it to add the input
source. Notice how the ground node is positioned: the coordinate (in |- GND) is the point with
the horizontal coordinate of (in) and the vertical one of (GND), lining it up with the ground of
the capacitor C1 (you can think it as “the point aligned vertically with in and horizontally with
GND”).

25

Q1

RS

5 kΩ

VEE = −10V

RD

10 kΩ

VCC = 10V

C1

in

RG

1MΩ

C2

vi = vi1

1 \begin{circuitikz}[american, scale=0.7, transform
shape]

2 \draw (0,0) node[nmos,](Q1){\killdepth{Q1}};
3 \draw (Q1.S) to[R, l2^=R_S and \SI{5}{k\ohm}]
4 ++(0,-3) node[vee](VEE){$V_{EE}=\SI{-10}{V}$};
5 \draw (Q1.D) to[R, l2_=R_D and \SI{10}{k\ohm}]
6 ++(0,3) node[vcc](VCC){$V_{CC}=\SI{10}{V}$};
7 \draw (Q1.S) to[short] ++(2,0) to[C=C_1]
8 ++(0,-1.5) node[ground](GND){};
9 \draw (Q1.G) to[short] ++(-1,0)

10 \coord (in) to[R, l2^=R_G and \SI{1}{M\ohm}]
11 (in |- GND) node[ground]{};
12 \draw (in) to[C, l_=C_2,*-o]
13 ++(-1.5,0) node[left](vi1){$v_i=v_{i1}$};
14 \end{circuitikz}

Notice that the only absolute coordinate here is the first one, (0,0); so the elements are connected
with relative movements and can be moved by just changing one number (for example, changing
the to[C=C_1] ++(0,-1.5) will move all the grounds down).
This is the final circuit, with the nodes still marked:

1 % this is for the blue brackets under the circuit
2 \tikzset{blockdef/.style={%
3 {Straight Barb[harpoon, reversed, right, length=0.2cm]}-{Straight Barb[harpoon,

reversed, left, length=0.2cm]},
4 blue,
5 }}
6 \def\killdepth#1{{\raisebox{0pt}[\height][0pt]{#1}}}
7 \def\coord(#1){coordinate(#1)}
8 \def\coord(#1){coordinate(#1) node[circle, red, draw, inner sep=1pt,
9 pin={[red, overlay, inner sep=0.5pt, font=\tiny, pin distance=0.1cm,

10 % we reset the arrow in pin edge to avoid carrying over the path one!
11 pin edge={red, overlay,-}]45:#1}](#1-node){}}
12 \begin{circuitikz}[american,]
13 \draw (0,0) node[nmos,](Q1){\killdepth{Q1}};
14 \draw (Q1.S) to[R, l2^=R_S and \SI{5}{k\ohm}] ++(0,-3) node[vee](VEE){$V_{EE}=\SI

{-10}{V}$}; %define VEE level
15 \draw (Q1.S) to[short] ++(2,0) to[C=C_1] ++(0,-1.5) node[ground](GND){};
16 \draw (Q1.G) to[short] ++(-1,0) \coord (in) to[R, l2^=R_G and \SI{1}{M\ohm}] (in |-

GND) node[ground]{};
17 \draw (in) to[C, l_=C_2,*-o] ++(-1.5,0) node[left](vi1){$v_i=v_{i1}$};
18 \draw (Q1.D) to[R, l2_=R_D and \SI{10}{k\ohm}] ++(0,3) node[vcc](VCC){$V_{CC}=\SI

{10}{V}$};
19 \draw (Q1.D) to[short, -o] ++(1,0) node[right](vo1){v_{o1}};
20 %
21 \path (vo1) -- ++(2,0) \coord(bjt);
22 %
23 \draw (bjt) node[npn, anchor=B](Q2){\killdepth{Q2}};
24 \draw (Q2.B) to[short, -o] ++(-0.5,0) node[left](vi2){v_{12}};
25 \draw (Q2.E) to[R,l2^=R_E and \SI{9.3}{k\ohm}] (Q2.E |- VEE) node[vee]{};
26 \draw (Q2.E) to[short, -o] ++(1,0) node[right](vo2){v_{o2}};
27 \draw (Q2.C) to[short] (Q2.C |- VCC) node[vcc]{};
28 %
29 \path (vo2) ++(1.5,0) \coord(load);
30 \draw (load) to[C=C_3] ++(1,0) \coord(tmp) to[R=R_L] (tmp |- GND) node[ground

]{};

26

31 \draw [densely dashed] (vo2) -- (load);
32 %
33 \draw [densely dashed] (vo1) -- (vi2);
34 %
35 \draw [blockdef](vi1|-VEE) ++(0,-2) \coord(tmp)
36 -- node[midway, fill=white]{bloque 1} (vo1|- tmp);
37 \draw [blockdef] (vi2|-VEE) ++(0,-2) \coord(tmp)
38 -- node[midway, fill=white]{bloque 2} (vo2|- tmp);
39

40 \end{circuitikz}

Q1

RS

5 kΩ

VEE = −10V

C1

in

RG

1MΩ

C2

vi = vi1

RD

10 kΩ

VCC = 10V

vo1
bjt

Q2v12

RE

9.3 kΩ

vo2
load

C3

tmp

RL

tmp
bloque 1

tmp
bloque 2

You can see that after having found the place where we want to put the BJT transistor (line 21),
we use the option anchor=B so that the base anchor will be put at the coordinate bjt.
Finally, if you like a more compact drawing, you can add the options (for example):

1 \begin{circuitikz}[american, scale=0.8] % this will scale only the coordinates
2 \ctikzset{resistors/scale=0.7, capacitors/scale=0.6}
3 ...
4 \end{circuitikz}

and you will obtain the following diagram with the exact same code (I just removed the second
\coord definition to hide the coordinates markings).

27

Q1

RS

5 kΩ

VEE = −10V

C1

RG

1MΩ

C2

vi = vi1

RD

10 kΩ

VCC = 10V

vo1 Q2v12

RE

9.3 kΩ

vo2

C3

RL

bloque 1 bloque 2

28

2.4 A logic circuit

Let’s suppose we want to reproduce the cir-
cuit on the right5, maybe as part of a more
complex one.

Looking at the circuit to draw, I see that
there is a basic block: the flip-flop with the
added three-port circuit to its left, marked
with the red dashed rectangle. The main
distance to respect here is that we want the
two ANDs in line with the flip-flop inputs,
so I’ll start with the flip-flop and then add
the rest of the block.

The shapes are very similar to the IEEE
logic gates (see section 4.22.2); after a first
check, the standard size of the port is a bit
too big with respect to the flip-flop, so I scale
them down a bit.

1 \ctikzset{
2 logic ports=ieee,
3 logic ports/scale=0.7,
4 }

R Q

CP

S Q

SR-FF

R Q

CP

S Q

SR-FF

ENABLE CP RESET

a0

a1

I want a reusable block, so I will start from a coordinate and then use only relative, defining
coordinates along the way.
The first thing is to define a suitable flip-flop. The standard SR (see
4.23) is almost what we need, but not exactly the same. So let’s
define a new one:

1 \tikzset{sr-ff/.style={flipflop, flipflop def={
2 t1=S, t2=CP, t3=R, t4={\ctikztextnot{Q}},
3 t6=Q, nd=1}},
4 }

R Q

CP

S Q

Now we can add the “and” gates. For example, we can add the gates to the right like this:

R Q

CP

S Q

SR-FF 1 \begin{circuitikz}[]
2 \draw (0,0) node[sr-ff](FF){} (FF.bup)
3 node[above]{SR-FF};
4 \draw (FF.pin 1) -- ++(-1,0) node[and port,
5 anchor=out](AND1){}
6 (FF.pin 3) -- ++(-1,0) node[and port,
7 anchor=out](AND2){};
8 \end{circuitikz}

You can notice a pair of things here: first of all, the use of the anchor=out in the port, to tell
TikZ that we want the node moved so that the out anchor is the reference one. The second one is
that we have repeated the absolute shift (the ++(-1, 0)) twice. This is a bad practice; it is much
better to have the “free” parameters of a schematic just stated once, so that we can change them
in just one point.
You can of course use a macro, like \newcommand{\andshift}{(-1,0)} but it is much more
elegant to do something like this:

5It seems a quite popular one on tex.stackexchange…

29

https://tex.stackexchange.com/q/545317/38080

R Q

CP

S Q

SR-FF 1 \begin{circuitikz}[]
2 \draw (0,0) node[sr-ff](FF){} (FF.bup)
3 node[above]{SR-FF};
4 \draw (FF.pin 1) -- ++(-1,0) node[and port,
5 anchor=out](AND1){}
6 (FF.pin 3) -- (FF.pin 3 -| AND1.out)
7 node[and port, anchor=out](AND2){};
8 \end{circuitikz}

In this snippet, the coordinate (FF.pin 3 -| AND1.out) is the TikZ way to say “the point which
is horizontally straight from FF.pin 3 and vertically form AND1.out”. That way one can change
the number -1 to move both AND ports nearer or farther away.
Now we can add the not port. Since version 1.1.3 you can use a path-style not port, so you can
just say: this:

R Q

CP

S Q

SR-FF
1 \begin{circuitikz}[scale=0.8, transform shape]
2 \draw (0,0) node[sr-ff](FF){} (FF.bup)
3 node[above]{SR-FF} (FF.pin 1) -- ++(-1,0)
4 node[and port, anchor=out](AND1){}
5 (FF.pin 3) -- (FF.pin 3 -| AND1.out)
6 node[and port, anchor=out](AND2){}
7 (AND1.in 1) to[short, -*] ++(-1,0) coordinate(in)
8 to[inline not] (in |- AND2.in 2) -- (AND2.in 2);
9 \end{circuitikz}

In earlier versions, you should have found the center point between the two terminal, position the
“not” shape and ten connect it, like for example (this code must stay into the \draw command):

1 % let's position the NOT in the center
2 % this is using the calc tikz library
3 ($(in)!0.5!(in |- AND2.in 2)$) node[not port, rotate=-90](NOT){}
4 % and connect it
5 (in) -- (NOT.in) (NOT.out) |- (AND2.in 2)

Now we have the basic block; we have to use it twice, so one of the possible ways to do it is to
prepare a command. We will change the names of the nodes and the coordinates to be different
for any “call” of the block (another option is to use a pic; but this is more straightforward).

1 \newcommand*{\myblock}[1]{% Add #1- to the node and coord names
2 node[sr-ff](#1-FF){} (#1-FF.bup) node[above]{SR-FF}
3 (#1-FF.pin 1) -- ++(-1,0) node[and port, anchor=out](#1-AND1){}
4 (#1-FF.pin 3) -- (#1-FF.pin 3 -| #1-AND1.out)
5 node[and port, anchor=out](#1-AND2){}
6 (#1-AND1.in 1) to[short, -*] ++(-1,0) coordinate(#1-in)
7 to[inline not] (#1-in |- #1-AND2.in 2) -- (#1-AND2.in 2)
8 }

30

So now we can draw two of our blocks:
1 \draw (0,0) \myblock{A};
2 \draw (0,-4) \myblock{B};

Part of the anchors and coordinates that we
have accessible are marked in red in the dia-
gram at the side.

Now we have to just connect the relevant
parts and add the labels. The names of the
inputs are quite easy:

1 \draw (A-in) -- ++(-0.5, 0) node[
below]{a_0};

2 \draw (B-in) -- ++(-0.5, 0) node[
below]{a_1};

And finally:

R Q

CP

S Q

SR-FF

R Q

CP

S Q

SR-FF

A-in
A-AND1.in 2

A-AND2.in 1

A-FF.pin 2

A-FF.down

B-in
B-AND1.in 2

B-AND2.in 1

B-FF.pin 2

B-FF.down

1 \draw (A-AND1.in 2) to[short, -*] (A-AND2.in 1)
2 to[short, -*] (B-AND1.in 2) to[short, -*] (B-AND2.in 1)
3 -- ++(0, -2) coordinate(down) node[below]{ENABLE};
4 \draw (A-FF.pin 2) to[short, -*] (B-FF.pin 2)
5 -- (B-FF.pin 2 |- down) node[below]{CP};
6 \draw (B-FF.down) to[short, -*] ++(0,-0.3) coordinate(dd);
7 \draw (A-FF.down) -- ++(0,-.5) -- ++(1.5,0) |- (dd)
8 -- (dd |- down) node[below]{RESET};

Will create the final diagram:

R Q

CP

S Q

SR-FF

R Q

CP

S Q

SR-FF

ENABLE CP RESET

a0

a1

31

3 The components: usage

Components in CircuiTikZ come in two forms: path-style, to be used in a to[component,... path
specifications, and node-style, which will be instantiated by a node[component,...] specification.
All the shapes defined by CircuiTikZ are pgf nodes, so they are usable in both pgf and TikZ.

3.1 Path-style components

The path-style components are used as shown below:
1 \begin{circuitikz}
2 \draw (0,0) to[#1=#2, options] (2,0);
3 \end{circuitikz}

where #1 is the name of the component, #2 is an (optional) label, and options are optional labels,
annotations, style specifier that will be explained in the rest of the manual.
Transistors and some other node-style components can also be placed using the syntax for bipoles.
See section 4.15.10.
Most path-style components can be used as a node-style components; to access them, you add a
shape to the main name of component (for example, diodeshape). Such a “node-shape name” is
specified in the description of each component.

3.1.1 Anchors

Normally, path-style components do not need anchors, although they have them just in case you
need them. You have the basic “geographical” anchors (bipoles are defined horizontally and then
rotated as needed):

center

left right
north north east

east

south eastsouthsouth west

west

north west n

e

s
w

In the case of bipoles, also shortened geographical anchors exists. In the description, it will be
shown when a bipole has additional anchors. To use the anchors, just give a name to the bipole
element using the syntax name=myname.

1 \begin{circuitikz}
2 \draw (0,0) to[potentiometer, name=P, mirror] ++(0,2);
3 \draw (P.wiper) to[L] ++(2,0);
4 \end{circuitikz}

Alternatively, that you can use the shape form, and then use the left and right anchors to do
your connections.

1 \begin{circuitikz}
2 \draw (0,0) node[potentiometershape, rotate=-90](P){};
3 \draw (P.wiper) to[L] ++(2,0);
4 \end{circuitikz}

32

3.1.2 Border anchors

Bipoles have also installed generic border anchors — that means, anchors that start at an angle.
For complexity reason, these are for most of the components simply a generic enclosing rectangle
(even for most of the round ones!6). They interact in a non-trivial way with the mirror and
invert keys, so it’s best not to use them directly.

0

30
6090120

150

180

210
240 270 300

330generic
0

30
6090120

150

180

210
240 270 300

330resistor
0

30

6090120

150

180

210

240 270 300

330fulldiode

0

30

6090120

150

180

210

240 270 300

330vsource

0

30

6090120

150

180

210

240 270 300

330capacitivesens

You can notice that the border anchors are a bit spaced out (this is useful because those anchors
are used to position labels and annotations). You can override this if you need to reach exactly the
border (whatever could that mean depends on the component) by using the key bipoles/border
margin, which is a number that states how much the enclosing border is stretched out (default
value is 1.1). For example, setting \ctikzset{bipoles/border margin=1} will make the border
anchor coincide with the geographical shape:

0

30
6090120

150

180

210
240 270 300

330generic
0

30
6090120

150

180

210
240 270 300

330resistor
0

30

6090120

150

180

210

240 270 300

330fulldiode

0

30

6090120

150

180

210

240 270 300

330vsource

0

30

6090120

150

180

210

240 270 300

330capacitivesens

The above diagram has been obtained with the code:
1 \def\showbordersfornode#1{%
2 \begin{circuitikz}[baseline, scale=0.8, transform shape]
3 \node[#1shape, name=bip] at(0,0) {};
4 \foreach \a in {0,30,...,359} \draw[red] (bip.\a) -- ++(\a:0.7)
5 node[font=\tiny, fill=white, inner sep=0.5pt]{\a};
6 \foreach \a in {15,45,...,359} \draw[red] (bip.\a) -- ++(\a:0.4);
7 \node [font=\ttfamily\small, black, below] at (bip.-90)
8 {\detokenize\expandafter{#1}};
9 \end{circuitikz}}

10 \ctikzset{bipoles/border margin=1}
11 \showbordersfornode{generic} \showbordersfornode{resistor}
12 \showbordersfornode{fulldiode} \showbordersfornode{vsource}
13 \showbordersfornode{capacitivesens}

3.1.3 Relative coordinates

As noticed by user septatrix, although full relative coordinates after a component work as ex-
pected when using ++(x,y)-style coordinates, often there are problems when using the +(x,y)-
style coordinates (which are supposed to set a temporary relative coordinate and then going back
to the starting point).
These kind of coordinate have in practice little use for the building of circuits, so have been only
(very) lightly tested; avoid them if you can — the behavior will depend not only on the CircuiTikZ
version, but also on the TikZ layer underneath.

6This is needed for the correct label/voltage etc. placement, and it’s too much work to change it.

33

https://github.com/circuitikz/circuitikz/issues/460

This behavior, although not optimal, was standard in to operation in plain TikZ before version
3.1.8; it was changed by Henri Menke in later versions. Notice that the change revealed a problem
in CircuiTikZ that should hopefully be fixed in v1.4.1; for more details see this issue on GitHub.
You can see from the example below (notice the blue curve using a spline line). If all the vertical
lines are at the left, the manual has been compiled with a new CircuiTikZ and TikZ. Otherwise,
the red and/or blue curve will have the vertical line at the right (which in principle is wrong).
In the last (green) example, you can see a workaround using local path and the key current
point is local that will work for older (and do not create problems in newer) versions.

Plotted using TikZ version 3.1.10 and CircuiTikZ version 1.6.3.

1 Plotted using \TikZ\ version \pgfversion{} and Circui\TikZ\ version \pgfcircversion{}.
2

3 \begin{tikzpicture}
4 \draw[color=red] (0,0) to[R] +(2,0) +(0,0) -- ++(0,-1);
5 \end{tikzpicture}
6 \qquad
7 \begin{tikzpicture}
8 \draw[color=blue] (0,0) to[out=30, in=120] +(2,0) +(0,0) -- ++(0,-1);
9 \end{tikzpicture}

10 \qquad
11 \begin{tikzpicture}
12 \draw[color=purple] (0,0) to[] +(2,0) +(0,0) -- ++(0,-1);
13 \end{tikzpicture}
14 \qquad
15 \begin{tikzpicture}
16 \draw[color=green!50!black] (0,0)
17 {[current point is local] to[R] +(2,0)} +(0,0) -- ++(0,-1);
18 \end{tikzpicture}

3.1.4 Customization

Pretty much all CircuiTikZ relies heavily on pgfkeys for value handling and configuration. Indeed,
at the beginning of circuitikz.sty and in the file pfgcirc.define.tex a series of key definitions
can be found that modify all the graphical characteristics of the package.
All can be varied using the \ctikzset command, anywhere in the code.
Note that the details of the parameters that are not described in the manual can change in the
future, so be ready to use a fixed version of the package (the ones with the specific number, like
circuitikz-0.9.3) if you dig into them.

3.1.4.1 Components size Perhaps the most important parameter is bipoles/length (default
1.4 cm), which can be interpreted as the length of a resistor (including reasonable connections):
all other lengths are relative to this value. For instance:

34

https://github.com/circuitikz/circuitikz/issues/569

B

20Ω

10Ω

vx

S
5vx

5Ω

A

1 \ctikzset{bipoles/length=1.4cm}
2 \begin{circuitikz}[scale=1.2]\draw
3 (0,0) node[anchor=east] {B}
4 to[short, o-*] (1,0)
5 to[R=20<\ohm>, *-*] (1,2)
6 to[R=10<\ohm>, v=v_x] (3,2) -- (4,2)
7 to[cI=$\frac{\si{\siemens}}{5} v_x$, *-*] (4,0) -- (3,0)
8 to[R=5<\ohm>, *-*] (3,2)
9 (3,0) -- (1,0)

10 (1,2) to[short, -o] (0,2) node[anchor=east]{A}
11 ;\end{circuitikz}

B

20Ω

10Ω

vx

S
5vx

5Ω

A

1 \ctikzset{bipoles/length=.8cm}
2 \begin{circuitikz}[scale=1.2]\draw
3 (0,0) node[anchor=east] {B}
4 to[short, o-*] (1,0)
5 to[R=20<\ohm>, *-*] (1,2)
6 to[R=10<\ohm>, v=v_x] (3,2) -- (4,2)
7 to[cI=$\frac{\si{\siemens}}{5} v_x$, *-*] (4,0) -- (3,0)
8 to[R=5<\ohm>, *-*] (3,2)
9 (3,0) -- (1,0)

10 (1,2) to[short, -o] (0,2) node[anchor=east]{A}
11 ;\end{circuitikz}

The changes on bipoles/length should, however, be globally applied to every path, because they
affect every element — including the poles. So you can have artifacts like the one in the second
line below:

1 \begin{circuitikz}[
2 bigR/.style={R, bipoles/length=3cm}
3]
4 \draw (0,3) to [bigR, o-o] ++(4,0);
5 \draw (0,1.5) to [bigR, o-o] ++(4,0)
6 to[R, o-o] ++(2,0); % will fail here
7 \draw (0,0) to [R, o-o] ++(4,0);
8 \end{circuitikz}

35

Several groups of components, on the other hand, have a special scale parameter that can be used
safely in this case (starting with 0.9.4 — more groups of components will be added going forward);
the key to use will be explained in the specific description of the components. For example, in the
case of resistors you have resistors/scale available:

1 \begin{circuitikz}[
2 bigR/.style={R, resistors/scale=1.8}
3]
4 \draw (0,3) to [bigR, o-o] ++(4,0);
5 \draw (0,1.5) to [bigR, o-o] ++(4,0)
6 to[R, o-o] ++(2,0); % ok now
7 \draw (0,0) to [R, o-o] ++(4,0);
8 \end{circuitikz}

Never use scale, xscale or yscale in a path-style component (i.e., inside a to[...]) command.

3.1.4.2 Mirroring and flipping path-style components To change the orientation of path-
style components, never use xscale=-1 nor yscale=-1. That will mess up the path completely.
Use the mirror and invert options:

no modifier mirror invert both

1 \begin{tikzpicture}[N/.style={
2 font=\tiny\ttfamily, above}]
3 \draw (0,0) to [put] ++(0,2)
4 node[N]{no modifier};
5 \draw (1,0) to [put, mirror] ++(0,2)
6 node[N]{mirror};
7 \draw (2,0) to [put, invert] ++(0,2)
8 node[N]{invert};
9 \draw (3,0) to [put, mirror, invert] ++(0,2)

10 node[N]{both};
11 \end{tikzpicture}

3.1.4.3 Thickness of the lines (globally)
The best way to alter the thickness of components is using styling, see section 3.3.3. Alternatively,
you can use “legacy” classes like bipole, tripoles and so on — for example changing the param-
eter bipoles/thickness (default 2). The number is relative to the thickness of the normal lines
leading to the component.

1F

1F

1 \ctikzset{bipoles/thickness=1}
2 \tikz \draw (0,0) to[C=1<\farad>] (2,0); \par
3 \ctikzset{bipoles/thickness=4}
4 \tikz \draw (0,0) to[C=1<\farad>] (2,0);

3.1.4.4 Shape of the components (on a per-component-class basis)
The shape of the components are adjustable with a lot of parameters; in this manual we will
comment the main ones, but you can look into the source files specified above to find more.

36

1Ω

1Ω

1 \tikz \draw (0,0) to[R=1<\ohm>] (2,0); \par
2 \ctikzset{bipoles/resistor/height=.6}
3 \tikz \draw (0,0) to[R=1<\ohm>] (2,0);

It is recommended to use the styling parameters to change the shapes; they are not so fine-grained
(for example, you can change the width of resistor, not the height at the moment), but they are
more stable and coherent across your circuit.

3.1.5 Descriptions

The typical entry in the component list will be like this:

resistor: resistor, american style, type: path-style,
nodename: resistorshape. Aliases: R, american
resistor. Class: resistors.

wiper pR: potentiometer, american style, type: path-style,
nodename: potentiometershape. Aliases: pR,
american potentiometer. Class: resistors.

where you have all the needed information about the bipole, with also no-standard anchors. If
the component can be filled it will be specified in the description. In addition, as an example, the
component shown will be filled with the option fill=cyan!30!white:

A ammeter: Ammeter, type: path-style, fillable,
nodename: ammetershape. Class: instruments.

The Class of the component (see section 3.3) is printed at the end of the description.
Most path-style components can be used as a node-style components; to access them, normally
you add a shape to the main name of component (for example, diodeshape). Sometimes though
the “node name” is different, so it is specified in the description of each component.

3.2 Node-style components

Node-style components (monopoles, multipoles) can be drawn at a specified point with this syntax,
where #1 is the name of the component:

1 \begin{circuitikz}
2 \draw (0,0) node[#1,#2] (#3) {#4};
3 \end{circuitikz}

Explanation of the parameters:
#1: component name7 (mandatory)
#2: list of comma-separated options (optional)
#3: name of an anchor (optional)
#4: text written to the text anchor of the component (optional)

7For using bipoles as nodes, the name of the node is #1shape.

37

Notice: Nodes must have curly brackets at the end, even when empty. An optional anchor
(#3) can be defined within round brackets to be addressed again later on. And please don’t
forget the semicolon to terminate the \draw command.

Also notice: If using the \tikzexternalize feature, as of TikZ 2.1 all pictures must end
with \end{tikzpicture}. Thus you cannot use the circuitikz environment.
Which is OK: just use the environment tikzpicture: everything will work there just fine.

3.2.1 Mirroring and flipping

Mirroring and flipping of node components is obtained by using the TikZ keys xscale and yscale.
Notice that these parameters also affect text labels, so they need to be un-scaled by hand. Notice
that you do not use xscale or yscale in a path-style component, see section 3.1.4.2 for that
case.

−

+

OA1
−

+

OA2

−

+

OA3
−

+

OA4

1 \begin{circuitikz}[scale=0.7, transform shape]
2 \draw (0,3) node[op amp]{OA1};
3 \draw (3,3) node[op amp, xscale=-1]{OA2};
4 \draw (0,0) node[op amp]{OA3};
5 \draw (3,0) node[op amp, xscale=-1]{%
6 \scalebox{-1}[1]{OA4}};
7 \end{circuitikz}

To simplify this task, CircuiTikZ has three helper macros — \ctikzflipx{}, \ctikzflipy{},
and \ctikzflipxy{}, that can be used to “un-rotate” the text of nodes drawn with, respectively,
xscale=-1, yscale=-1, and scale=-1 (which is equivalent to xscale=-1, yscale=-1).

−

+

OA1
−

+

OA2

−

+

OA3

−

+

OA4

1 \begin{circuitikz}[scale=0.7, transform shape]
2 \draw (0,3) node[op amp]{OA1};
3 \draw (3,3) node[op amp, xscale=-1]{\ctikzflipx{OA2}};
4 \draw (0,0) node[op amp, yscale=-1]{\ctikzflipy{OA3}};
5 \draw (3,0) node[op amp, scale=-1]{\ctikzflipxy{OA4}};
6 \end{circuitikz}

3.2.2 Anchors

Node components anchors vary a lot across the various kinds of components, so they will be
described better after each category is presented in the manual. In general all components have
geographic anchors (north, north west, …), but most of the other anchors are very component-
specific.

38

3.2.3 Descriptions

The typical entry in the component list will be like this:

Cute spdt down with arrow, type: node (node[cute
spdt down arrow]{}). Class: switches.

B

C

E

npn, type: node (node[npn]{}). Class: transistors.

If the component can be filled it will be specified in the description. In addition, as an example,
the component shown will be filled with the option fill=cyan!30!white:

out Plain amplifier, type: node, fillable (node[plain amp]{}).
Class: amplifiers.

Sometime, components will expose internal (sub-)shapes that can be accessed with the syntax
<node name>-<internal node name> (a dash is separating the node name and the internal node
name); that will be shown in the description as a blue “anchor”:

in
cin

center

mid
out 1cout 1

N-out 1.n

N-out 4.w

Rotary switch, type: node (node[rotaryswitch](N){}).
Class: switches.

The Class of the component (see section 3.3) is printed at the end of the description.

3.3 Styling circuits and components
You can change the visual appearance of a circuit by using a circuit style different from the default.
For styling the circuit, the concept of class of a component is key: almost every component has a
class, and a style change will affect all the components of that class.
Let’s see the effect over a simple circuit8.
1 \begin{circuitikz}[american, cute inductors]
2 \node [op amp](A1){\texttt{OA1}};
3 \draw (A1.-) to[short] ++(0,1) coordinate(tmp) to[R, l_=R] (tmp -| A1.out) to[short] (A1.out);
4 \draw (tmp) to[short] ++(0,1) coordinate(tmp) to[C=C] (tmp -| A1.out) to[short] (A1.out);
5 \draw (A1.+) to [battery2, invert] ++(0,-2.5) node[ground](GND){};
6 \draw (A1.-) to [L=L] ++(-2,0) coordinate(tmp) to[sV, l=v_s, fill=yellow] (tmp |-GND) node[ground]{};
7 \draw (A1.out) to[R=R_s] ++(2,0) coordinate(bb) to[I, l_=I_B, invert] ++(0,2) node[vcc](VCC){};
8 \draw (bb) to[D, l=D, *-] ++(0,-2) coordinate(bb1) to[R=R_m] ++(0,-2) node[vee](VEE){};
9 \draw (bb) --++(1,0) node[npn, anchor=B](Q1){Q1};

10 \draw (bb1) --++(1,0) node[pnp, anchor=B](Q2){Q2};
11 \draw (Q1.E) -- (Q2.E) ($(Q1.E)!0.5!(Q2.E)$) to [short, *-o, name=S] ++(2.5,0)
12 node[right]{v_{o_Q}};
13 \draw (S.s) to[european resistor, l=Z_L, *-] (S.s|-GND) node[ground]{};
14 \draw (Q1.C) -- (Q1.C|-VCC) node[vcc]{\SI{5}{V}};
15 \draw (Q2.C) -- (Q2.C|-VEE) node[vee]{\SI{-5}{V}};
16 \end{circuitikz}

8This is a just an example, the circuit is not intended to be functional.

39

This code, with the default parameters, will render like the following image.

−

+

OA1

R

C

vio

L

vs

Rs

IB

D

Rm

Q1

Q2

voQ

ZL

5V

−5V

3.3.1 Relative size

Component size can be changed globally (see section 3.1.4.1), or you can change their relative size
by scaling a family of components by setting the key class/scale; for example, you can change
the size of all the diodes in your circuit by setting diodes/scale to something different from the
default 1.0.
Remember that if you use a global scale (be sure to read section 1.7!) you change the coordinate
only, so using scale=0.8 in the environment options you have:

−

+

OA1

R

C

vio

L

vs

Rs

IB

D

Rm

Q1

Q2

voQ

ZL

5V

−5V

If you want to scale all the circuit, you have to use also transform shape:

40

−

+

OA1

R

C

vio

L

vs

Rs

IB

D

Rm

Q1

Q2

voQ

ZL

5V

−5V

Using relative sizes as described in section 3.1.4.1 enables your style for the circuit. For example,
setting:

1 \ctikzset{resistors/scale=0.8, % smaller R
2 capacitors/scale=0.7, % even smaller C
3 diodes/scale=0.6, % small diodes
4 transistors/scale=1.3} % bigger BJTs

Will result in a (much more readable in Romano’s opinion) circuit:

−

+

OA1

R

C

vio

L

vs

Rs

IB

D

Rm

Q1

Q2

voQ

ZL

5V

−5V

Warning: relative scaling is meant to work for a reasonable range of stretching and shortening,
so try to keep your scale parameter in the 0.5 to 2.0 range (more or less). Bigger or smaller value
can result in awkward shapes.

3.3.2 Fill color

You can also set a default fill color for the components. You can use the keys class/fill (which
defaults to none, no fill, i.e. transparent component) for all fillable components in the library.
If you add to the previous styles the following commands:

41

1 \ctikzset{
2 amplifiers/fill=cyan,
3 sources/fill=green,
4 diodes/fill=red,
5 resistors/fill=violet,
6 }

you will have the following circuit (note that the first generator is explicitly set to be yellow, so if
will not be colored green!):

−

+

OA1

R

C

vio

L

vs

Rs

IB

D

Rm

Q1

Q2

voQ

ZL

5V

−5V

Please use this option with caution. Although two-colors circuits can be nice, using more than
that can become rapidly unbearable. Old textbooks used the two-color style quite extensively,
filling with a kind of light blue like blue!30!white “closed” components, but that was largely to
hinder black-and-white photocopying…

3.3.3 Line thickness

You can change the line thickness for any class of component in an independent way. The default
standard thickness of components is defined on a loose “legacy” category (like bipoles, tripoles
and so on, see section 3.1.4.3); to override that you set the key class/thickness to any number.
The default is none, which means that the old way of selecting thickness is used.
For example, amplifiers have the legacy class of tripoles, as well as transistors and tubes. By
default they are drawn with thickness 2 (relative to the base linewidth). To change them to be
thicker, you can for example add to the previous style

1 \ctikzset{amplifier/thickness=4}

42

−

+

OA1

R

C

vio

L

vs

Rs

IB

D

Rm

Q1

Q2

voQ

ZL

5V

−5V

Caveat: not every component has a “class”, so you have to play with the available ones (it’s
specified in the component description) and with the absolute values to have the circuit following
your taste. A bit of experimentation will create a kind of style options that you could use in all
your documents.

3.3.4 Style files

When using styles, it is possible to use style files (see section 3.3.5), that then you can load with
the command \ctikzloadstyle. For example, in the distribution you have a number of style files:
legacy, romano, example. When you load a style name name, you will have available a style called
name circuit style that you can apply to your circuits. The last style loaded is not enacted —
you have to explicitly do it if you want the style used by default, by putting for example in the
preamble:

\ctikzloadstyle{romano}
\tikzset{romano circuit style}

Please notice that the style is at TikZ level, not CircuiTikZ— that let’s you use it in the top option
of the circuit, like:

\begin{circuitikz}[legacy circuit style,
...,]
...
\end{circuitikz}

If you just want to use one style, you can load and activate it in one command with
\ctikzsetstyle{romano}

The example style file will simply make the amplifiers filled with light blue:

−

+

OA1
−

+

OA1

1 \begin{circuitikz}
2 \draw (0,0) node[op amp]{OA1};
3 \end{circuitikz}
4 \ctikzloadstyle{example}
5 \begin{circuitikz}[example circuit style]
6 \draw (0,0) node[op amp]{OA1};
7 \end{circuitikz}

43

The style legacy is a style that set (most) of the style parameters to the default, and romano is
a style used by one of the authors; you can use these styles as is or you can use them to learn to
how to write new file style following the instructions in section 3.3.5. In the next diagrams, the
left hand one is using the romano circuit style and the rigth hand one the legacy style.

−

+

OA1

R

C

vio

L

vs

Rs

IB

D

Rm

Q1

Q2

voQ

ZL

5V

−5V

−

+

OA1

R

C

vio

L

vs

Rs

IB

D

Rm

Q1

Q2

voQ

ZL

5V

−5V

3.3.5 Style files: how to write them

The best option is to start from ctikzstyle-legacy.tex and edit your style file from it. Then
you just put it in your input path and that’s all. If you want, you can contribute your style file to
the project.
Basically, to write the style example, you edit a file named ctikzstyle-romano.tex with will
define and enact TikZ style with name example circuit style; basically it has to be something
along this:�

1 % example style for circuits
2 % Do not use LaTeX commands if you want it to be compatible with ConTeXt
3 % Do not add spurious spaces
4 \tikzset{example circuit style/.style={%
5 \circuitikzbasekey/.cd,%
6 amplifiers/fill=blue!20!white,
7 },% end .style
8 }% end \tikzset
9 %

10 \endinput� �
This kind of style will add to the existing style. If you want to have a style that substitutes the
current style, you should do like this:�

1 \ctikzloadstyle{legacy}% start from a known state
2 \tikzset{romano circuit style/.style={%
3 legacy circuit style, % load the legacy style
4 \circuitikzbasekey/.cd,%
5 % Resistors
6 resistors/scale=0.8,
7 [...]
8 }}� �

If you want to add a setting to your style file that has been recently added to the package (for
example, the thyristor compact shapes added in 1.3.5), but you want your style file to be still
compatible with older versions of CircuiTikZ, you can use the .try statement:

44

�
1 % Diodes
2 diodes/scale=0.6,
3 diodes/thickness=1.0,
4 thyristor style/.try=compact,� �

Or, in case of new values of existing “choice” keys, you can use the syntax:�
1 % Logic ports
2 logic ports/ieee/.try,
3 % this way of setting the key does nothing if ieee option
4 % does not exist; logic ports/.try=ieee does not work
5 % if the key exists but the value is not defined
6 logic ports/scale=1.0,� �

3.4 Subcircuits

Starting from version 1.3.5, there is support for generating sub-circuits, or circuit blocks. The
creation and use of subcircuits is somewhat limited, to keep them simple and easy to define and
maintain.
A subcircuit is basically a path (and just one path!) of generic TikZ instructions, with a series
of accessible coordinates that behave more or less like anchors in the “real” shapes. The basic
limitation is that a subcircuit can be moved, replicated and placed around but it can’t be easily
personalized. Even if scaling and rotation is in principle possible, it is not easily done. Nevertheless,
they can be quite useful to build complex components and reusable blocks.

3.4.1 Subcircuit definition

To define a block you use the \ctikzsubcircuitdef macro; this macro has 3 arguments:

• the first argument is the name of the subcircuit, and it must form a valid TeX command
name when prepended with a backslash: so just letters (no spaces, nor numbers, nor symbols
like underscores, etc.);

• the second one is a comma-separated list of anchor names; here you can use whatever you
can use for naming a coordinate or a node (so it’s much more relaxed than the first one);

• finally, the commands that will draw the circuit. You must suppose you are in a \draw
command, with the start coordinate already set-up. You can (and should) use #1 as the
name of the current node, and you must define the coordinates of all the anchors listed
before as coordinate(#1-anchorname). You should not finish the path here and use only
relative coordinates or named ones.

Let’s see that with an example:
1 \ctikzsubcircuitdef{optovishay}{in 1, out 1, in 2, out 2, center}{%
2 % reference anchor is -center
3 coordinate(#1-center)
4 (#1-center) +(-1.2,-1) rectangle +(1.2,1)
5 (#1-center) ++(-1.2,0.8) coordinate (#1-in 1)
6 (#1-center) ++(-1.2,-0.8) coordinate (#1-in 2)
7 (#1-center) ++(1.2,0.8) coordinate (#1-out 1)
8 (#1-center) ++(1.2,-0.8) coordinate (#1-out 2)

45

9 (#1-center) ++(0,1) coordinate (#1-up)
10 (#1-in 1) -- ++(0.5,0) coordinate(#1-tmp)
11 to[leD*, diodes/scale=0.6, led arrows from cathode]
12 (#1-tmp|- #1-in 2) -- (#1-in 2)
13 (#1-out 1) -- ++(-0.5,0) coordinate(#1-tmp)
14 to[pD*, diodes/scale=0.4, mirror] ++(0,-0.5)
15 edge[densely dashed] ++(0,-0.533) ++(0,-0.566)
16 to[pD*, diodes/scale=0.4,mirror] (#1-tmp|- #1-out 2) -- (#1-out 2)
17 % leave the position of the path at the center
18 (#1-center)
19 }

Our element is a symbol for an optocoupler; in this case is the symbol used for one cell of the
double Vishay vo1263 device.
The name of the subcircuit is optovishay — notice we can use only letters here, upper or lowercase,
and nothing more. Then we have a series of anchor names; here we can use letters, numbers, spaces
and some symbol — but avoid the dot (.) and the hyphen (-). Additionally, the anchor named
subckt@reference is reserved and shouldn’t be used. If you use spaces, be on the safe side and
never use two or more consecutive spaces.
After that, you have to draw your subcircuit as if you were into a \draw command, starting from
a generic point. In this case, we decide to draw the circuit around this generic point so that
it will result to be the center of the block; so as a first thing, we “mark” the position of the
center anchor, with coordinate(#1-center). The #1 will be substituted with the specific name
of the subcircuit’s instance later — so if you then call one instance of the optocoupler opto1, that
coordinate will be called opto1-center.
We continue by defining all our anchors (there is no need to do that at the start, but it’s handy
because then you can use them). You must define all the anchors!
Important: all the coordinates used must be either relative, or named in the form #1-something;
absolute coordinate will not work when instantiating the block. The block is thought to be used
inside a path specification, so the idea is not to end the path — that means that changing line
styles or colors is at best difficult. You can still use edges, though (see 8.2).
After that, we draw our circuit; in this case a LED and a couple of smaller photodiodes will do.
We also define a coordinate -up (you can define more coordinates, in addition to the anchors, or
name elements with name=#1-something for later access) for adding text.

3.4.2 Using the subcircuit

To use the subcircuit, an additional step is needed. Somewhere you have to activate it. This
is needed to calculate the relative positions of anchors using the current set of style parame-
ters. The normal place is to activate it just before usage; to do that you use the command
\ctikzsubcircuitactivate with the name of the subcircuit. That will define a new command,
\nameofthesubcircuit that you can use then in your paths.
So to check your subcircuit while defining it you can use this simple snippet:

O1 O2
1 \ctikzsubcircuitactivate{optovishay}
2 \begin{tikzpicture}
3 \draw (0,0) \optovishay{one}{};
4 \node [above] at (one-up) {O1};
5 \draw[color=blue] (one-out 1) -- ++(1,0)
6 \optovishay{two}{in 1};
7 \node [above] at (two-up) {O2};
8 \end{tikzpicture}

46

https://www.vishay.com/docs/84639/vo1263aa.pdf

3.4.2.1 Scaling, flipping and rotating subcircuits To scale and rotate a subcircuit you
have to include it into a scope with the appropriate scale and rotation commands. Notice that,
as in general in CircuiTikZ, global scales that affect rotation works only if transform shape is
issued (see 1.7); nesting transform shape normally works, but it has been really lightly tested.

1 \ctikzsubcircuitactivate{optovishay}
2 \begin{tikzpicture}[scale=0.8, transform shape]
3 \draw (0,0) \optovishay{three}{};
4 \draw (three-out 1) -- ++(0.5,0) coordinate(here);
5 \begin{scope}[xscale=-1,rotate=-45,transform shape]
6 \draw (here) \optovishay{four}{out 1};
7 \end{scope}
8 \draw[blue] (three-out 2) -| (four-out 2);
9 \end{tikzpicture}

3.4.3 Parameters in subcircuits

There are no additional parameters definable for subcircuit shapes; this is a bit of a pity, because
sometimes they could be useful, especially for labels of objects. Given the need to use transform
shape to translate and rotate them, though, it is better not to add invariant-direction things (like
text) into the subcircuit, unless you are sure you will just translate them. One possibility is to
use additional macros and anchors for positioning, like in the following example.
Suppose you have defined

1 \ctikzsubcircuitdef{divider}{in, out}{%
2 coordinate (#1-in) to[R, l=~, name=#1-rh, -*] ++(2,0)
3 coordinate(#1-tmp) to[R, l=~, name=#1-rl] ++(0,-2)
4 node[tlground]{} (#1-tmp) --++(0.5,0) coordinate(#1-out)
5 }

then you can additionally define:
1 \newcommand{\mydiv}[4]{
2 \divider{#1}{#2} (#1-rh.n) node[above]{#3}
3 (#1-rl.n) node[right]{#4} (#1-out)
4 }

And finally do:

R1

R2

R3

R4

1 \ctikzsubcircuitactivate{divider}
2 \begin{tikzpicture}
3 \draw (0,0) \mydiv{a}{in}{R_1}{R_2};
4 \draw (a-out) -- \mydiv{b}{in}{R_3}{R_4};
5 \end{tikzpicture}

47

4 The components: list

This section is dedicated to the full list of available components.

4.1 Grounds and supply voltages
Ground symbols and power supplies — they have two different classes for styling.

4.1.1 Grounds

For the grounds, the center anchor is put on the connecting point of the symbol, so that you can
use them directly in a path specification.

center Ground, type: node (node[ground]{}). Class: grounds.

center Tailless ground, type: node (node[tlground]{}). Class:
grounds.

Reference ground, type: node (node[rground]{}). Class:
grounds.

Signal ground, type: node, fillable (node[sground]{}).
Class: grounds.

Thicker tailless reference ground, type: node
(node[tground]{}). Class: grounds.

Noiseless ground, type: node (node[nground]{}). Class:
grounds.

Protective ground, type: node, fillable
(node[pground]{}). Class: grounds.

Chassis ground9, type: node (node[cground]{}). Class:
grounds.

European style ground, type: node (node[eground]{}).
Class: grounds.

European style ground, version 210, type: node
(node[eground2]{}). Class: grounds.

4.1.1.1 Grounds anchors Anchors for grounds are a bit strange, given that they have the
center spot at the same location than north and all the ground will develop “going down”:

north north east

east

south eastsouthsouth west

west

north west left right
center

9These last three were contributed by Luigi «Liverpool»
10These last two were contributed by @fotesan

48

4.1.1.2 Grounds customization You can change the scale of these components (all the
ground symbols together) by setting the key grounds/scale (default 1.0).

4.1.2 Power supplies

VCC/VDD, type: node (node[vcc]{}). Class: power
supplies.

VEE/VSS, type: node (node[vee]{}). Class: power
supplies.

The power supplies are normally drawn with the arrows shown in the list above.

4.1.2.1 Power supply anchors They are similar to ground anchors, and the geographical
anchors are correct only for the default arrow.

north north east

east

south eastsouthsouth west

west

north west

left right
center

4.1.2.2 Power supplies customization You can change the scale of the power supplies by
setting the key power supplies/scale (default 1.0).
Given that the power supply symbols are basically arrows, you can change them using all the
options of the arrows.meta package (see the TikZ manual for details) by changing the keys
monopoles/vcc/arrow and monopoles/vee/arrow (the default for both is legacy, which will use
the old code for drawing them). Note that the anchors are at the start of the connecting lines,
and that geographical anchors are just approximation if you change the arrow symbol!

VCC

vcc

VEE

vee

VCC

vcc

VEE

vee

1 \begin{circuitikz}
2 % next macro is available in ctikzmanutils.sty
3 \def\coord(#1){\showcoord(#1)<0:0.3>}
4 \draw (0,0)
5 nodevcc{VCC} \coord(vcc) ++(2,0)
6 nodevee{VEE} \coord(vee);
7 \ctikzset{monopoles/vcc/arrow={Stealth[red, width=6pt,

length=9pt]}}
8 \ctikzset{monopoles/vee/arrow={Latex[blue]}}
9 \draw (0,-2)

10 nodevcc{VCC} \coord(vcc) ++(2,0)
11 nodevee{VEE} \coord(vee);
12 \end{circuitikz}

However, arrows in TikZ are in the same class with the line thickness, so they do not scale with
neither the class power supplies scale nor the global scale parameter (you should use transform
canvas={scale…} for this).
If you want the arrows to behave like the legacy symbols (which are shapes), only in the arrow
definitions, you can use the special length parameter \scaledwidth11 in the arrow definition,
which correspond to the width of the legacy vcc or vee. Compare the effects on the following
circuit.

11Thanks to @Schrödinger’s cat on TEX stackexchange site

49

https://tex.stackexchange.com/a/506249/38080

vi −

+

10V

−10V

2V

vo
vi −

+

10V

−10V

2V

vo

1 \ctikzset{%
2 monopoles/vcc/arrow={Triangle[width=0.8*\scaledwidth, length=\scaledwidth]},
3 monopoles/vee/arrow={Triangle[width=6pt, length=8pt]},
4 }
5 \begin{circuitikz}[baseline=(vo.center)]
6 \node [ocirc](TW) at (0,0) {};
7 \draw (TW.east) -- ++(1,0) node[midway, above]{v_i} node[op amp, anchor=-](A1){};
8 \draw (A1.up) -- ++(0, 0.3) node[vcc]{\SI{+10}{V}};
9 \draw (A1.down) -- ++(0,-0.3) node[vee]{\SI{-10}{V}};

10 \draw (A1.+) -- ++(-0.5,0) to[battery2, invert, l_=\SI{2}{V}] ++(0,-1) node[ground
]{};

11 \draw (A1.out) to[short, -o] ++(0.5,0) node[above](vo){v_o};
12 \end{circuitikz} \qquad
13 \begin{circuitikz}[baseline=(vo.center), scale=0.6, transform shape]
14 \node [ocirc](TW) at (0,0) {};
15 \draw (TW.east) -- ++(1,0) node[midway, above]{v_i} node[op amp, anchor=-](A1){};
16 \draw (A1.up) -- ++(0, 0.3) node[vcc]{\SI{+10}{V}};
17 \draw (A1.down) -- ++(0,-0.3) node[vee]{\SI{-10}{V}};
18 \draw (A1.+) -- ++(-0.5,0) to[battery2, invert, l_=\SI{2}{V}] ++(0,-1) node[ground

]{};
19 \draw (A1.out) to[short, -o] ++(0.5,0) node[above](vo){v_o};
20 \end{circuitikz}

4.2 Resistive bipoles

short: Short circuit, type: path-style, nodename:
shortshape. Class: default.

open: Open circuit, type: path-style, nodename:
openshape. Class: default.

generic: Generic (symmetric) bipole, type:
path-style, fillable, nodename: genericshape.
Class: resistors.

xgeneric: Crossed generic (symmetric) bipole, type:
path-style, fillable, nodename: xgenericshape.
Class: resistors.

tgeneric: Tunable generic bipole, type: path-style,
fillable, nodename: tgenericshape. Class:
resistors.

50

ageneric: Generic asymmetric bipole, type:
path-style, fillable, nodename: agenericshape.
Class: resistors.

memristor: Memristor, type: path-style, fillable,
nodename: memristorshape. Aliases: Mr. Class:
resistors.

Both shortshape and openshape are not really supposed to be used; they are dummy shapes
used as placeholders for the path-drawing routines.
If americanresistors option is active (or the style [american resistors] is used — this is the
default for the package), the resistors are displayed as follows:

R: Resistor, type: path-style, nodename:
resistorshape. Aliases: american resistor. Class:
resistors.

wiper

tip vR: Variable resistor, type: path-style, nodename:
vresistorshape. Aliases: variable american
resistor. Class: resistors.

wipertip pR: Potentiometer, type: path-style, nodename:
potentiometershape. Aliases: american
potentiometer. Class: resistors.

labelwiper

tip sR: Resistive sensor, type: path-style, nodename:
resistivesensshape. Aliases: american resistive
sensor. Class: resistors.

arrows
ldR: Ligth-Dependent resistor, type: path-style,
fillable, nodename: ldresistorshape. Aliases:
american light dependent resistor. Class:
resistors.

If instead europeanresistors option is active (or the style [european resistors] is used), the
resistors, variable resistors and potentiometers are displayed as follows:

R: Resistor, type: path-style, fillable, nodename:
genericshape. Aliases: european resistor. Class:
resistors.

wiper

tip vR: Variable resistor, type: path-style, fillable,
nodename: tgenericshape. Aliases: variable
european resistor. Class: resistors.

wipertip pR: Potentiometer, type: path-style, fillable,
nodename: genericpotentiometershape. Aliases:
european potentiometer. Class: resistors.

labelwiper

tip sR: Resistive sensor, type: path-style, fillable,
nodename: thermistorshape. Aliases: european
resistive sensor. Class: resistors.

arrows
ldR: Ligth-Dependent resistor, type: path-style,
fillable, nodename: ldgenericshape. Aliases:
european light dependent resistor. Class:
resistors.

51

Other miscellaneous resistor-like devices:

U

varistor: Varistor, type: path-style, fillable,
nodename: varistorshape. Class: resistors.

arrows phR: Photoresistor, type: path-style, fillable,
nodename: photoresistorshape. Aliases:
photoresistor. Class: resistors.

thR: Thermistor, type: path-style, fillable,
nodename: thermistorshape. Aliases: thermistor.
Class: resistors.

ϑ

thRp: PTC thermistor, type: path-style, fillable,
nodename: thermistorptcshape. Aliases: thermistor
ptc. Class: resistors.

ϑ

thRn: NTC thermistor, type: path-style, fillable,
nodename: thermistorntcshape. Aliases: thermistor
ntc. Class: resistors.

4.2.1 Potentiometers: wiper position

Since version 0.9.5, you can control the position of the wiper in potentiometers using the key
wiper pos, which is a number in the range [0, 1]. The default middle position is wiper pos=0.5.

A
B

C

1 \begin{circuitikz}[american]
2 \ctikzset{resistors/width=1.5, resistors/zigs=9}
3 \draw (0,0) to[pR, name=A] ++(0,-4);
4 \draw (1.5,0) to[pR, wiper pos=0.3, name=B] ++(0,-4);
5 \ctikzset{european resistors}
6 \draw (3,0) to[pR, wiper pos=0.8, name=C] ++(0,-4);
7 \foreach \i in {A, B, C}
8 \node[right] at (\i.wiper) {\i};
9 \end{circuitikz}

Since version 1.6.0, potentiometers and variable resistors have extra anchors12, to allow this kind
of circuit (that seems to be common in some region):

E P1

10 kΩ

R1

V

1 \begin{circuitikz}[european]
2 \draw (0,0) to[battery2, l=E] ++(0,4.5)
3 -- ++(2,0) coordinate(tmp)
4 to[vR, l2_=P_1 and \SI{10}{\kohm}, mirror,
5 invert, name=P]
6 (0,0-|tmp) -- (0,0);
7 \draw (0,0-|tmp) -- ++(1.5,0)
8 to[R=R_1, -*] ++(0,2) coordinate(p)
9 |- (P.wiper);

10 \draw (p) to[rmeterwa, t=V] (tmp-|p) -- (tmp);
11 \end{circuitikz}

12Thanks to a suggestion by Dr. Matthias Jung on GitHub

52

https://github.com/circuitikz/circuitikz/issues/663

4.2.2 Generic sensors anchors

Generic sensors have an extra anchor named label to help position the type of dependence, if
needed:

R

-t◦

L

C

+H%

1 \begin{circuitikz}
2 \draw (0,2) to[sR, l=R, name=mySR] ++(3,0);
3 \node [font=\tiny, right] at(mySR.label) {-t\si{\degree}};
4 \draw (0,0) to[sL, l=L, name=mySL] ++(3,0);
5 \node [draw, circle, inner sep=2pt] at(mySL.label) {};
6 \draw (0,-2) to[sC, l=C, name=mySC] ++(3,0);
7 \node [font=\tiny, below right, inner sep=0pt] at(mySC.label)

{+H\si{\%}};
8 \end{circuitikz}

The anchor is positioned just on the corner of the segmented line crossing the component.

4.2.3 Resistive components customization

4.2.3.1 Geometry. You can change the scale of these components (all the resistive bipoles
together) by setting the key resistors/scale (default 1.0). Similarly, you can change the widths
by setting resistors/width (default 0.8).
You can change the width of these components (all the resistive bipoles together) by setting the
key resistors/width to something different from the default 0.8.
For the american style resistors, you can change the number of “zig-zags” by setting the key
resistors/zigs (default value 3).

R

P

R

1 \begin{circuitikz}[
2 longpot/.style = {pR, resistors/scale=0.75,
3 resistors/width=1.6, resistors/zigs=6}]
4 \draw (0,1.5) to[R, l=R] ++(4,0);
5 \draw (0,0) to[longpot, l=P] ++(4,0);
6 \ctikzset{resistors/scale=1.5}
7 \draw (0,-1.5) to[R, l=R] ++(4,0);
8 \end{circuitikz}

4.2.3.2 Thickness. The line thickness of the resistive components is governed by the class
thickness; you can change it assigning a value to the key resistors/thickness (default none,
that means bipoles/thickness is used, and that defaults to 2.0; the value is relative to the base
line thickness).
We can call modifiers the elements that are added to the basic shape to express some characteristics
of the component; for example the arrows for the variable resistors or the bar for the sensors.
Normally the thickness of these elements are the same as the one chosen for the component13.
You can change their thickness with the class key modifier thickness which is relative to the
main component thickness.

13Due to a bug in versions before 1.3.4, that didn’t happen for thermistors

53

1 \begin{circuitikz}[american]
2 \draw (0,2) to[vR] ++(2,0) to[sR] ++(2,0);
3 \ctikzset{resistors/thickness=4}
4 \draw (0,1) to[vR] ++(2,0) to[sR] ++(2,0);
5 \ctikzset{resistors/modifier thickness=0.5}
6 \draw (0,0) to[vR] ++(2,0) to[sR] ++(2,0);
7 \end{circuitikz}

4.2.3.3 Arrows. You can change the arrow tips used in tunable resistors (vR, tgeneric) with
the key tunable end arrow and in potentiometers with the key wiper end arrow (by default
the key is the word “default” to obtain the default arrow, which is latexslim for both). Also
you can change the start arrow with the corresponding tunable start arrow or wiper start
arrow (the default value “default” is equivalent to {} for both, which means no arrow).
You can change that globally or locally, as ever. The tip specification is the one you can find in
the TikZ manual (“Arrow Tip Specifications”). For the photoresistor and the two “flavors” of
the light-dependent resistor (ldR, american or european), the style of the arrows follow the opto
commands as in the photodiodes and phototransistor: see 4.4.3.1.

1 \begin{tikzpicture}[american]
2 % globally all the potentiometrs
3 \ctikzset{wiper end arrow={Kite[open]},
4 opto arrows/color=blue, opto end arrow={Triangle}}
5 \draw (0,0) to[tgeneric] ++(2,0) to[phR] ++(2,0)
6 % set locally on this variable resistor
7 to[vR, tunable end arrow={Stealth[red]},
8 tunable start arrow={Bar}, invert] ++(0,-2)
9 to[pR, mirror] ++(-4,0);

10 \end{tikzpicture}

4.3 Capacitors and inductors: dynamical bipoles

4.3.1 Capacitors

capacitor: Capacitor, type: path-style, fillable,
nodename: capacitorshape. Aliases: C. Class:
capacitors.

curved capacitor: Curved (polarized) capacitor, type:
path-style, fillable, nodename: ccapacitorshape.
Aliases: cC. Class: capacitors.

+
ecapacitor: Electrolytic capacitor, type: path-style,
fillable, nodename: ecapacitorshape. Aliases:
eC,elko. Class: capacitors.

wiper

tip variable capacitor: Variable capacitor, type:
path-style, fillable, nodename: vcapacitorshape.
Aliases: vC. Class: capacitors.

labelwiper

tip capacitive sensor: Capacitive sensor,
type: path-style, fillable, nodename:
capacitivesensshape. Aliases: sC. Class: capacitors.

54

piezoelectric: Piezoelectric Element,
type: path-style, fillable, nodename:
piezoelectricshape. Aliases: PZ. Class: capacitors.

cpe: Constant Phase Element, type: path-style,
fillable, nodename: cpeshape. Aliases: cpe. Class:
capacitors.

kink left
kink right

curve left

curve right

center feC: Ferroelectric capacitor14, type: path-style,
fillable, nodename: ferrocapshape. Aliases:
ferrocap. Class: capacitors.

Capacitors are fillable since v1.4.1; this is normally just a stylistic option but in the case of
ferroelectric capacitors that could be used to show the state of the hysteresis of the component.

C1

v1 C2

S1

1 \begin{tikzpicture}[]
2 \ctikzset{capacitors/.cd,
3 thickness=4, modifier thickness=0.5}
4 \draw (0,0) to[feC, l=C_1, v=v1] ++(3,0)
5 to[feC, l=C_2, fill=green, name=C2] ++(0,-2);
6 \node [font=\tiny, above right, inner sep=1pt]
7 at(C2.kink left) {S_1};
8 \end{tikzpicture}

There is also the (deprecated15 — its polarity is not coherent with the rest of the components)
polar capacitor; please do not use it.

4.3.2 Capacitive sensors anchors

For capacitive sensors, you have the same anchors than in the case of resistive sensors, see sec-
tion 4.2.2.

4.3.3 Capacitors customizations

You can change the scale of the capacitors by setting the key capacitors/scale to something
different from the default 1.0. For thickness, you can use the same keys (applied to the capacitors
class) as for resistors in 4.2.3.2.
Variable capacitors arrow tips follow the settings of resistors, see section 4.2.3.3.
The relative size of the capacitors is a bit of a mixed bag, because each one has historically different
internal parameters that makes maintaining coherence quite difficult. In v1.4.1 this has changed
and now you can use styling options to change the way the capacitors look. The main parameter
you can set is capacitors/width (default 0.2), which controls the standard distance between
plates. That will change all the components (notice that piezoelectric and cpe default width is
twice the size of a standard capacitor — although this is not evident for the cpe given its shape.)

aaa bbb 1 \begin{circuitikz}[european]
2 \draw (0,1) to[C=aaa] ++(2,0) to[cpe=bbb] ++(2,0);
3 \draw[color=red] (0,0) to [C] ++(2,0);
4 \draw[color=blue] (0,0) to [cpe] ++(2,0)
5 to[cpe, fill=yellow, capacitors/width=0.1] ++(2,0);
6 \end{circuitikz}

14suggested by Mayeul Cantan
15Thanks to Anshul Singhv for noticing.

55

https://github.com/circuitikz/circuitikz/issues/515
https://tex.stackexchange.com/questions/509594/polar-capacitor-orientation-in-circuitikz-seems-wrong

The capacitors/height key is available also to set the height of the capacitor; the default is 0.6
for most of the capacitors, but 0.5 for electrolytic ones and 0.7 for piezoelectric. When used, it
will set all of them at the same value, which is a good thing.
If you want that only a specific kind of capacitor has a different value for a key, you can always
use a style which will have a local scope, as in the following example.

+

+

+

1 \begin{tikzpicture}
2 \draw (0,1) to [C] ++(1,0) to [elko] ++(1,0);
3 \ctikzset{capacitors/width=0.15, capacitors/height=0.5}
4 \draw (0,0) to [C] ++(1,0) to [elko] ++(1,0);
5 \tikzset{big elko/.style={elko=#1, capacitors/width=0.3}}
6 \draw (0,-1) to [C] ++(1,0) to[big elko] ++(1,0);
7 \end{tikzpicture}

4.3.4 Inductors

If the cuteinductors option is active (default behaviour), or the style [cute inductors] is used,
the inductors are displayed as follows:

midtap L: Inductor, type: path-style, nodename:
cuteinductorshape. Aliases: cute inductor. Class:
inductors.

wiper

tip vL: Variable inductor, type: path-style, nodename:
vcuteinductorshape. Aliases: variable cute
inductor. Class: inductors.

labelwiper

tip sL: Inductive sensor, type: path-style, nodename:
scuteinductorshape. Aliases: cute inductive sensor.
Class: inductors.

If the americaninductors option is active (or the style [american inductors] is used), the
inductors are displayed as follows:

midtap L: Inductor, type: path-style, nodename:
americaninductorshape. Aliases: american inductor.
Class: inductors.

core west core east

wiper

tip vL: Variable inductor, type: path-style, nodename:
vamericaninductorshape. Aliases: variable american
inductor. Class: inductors.

labelwiper

tip sL: Inductive sensor, type: path-style, nodename:
samericaninductorshape. Aliases: american
inductive sensor. Class: inductors.

Finally, if the europeaninductors option is active (or the style [european inductors] is used),
the inductors are displayed as follows:

midtap L: Inductor, type: path-style, nodename:
fullgenericshape. Aliases: european inductor. Class:
inductors.

56

wiper

tip
core west core east vL: Variable inductor, type: path-style, nodename:

tfullgenericshape. Aliases: variable european
inductor. Class: inductors.

labelwiper

tip sL: Inductive sensor, type: path-style, nodename:
sfullgenericshape. Aliases: european inductive
sensor. Class: inductors.

For historical reasons, chokes come only in the cute. You can use the core west and core east
anchors (see 4.3.6.2) to build your own core lines for the other inductors.

cute choke: Choke, type: path-style, nodename:
cutechokeshape. Class: inductors.

4.3.5 Inductors customizations

You can change the scale of the inductors by setting the key inductors/scale to something
different from the default 1.0. For thickness, you can use the same keys (applied to the inductors
class) as for resistors in 4.2.3.2.
Variable inductors arrow tips follow the settings of resistors, see section 4.2.3.3.
You can change the width of these components (all the inductors together, unless you use style
or scoping) by setting the key inductors/width to something different from the default, which is
0.8 for american and european inductors, and 0.6 for cute inductors.
Moreover, you can change the number of “coils” drawn by setting the key inductors/coils
(default value 5 for cute inductors and 4 for american ones). Notice that the minimum number
of coils is 1 for american inductors, and 2 for cute ones.

L

L

L

1 \begin{circuitikz}[
2 longL/.style = {cute inductor, inductors/scale=0.75,
3 inductors/width=1.6, inductors/coils=9}]
4 \draw (0,1.5) to[L, l=L] ++(4,0);
5 \draw (0,0) to[longL, l=L] ++(4,0);
6 \ctikzset{inductors/scale=1.5, inductor=american}
7 \draw (0,-1.5) to[L, l=L] ++(4,0);
8 \end{circuitikz}

4.3.5.1 Chokes can have single and double lines, and can have the line thickness adjusted
(the value is relative to the thickness of the inductor). In general, you should use the anchors
(see 4.3.6.2) to add core lines to inductors.

1 \begin{circuitikz}[american]
2 \draw (0,0) to[cute choke] ++(3,0);
3 \draw (0,-1) to[cute choke, twolineschoke] ++(3,0);
4

5 \ctikzset{bipoles/cutechoke/cthick=2, twolineschoke}
6

7 \draw (0,-2) to[cute choke] ++(3,0);
8 \draw (0,-3) to[cute choke, onelinechoke] ++(3,0);
9 \end{circuitikz}

57

4.3.6 Inductors anchors

For inductive sensors, you have the same anchors than in the case of resistive sensors, see sec-
tion 4.2.2.

4.3.6.1 Taps. Inductors have an additional anchor, called midtap, that connects to the center
of the coil “wire”. Notice that this anchor could be on one side or the other of the component,
depending on the number of loops of the element; if you need a fixed position, you can use the
geographical anchors.

1 \begin{circuitikz}[
2 loops/.style={circuitikz/inductors/coils=#1}]
3 \ctikzset{cute inductors}
4 \draw (0,2) to[L, loops=5, name=A] ++(2,0)
5 to[L, loops=6, name=B] ++(2,0);
6 \ctikzset{american inductors}
7 \draw (0,0) to[L, loops=5, name=C] ++(2,0)
8 to[L, loops=6, name=D] ++(2,0);
9 \foreach \i in {A, B, C, D}

10 \node[circle, fill=red, inner sep=1pt] at (\i.midtap){};
11 \end{circuitikz}

4.3.6.2 Core anchors. Inductors have additional anchors to add core lines (for historical
reasons, there is a cute choke component also, but to use inductors in the chosen style you’d better
use these anchors). The anchors are called core west and core east and they are positioned
at a distance that you can tweak with the \ctikzset key bipoles/inductors/core distance
(default 2pt).

L

L

L

1 \begin{circuitikz}[]
2 \ctikzset{american}
3 \draw (0,3) to[L=L, name=myL] ++(2,0);
4 \draw[thick] (myL.core west) -- (myL.core east);
5 \ctikzset{cute inductors}
6 \draw (0,1.5) to[L=L, name=myL] ++(2,0);
7 \draw[densely dashed] (myL.core west) -- (myL.core east);
8 \ctikzset{european, bipoles/inductors/core distance=4pt}
9 \draw (0,0) to[L=L, name=myL, label distance=2pt] ++(2,0);

10 \draw[thick, double] (myL.core west) -- (myL.core east);
11 \end{circuitikz}

Notice that the core lines will not change the position of labels. You have to move them by hand
if needed (or position them on the other side); see 5.1.1.1.

4.3.6.3 Dot anchors. Inductances also have “dot” anchors16, to help positioning dots when
specifying mutual inductance signs. The anchors are name lr dot (for lower right dot), ur dot
(upper right) and so on:

lr dot

ur dot

ll dot

ul dot

ur dotul dot

core west core east

16proposed by Romano in a discussion by GitHub user AndreaDiPietro92

58

https://github.com/circuitikz/circuitikz/issues/618

and as you can see, you have to be careful if you use dot anchors and core anchors together. You
can change the position of the dots by changing the keys bipoles/inductors/dot x distance
(default 4pt), which represent how much the dot extends outside the component width, and the
corresponding dot y distance (default 1pt), which serves the same scope in the height direction.

L1

L2

M

1 \begin{circuitikz}[]
2 \ctikzset{bipoles/inductors/.cd, dot x distance=3pt,
3 dot y distance=0pt}
4 \draw (0,2) to[L=L_1, name=l1] ++(3,0);
5 \draw (0,0) to[L, l_=L_2, name=l2, inductors/width=1.4,
6 inductors/coils=11] ++(3,0);
7 \path (l1.ur dot) node[circ]{} (l2.ul dot) node[circ]{};
8 \draw ([yshift=-0.2cm]l1.south)
9 to[out=-45, in=45] node[right]{M}

10 ([yshift=0.2cm]l2.north);
11 \end{circuitikz}

Notice that the position of the dot anchors does not coincide with the position of the dots in the
transformers (see section 4.19), because there they depend on the size of the complete double-bipole
more that on the size of the inductances.

4.4 Diodes and such

There are three basic styles for diodes: empty (fillable in color), full (completely filled with the
draw color) and stroke (empty, but with a line across them).
You can switch between the styles setting the key diode (for example \ctikzset{diode=full}
or empty or stroke, or with the styles full diodes, empty diodes and stroke diodes.
To use the default element, simply use the name shown for the empty diodes without the final “o”
— that is D, sD, and so on. The names shown in the following tables will draw the specified diode
independently on the style chosen (that is, leD* is always a full LED diode).

The package options fulldiode, strokediode, and emptydiode (and the styles [full
diodes], [stroke diodes], and [empty diodes]) define which shape will be used by ab-
breviated commands such that D, sD, zD, zzD, tD, pD, leD, VC, Ty,Tr (no stroke symbol
available!).

empty diode: Empty diode, type: path-style,
fillable, nodename: emptydiodeshape. Aliases: Do.
Class: diodes.

empty Schottky diode: Empty Schottky diode,
type: path-style, fillable, nodename:
emptysdiodeshape. Aliases: sDo. Class: diodes.

empty Zener diode: Empty Zener diode,
type: path-style, fillable, nodename:
emptyzdiodeshape. Aliases: zDo. Class: diodes.

empty ZZener diode: Empty ZZener diode,
type: path-style, fillable, nodename:
emptyzzdiodeshape. Aliases: zzDo. Class: diodes.

59

empty tunnel diode: Empty tunnel diode,
type: path-style, fillable, nodename:
emptytdiodeshape. Aliases: tDo. Class: diodes.

arrows
empty photodiode: Empty photodiode,
type: path-style, fillable, nodename:
emptypdiodeshape. Aliases: pDo. Class: diodes.

arrows empty led: Empty led, type: path-style, fillable,
nodename: emptylediodeshape. Aliases: leDo. Class:
diodes.

arrows empty laser diode: Empty laser diode17,
type: path-style, fillable, nodename:
emptylaserdiodeshape. Aliases: lasD. Class: diodes.

empty varcap: Empty varcap, type: path-style,
fillable, nodename: emptyvarcapshape. Aliases: VCo.
Class: diodes.

empty TVS diode: Empty TVS diode, transorb18,
type: path-style, fillable, nodename:
emptytvsdiodeshape. Aliases: tvsDo. Class: diodes.

empty Shockley diode: Empty Shockley diode19,
type: path-style, fillable, nodename:
emptyshdiodeshape. Aliases: shDo. Class: diodes.

empty bidirectionaldiode: Empty bidirectional-
diode, type: path-style, fillable, nodename:
emptybidirectionaldiodeshape. Aliases: biDo. Class:
diodes.

full diode: Full diode, type: path-style, nodename:
fulldiodeshape. Aliases: D*. Class: diodes.

full Schottky diode: Full Schottky diode, type:
path-style, nodename: fullsdiodeshape. Aliases:
sD*. Class: diodes.

full Zener diode: Full Zener diode, type:
path-style, nodename: fullzdiodeshape. Aliases:
zD*. Class: diodes.

full ZZener diode: Full ZZener diode, type:
path-style, nodename: fullzzdiodeshape. Aliases:
zzD*. Class: diodes.

full tunnel diode: Full tunnel diode, type:
path-style, nodename: fulltdiodeshape. Aliases:
tD*. Class: diodes.

arrows full photodiode: Full photodiode, type: path-style,
nodename: fullpdiodeshape. Aliases: pD*. Class:
diodes.

17Added by André Alves in v1.4.4
18Transobs were suggested by https://tex.stackexchange.com/q/642219/38080
19Shockley diodes were suggested by https://tex.stackexchange.com/q/646039/38080

60

arrows full led: Full led, type: path-style, nodename:
fulllediodeshape. Aliases: leD*. Class: diodes.

arrows full laser diode: Full laser diode, type: path-style,
nodename: fulllaserdiodeshape. Aliases: lasD*.
Class: diodes.

full varcap: Full varcap, type: path-style,
nodename: fullvarcapshape. Aliases: VC*. Class:
diodes.

full TVS diode: Full TVS diode, transorb, type:
path-style, nodename: fulltvsdiodeshape. Aliases:
tvsD*. Class: diodes.

full Shockley diode: Full Shockley diode, type:
path-style, nodename: fullshdiodeshape. Aliases:
shD*. Class: diodes.

full bidirectionaldiode: Full bidirec-
tionaldiode, type: path-style, nodename:
fullbidirectionaldiodeshape. Aliases: biD*. Class:
diodes.

These shapes have no exact node-style counterpart, because the stroke line is built upon the empty
variants:

stroke diode: Stroke diode, type: path-style,
fillable, nodename: emptydiodeshape. Aliases: D-.
Class: diodes.

stroke Schottky diode: Stroke Schottky diode,
type: path-style, fillable, nodename:
emptysdiodeshape. Aliases: sD-. Class: diodes.

stroke Zener diode: Stroke Zener diode,
type: path-style, fillable, nodename:
emptyzdiodeshape. Aliases: zD-. Class: diodes.

stroke ZZener diode: Stroke ZZener diode,
type: path-style, fillable, nodename:
emptyzzdiodeshape. Aliases: zzD-. Class: diodes.

stroke tunnel diode: Stroke tunnel diode,
type: path-style, fillable, nodename:
emptytdiodeshape. Aliases: tD-. Class: diodes.

arrows
stroke photodiode: Stroke photodiode,
type: path-style, fillable, nodename:
emptypdiodeshape. Aliases: pD-. Class: diodes.

arrows stroke led: Stroke led, type: path-style, fillable,
nodename: emptylediodeshape. Aliases: leD-. Class:
diodes.

61

arrows stroke laser diode: Stroke laser diode,
type: path-style, fillable, nodename:
emptylaserdiodeshape. Aliases: lasD-. Class: diodes.

stroke varcap: Stroke varcap, type: path-style,
fillable, nodename: emptyvarcapshape. Aliases: VC-.
Class: diodes.

4.4.1 Tripole-like diodes

The following tripoles are entered with the usual command, of the form to[Tr, …]. In the
following list you can see the traditional, or legacy, shape of the Thyristors-type devices.

full diode: Full diode, type: path-style, nodename:
fulldiodeshape. Aliases: D*. Class: diodes.

stroke diode: Stroke diode, type: path-style,
fillable, nodename: emptydiodeshape. Aliases: D-.
Class: diodes.

G

anode cathode

triac: Standard triac (shape depends on package op-
tion), type: path-style, fillable, nodename:
emptytriacshape. Aliases: Tr. Class: diodes.

gate
empty triac: Empty triac, type: path-style,
fillable, nodename: emptytriacshape. Aliases: Tro.
Class: diodes.

full triac: Full triac, type: path-style, nodename:
fulltriacshape. Aliases: Tr*. Class: diodes.

G
gate

anode cathode

thyristor: Standard thyristor (shape depends on pack-
age option), type: path-style, fillable, nodename:
emptythyristorshape. Aliases: Ty. Class: diodes.

empty thyristor: Empty thyristor, type: path-style,
fillable, nodename: emptythyristorshape. Aliases:
Tyo. Class: diodes.

full thyristor: Full thyristor, type: path-style,
nodename: fullthyristorshape. Aliases: Ty*. Class:
diodes.

stroke thyristor: Stroke thyristor, type: path-style,
fillable, nodename: emptythyristorshape. Aliases:
Ty-. Class: diodes.

62

G
gate

anode cathode

put: Standard Programmable Unipolar Transis-
tor20(shape depends on package option), type:
path-style, fillable, nodename: emptyputshape.
Aliases: PUT. Class: diodes.

empty put: Empty PUT, type: path-style,
fillable, nodename: emptyputshape. Aliases: PUTo.
Class: diodes.

full put: Full PUT, type: path-style, nodename:
fullputshape. Aliases: PUT*. Class: diodes.

stroke put: Stroke PUT, type: path-style,
fillable, nodename: emptyputshape. Aliases: PUT-.
Class: diodes.

G
gate

anode cathode

gto: Standard GTO (shape depends on package op-
tion), type: path-style, fillable, nodename:
emptygtoshape. Aliases: GTO. Class: diodes.

empty gto: Empty GTO, type: path-style,
fillable, nodename: emptygtoshape. Aliases: GTOo.
Class: diodes.

full gto: Full GTO, type: path-style, nodename:
fullgtoshape. Aliases: GTO*. Class: diodes.

stroke gto: Stroke GTO, type: path-style,
fillable, nodename: emptygtoshape. Aliases: GTO-.
Class: diodes.

G
gate

anode cathode

gtobar: Standard GTO with bar-type gate (shape
depends on package option), type: path-style,
fillable, nodename: emptygtobarshape. Aliases:
GTOb. Class: diodes.

empty gtobar: Empty GTO, bar-type,
type: path-style, fillable, nodename:
emptygtobarshape. Aliases: GTObo. Class: diodes.

full gtobar: Full GTO, bar-type, type: path-style,
nodename: fullgtobarshape. Aliases: GTOb*. Class:
diodes.

stroke gtobar: Stroke GTO, bar type,
type: path-style, fillable, nodename:
emptygtobarshape. Aliases: GTOb-. Class: diodes.

20This components, and the GTO family, has been suggested by GitHub user JetherReis.

63

https://github.com/circuitikz/circuitikz/issues/522

G
gate

anode cathode

agtobar: Standard GTO with bar-type gate on anode
(shape depends on package option), type: path-style,
fillable, nodename: emptyagtobarshape. Aliases:
aGTOb. Class: diodes.

empty agtobar: Empty GTO, bar-type on an-
ode, type: path-style, fillable, nodename:
emptyagtobarshape. Aliases: aGTObo. Class: diodes.

full agtobar: Full GTO, bar-type on anode, type:
path-style, nodename: fullagtobarshape. Aliases:
aGTOb*. Class: diodes.

stroke agtobar: Stroke GTO, bar-type on an-
ode, type: path-style, fillable, nodename:
emptyagtobarshape. Aliases: aGTOb-. Class: diodes.

For basically stylistical reasons, there is a different, more compact, shape available for them,
activated with the key thyristor style=compact (the default is legacy). All the devices above
are present, we will show here just the automatic version for shortness.

G

anode cathode

triac: Standard triac (shape depends on package op-
tion), type: path-style, fillable, nodename:
emptytriacshape. Aliases: Tr. Class: diodes.

G
gate

anode cathode

thyristor: Standard thyristor (shape depends on pack-
age option), type: path-style, fillable, nodename:
emptythyristorshape. Aliases: Ty. Class: diodes.

G
gate

anode cathode

put: Standard Programmable Unipolar Transistor
(shape depends on package option), type: path-style,
fillable, nodename: emptyputshape. Aliases: PUT.
Class: diodes.

G
gate

anode cathode

gto: Standard gto (shape depends on package op-
tion), type: path-style, fillable, nodename:
emptygtoshape. Aliases: GTO. Class: diodes.

G
gate

anode cathode

gtobar: Standard GTO with a bar symbol on the gate
(shape depends on package option), type: path-style,
fillable, nodename: emptygtobarshape. Aliases:
GTOb. Class: diodes.

G
gate

anode cathode

agtobar: Standard GTO with bar-type gate on anode
(shape depends on package option), type: path-style,
fillable, nodename: emptyagtobarshape. Aliases:
aGTOb. Class: diodes.

64

4.4.2 Thyristors anchors and customization

When inserting a thrystor, a triac or a potentiometer, one needs to refer to the third node-gate
(gate or G) for the former two; wiper (wiper or W) for the latter one. This is done by giving a
name to the bipole:

1 \begin{circuitikz} \draw
2 (0,0) to[Tr, n=TRI] (2,0)
3 to[pR, n=POT] (4,0);
4 \draw[dashed] (TRI.G) -| (POT.wiper)
5 ;\end{circuitikz}

As commented above, you can change the shape of these devices (globally or locally) setting the key
thyristor style=compact (the default is legacy). Additionally, normally the plain GTO symbols
come without the arrows, but you can add them using a syntax similar to the one explained in
section 4.2.3.3 using the arrow group gto gate.

G1 G2 G2

1 \begin{circuitikz}[]
2 \ctikzset{thyristor style=compact}
3 \draw (0,0) to[GTO=G_1] ++(0,-3);
4 \ctikzset{gto gate end arrow=latexslim}
5 \draw (2,0) to[GTO*=G_2, mirror] ++(0,-3);
6 \draw (4,0) to[GTOb-=G_2, mirror] ++(0,-3);
7 \end{circuitikz}

Notice that you can set both gto gate end arrow and gto gate start arrow — choosing just
one of the two you can decide the “rotation” direction of the symbol. There is little space though,
so don’t overdo it.

4.4.3 Diode customizations

You can change the scale of the diodes by setting the key diodes/scale to something different
from the default 1.0. In Romano’s opinion, diodes are somewhat big with the default style of the
package, so a setting like \ctikzset{diode/scale=0.6} is recommended.

D

D

1 \begin{circuitikz}
2 \draw (0,1) to[D, l=D] ++(2,0)
3 node[npn, anchor=B]{};
4 \ctikzset{diodes/scale=0.6}
5 \draw (0,-1) to[D, l=D] ++(2,0)
6 node[npn, anchor=B]{};
7 \end{circuitikz}

4.4.3.1 Optical devices arrows You can change the direction of the LEDs and photodiodes’
arrows by using the binary keys led arrows from cathode and pd arrows to cathode (the
default are led arrows from anode and pd arrows to anode), as you can see in the following
example.

65

1 \begin{circuitikz}
2 \ctikzset{led arrows from anode} % default
3 \ctikzset{pd arrows to anode} % default
4 \ctikzset{full diodes}
5 \draw (0,0) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
6 \ctikzset{stroke diodes}
7 \draw (0,-1) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
8 \ctikzset{empty diodes}
9 \draw (0,-2) to[leD] ++(1.5,0) to[pD] ++(1.5,0);

10

11 \ctikzset{led arrows from cathode}
12 \ctikzset{pd arrows to cathode}
13 \ctikzset{full diodes}
14 \draw (0,-4) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
15 \ctikzset{stroke diodes}
16 \draw (0,-5) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
17 \ctikzset{empty diodes}
18 \draw (0,-6) to[leD] ++(1.5,0) to[pD] ++(1.5,0);
19 \end{circuitikz}

Since version 1.5.521, you can change the arrows used for LEDs, photodiodes and laser diodes with
the generic arrows options shown in 4.2.3.3, using the name opto, like in the following (overdone)
example. Normally you want just to change the end arrow…
As you can see, you can also have the option to globally change the color, relative thickness, and
dash pattern by setting keys with the \ctikzset command (or, like in the following example,
directly in the node instantiation) under the opto arrows hierarchy. The available keys are:

parameter default description

relative thickness 1.0 multiply the class thickness
color default stroke color: default is the same as the compo-

nent
dash default dash pattern: default means not to change the

setting for the component; none means unbroken
line; every other input is a dash pattern.22

21Thanks to the idea by Dr. Matthias Jung on GitHub.
22Follows the syntax of the pattern sequence \pgfsetdash — see TikZ manual for details; phase is always zero.

Basically you pass pairs of dash-length – blank-length dimensions, see the examples.

66

https://github.com/circuitikz/circuitikz/issues/655

1 \begin{tikzpicture}
2 \newcommand{\optos}{%
3 to[leD] ++(1.5,0) to[pD*] ++(1.5,0)
4 to[lasD] ++(1.5,0)}
5 \begin{scope}
6 \draw (0,2) \optos;
7 \ctikzset{led arrows from cathode}
8 \ctikzset{pd arrows to cathode}
9 \ctikzset{opto arrows/.cd, color=red,

10 dash={{1pt}{1pt}}}
11 \draw (0,0) \optos;
12 \end{scope}
13 \begin{scope}[color=blue, yshift=-6cm]
14 \ctikzset{opto end arrow={Triangle[angle'=45]}}
15 \ctikzset{opto start arrow={Hooks[red]}}
16 \draw (0,4) \optos;
17 \ctikzset{opto arrows/color=black}
18 \ctikzset{opto arrows/relative thickness=2}
19 \draw (0,2) \optos;
20 \ctikzset{led arrows from cathode}
21 \ctikzset{pd arrows to cathode}
22 \draw (0,0) \optos;
23 \end{scope}
24 \end{tikzpicture}

4.5 Sources and generators

Notice that source and generators are divided in three classes that can be styled independently:
traditional battery symbols (class batteries), independent generators (class sources) and de-
pendent generators (class csources). This is because they are often treated differently, and so
you can choose to, for example, fill the dependent sources but not the independent ones.

4.5.1 Batteries

battery: Battery, type: path-style, nodename:
batteryshape. Class: batteries.

battery1: Single battery cell, type: path-style,
nodename: battery1shape. Class: batteries.

battery2: Single battery cell, type: path-style,
nodename: battery2shape. Class: batteries.

4.5.2 Stationary sources

european voltage source: Voltage source (european
style), type: path-style, fillable, nodename:
vsourceshape. Aliases: vsource. Class: sources.

67

cute european voltage source: Voltage source
(cute european style), type: path-style, fillable,
nodename: vsourceCshape. Aliases: vsourceC, ceV.
Class: sources.

+−

american voltage source: Voltage source (ameri-
can style), type: path-style, fillable, nodename:
vsourceAMshape. Aliases: vsourceAM. Class: sources.

european current source: Current source (european
style), type: path-style, fillable, nodename:
isourceshape. Aliases: isource. Class: sources.

cute european current source: Current source
(cute european style), type: path-style, fillable,
nodename: isourceCshape. Aliases: isourceC, ceI.
Class: sources.

american current source: Current source (ameri-
can style), type: path-style, fillable, nodename:
isourceAMshape. Aliases: isourceAM. Class: sources.

If (default behavior) europeancurrents option is active (or the style [european currents] is
used), the shorthands current source, isource, and I are equivalent to european current
source. Otherwise, if americancurrents option is active (or the style [american currents]
is used) they are equivalent to american current source.
Similarly, if (default behavior) europeanvoltages option is active (or the style [european
voltages] is used), the shorthands voltage source, vsource, and V are equivalent to
european voltage source. Otherwise, if americanvoltages option is active (or the style
[american voltages] is used) they are equivalent to american voltage source.

4.5.3 Sinusoidal sources

These two are basically the same symbol; to distinguish among them, you have to add a label,
which will be a voltage or a current.

sinusoidal voltage source: Sinusoidal voltage
source, type: path-style, fillable, nodename:
vsourcesinshape. Aliases: vsourcesin, sV. Class:
sources.
sinusoidal current source: Sinusoidal current
source, type: path-style, fillable, nodename:
isourcesinshape. Aliases: isourcesin, sI. Class:
sources.

− +
V

I

1 \begin{circuitikz}[american]
2 \draw (0,1) to[sV=V] ++(3,0);
3 \draw (0,0) to[sI=I] ++(3,0);
4 \end{circuitikz}

68

4.5.4 Controlled sources

european controlled voltage source: Controlled
voltage source (european style), type: path-style,
fillable, nodename: cvsourceshape. Aliases:
cvsource. Class: csources.

cute european controlled voltage source: Volt-
age source (cute european style), type: path-style,
fillable, nodename: cvsourceCshape. Aliases:
cvsourceC, cceV. Class: csources.

+−

american controlled voltage source: Controlled
voltage source (american style), type: path-style,
fillable, nodename: cvsourceAMshape. Aliases:
cvsourceAM. Class: csources.

european controlled current source: Controlled
current source (european style), type: path-style,
fillable, nodename: cisourceshape. Aliases:
cisource. Class: csources.

cute european controlled current source: Cur-
rent source (cute european style), type: path-style,
fillable, nodename: cisourceCshape. Aliases:
cisourceC, cceI. Class: csources.

american controlled current source: Controlled
current source (american style), type: path-style,
fillable, nodename: cisourceAMshape. Aliases:
cisourceAM. Class: csources.

empty controlled source: Empty controlled
source, type: path-style, fillable, nodename:
ecsourceshape. Aliases: ecsource. Class: csources.

If (default behaviur) europeancurrents option is active (or the style [european currents]
is used), the shorthands controlled current source, cisource, and cI are equivalent to
european controlled current source. Otherwise, if americancurrents option is active
(or the style [american currents] is used) they are equivalent to american controlled
current source.
Similarly, if (default behaviur) europeanvoltages option is active (or the style [european
voltages] is used), the shorthands controlled voltage source, cvsource, and cV are
equivalent to european controlled voltage source. Otherwise, if americanvoltages op-
tion is active (or the style [american voltages] is used) they are equivalent to american
controlled voltage source.

The following two behave like the corresponding independent sources, see section 4.5.3.

69

controlled sinusoidal voltage source: Controlled
sinusoidal voltage source, type: path-style, fillable,
nodename: cvsourcesinshape. Aliases: controlled
vsourcesin, cvsourcesin, csV. Class: csources.

controlled sinusoidal current source: Controlled si-
nusoidal current source, type: path-style, fillable,
nodename: cisourcesinshape. Aliases: controlled
isourcesin, cisourcesin, csI. Class: csources.

4.5.5 Noise sources

In this case, the “direction” of the source is undefined. Noise sources are filled in gray by default,
but if you choose the dashed style, they become fillable.

noise voltage source: Sinusoidal voltage source, type:
path-style, nodename: vsourceNshape. Aliases:
vsourceN, nV. Class: sources.

noise current source: Sinusoidal current source, type:
path-style, nodename: isourceNshape. Aliases:
isourceN, nI. Class: sources.

You can change the fill color with the key circuitikz/bipoles/noise sources/fillcolor:

en

in

en

in

1 \begin{circuitikz}
2 \draw(0,0) to [nV, l=e_n] ++(2,0);
3 \draw(0,-2) to [nI, l=i_n] ++(2,0);
4 \begin{scope}[circuitikz/bipoles/noise sources/

fillcolor=red!50]
5 \draw(3,0) to [nV, l=e_n] ++(2,0);
6 \draw(3,-2) to [nI, l=i_n] ++(2,0);
7 \end{scope}
8 \end{circuitikz}

If you prefer a patterned noise generator (similar to the one you draw by hand) you can use the
fake color dashed:

en

in

en

in

1 \begin{circuitikz}
2 \draw(0,0) to [nV, l=e_n] ++(2,0);
3 \draw(0,-2) to [nI, l=i_n] ++(2,0);
4 \begin{scope}[circuitikz/bipoles/noise sources/

fillcolor=dashed]
5 \draw(3,0) to [nV, l=e_n] ++(2,0);
6 \draw(3,-2) to [nI, l=i_n] ++(2,0);
7 \end{scope}
8 \end{circuitikz}

Notice that if you choose the dashed style, the noise sources are fillable:

70

en

in

en

in

1 \begin{circuitikz}
2 \ctikzset{bipoles/noise sources/fillcolor=dashed}
3 \draw(0,0) to [nV, l=e_n] ++(2,0);
4 \draw(0,-2) to [nI, l=i_n] ++(2,0);
5 \begin{scope}
6 \draw(3,0) to [nV, l=e_n, fill=yellow!50!red]

++(2,0);
7 \draw(3,-2) to [nI, l=i_n, fill=blue!50!white

] ++(2,0);
8 \end{scope}
9 \end{circuitikz}

4.5.6 Special sources

square voltage source: Square voltage source,
type: path-style, fillable, nodename:
vsourcesquareshape. Aliases: vsourcesquare, sqV.
Class: sources.

vsourcetri: Triangle voltage source, type:
path-style, fillable, nodename: vsourcetrishape.
Aliases: tV. Class: sources.

esource: Empty voltage source, type: path-style,
fillable, nodename: esourceshape. Class: sources.

pvsource: Photovoltaic-voltage source, type:
path-style, fillable, nodename: pvsourceshape.
Class: sources.

pvmodule: Photovoltaic module source23, type:
path-style, fillable, nodename: pvmoduleshape.
Class: sources.

ioosource: Double Zero style current source, type:
path-style, fillable, nodename: oosourceshape.
Class: sources.

voosource: Double Zero style voltage source, type:
path-style, fillable, nodename: oosourceshape.
Class: sources.

centerprim

centersec

oosourcetrans: transformer source24,
type: path-style, fillable, nodename:
oosourcetransshape. Class: sources.

.

left right
prim1

prim2

sec1
sec2sec3

tert1

tert2tert3

centerprim
centersec

centertert

ooosource: transformer with three windings25, type:
path-style, fillable, nodename: ooosourceshape.
Class: sources.

23Added by André Alves in v1.3.5
24The oosourcetrans and ooosource components have been added by user @olfline on GitHub
25The component here is scaled up 1.5 times to better show the anchors.

71

https://github.com/circuitikz/circuitikz/pull/397

The transformer shapes vector group options can be specified for the primary (prim=value), the
secondary (sec=value) and tertiary (tert=value) three-phase vector groups: the value can be
one of delta, wye and zig.

1 \begin{circuitikz}
2 \draw (0,0) to[oosourcetrans, prim=zig, sec=delta, o-] ++(2,0)
3 to[oosourcetrans, prim=delta, sec=wye,-o] ++(0,-2)
4 to[ooosource, prim=wye, sec=zig, tert=delta] (0,0);
5 \end{circuitikz}

These two “sources” have additional anchors that reach the center of the symbol;26 they are used
sometimes to add a (symbolic) connection there, like for example a ground connection.

1 \begin{tikzpicture}[european, scale=2, transform shape,
2 smalldot/.style={draw, circle,red, inner sep=0.2pt}]
3 \draw (0,0) to[oosourcetrans, name=A,
4 prim=delta, sec=wye] ++(1,0)
5 to[ooosource, name=B, prim=wye, sec=zig,
6 tert=delta] ++(1,0)
7 (A.symbolsec) -- ++(-45:0.5) node[ground]{};
8 \node [smalldot] at (A.symbolprim) {};
9 \node [smalldot] at (A.symbolsec) {};

10 \node [smalldot] at (B.symbolprim) {};
11 \node [smalldot] at (B.symbolsec) {};
12 \node [smalldot] at (B.symboltert) {};
13 \end{tikzpicture}

4.5.7 Nullator and norator

These are special elements used in some approaches to model ideal amplifiers27.

nullator: Nullator element (virtual short circuit; forces
V and I to zero), type: path-style, fillable,
nodename: nullatorshape. Class: sources.

norator: Norator element (admits any combination of
V and I), type: path-style, fillable, nodename:
noratorshape. Class: sources.

They are in the sources class, but they are not treated like sources in the labeling sense (they
have both bipoles/is voltage=false and bipoles/is current=false, see 5.2.2).

is

+

−

0

0

+

−

vo

1 \begin{circuitikz}[american]
2 \draw (0,0) node[ground](GND){}
3 to [I,l=i_s,invert]
4 ++(0,2.5) -- ++(1.5,0) coordinate(up)
5 to[nullator, v=0, i=0, name=A]
6 (up|-GND) node[ground]{};
7 \draw (up) to[R, *-*] ++(2,0) coordinate(out)
8 to[norator, v^=v_o]
9 (out|-GND) node[ground]{};

10 \end{circuitikz}

26Suggested by user @lapreindl on GitHub.
27See the Wikipedia article; suggested by user atticus-sullivan on GitHub.

72

https://github.com/circuitikz/circuitikz/issues/725
https://en.m.wikipedia.org/wiki/Nullor
https://github.com/circuitikz/circuitikz/issues/615

The symbol shapes used here seems to be the most common in publications; if you prefer the
shapes from the Wikipedia article, you can use the following definitions:

1 \tikzset{noratorW/.style={voosource,
2 bipoles/oosource/circlesize=0.5,
3 bipoles/oosource/circleoffset=0.5},
4 nullatorW/.style={esource, sources/scale=0.5}}
5 \begin{tikzpicture}
6 \draw (0,0) to[nullatorW] ++(2,0) to[noratorW] ++(0, -2);
7 \end{tikzpicture}

4.5.8 DC sources

dcvsource: DC voltage source, type: path-style,
fillable, nodename: dcvsourceshape. Class:
sources.

dcisource: DC current source, type: path-style,
fillable, nodename: dcisourceshape. Class:
sources.

The size of the broken part of the DC current source is configurable by changing the value of
bipoles/dcisource/angle (default 80); values must be between 0 (no circle at all, probably not
useful) and 90 (full circle, again not useful).

1 \begin{circuitikz}
2 \draw (0,0) to[dcvsource] ++(2,0)
3 to [dcisource, fill=yellow] ++(2,0) ;
4 \ctikzset{bipoles/dcisource/angle=45}
5 \draw (0,-2) to[dcvsource] ++(2,0)
6 to [dcisource, fill=yellow] ++(2,0) ;
7 \end{circuitikz}

4.5.9 Sources customizations

4.5.9.1 Size. You can change the scale of the batteries by setting the key batteries/scale,
for the controlled (dependent) sources with csources/scale, and for all the other independent
sources and generators with sources/scale, to something different from the default 1.0.
Notice that the size of the double-circle sources (and of the triple-circle one) are tuned so that the
full source occupy more or less the same horizontal space than one of the single-circle one; as a
consequence, the circles are much smaller. If you want to have the same circle radius, you have to
scale (locally!) those sources by one factor that is 1.5384 (1/0.65) for oosource, 1.6667 (1/0.6)
for oosourcetrans, and 1.8182 (1/0.55) for ooosource.

1 \begin{circuitikz}
2 \draw[color=red] (0,0) to[esource] ++(3,0);
3 \draw (0,0) to[oosourcetrans, prim=delta, sec=wye,
4 sources/scale=1.667] ++(3,0);
5 \end{circuitikz}

73

4.5.9.2 Waveform symbols. Internal symbols of sinusoidal, triangular and square sources are
drawn with the same line thickness as the component by default. You can modify this by setting
the key sources/symbols/thickness for independent sources and the corresponding csource/...
for dependent ones. The value used here is relative to the component (i.e. the circle) value.
Normally the symbol is oriented in the same direction as the line, and rotate rigidly with the com-
ponent; you can change this orientation using the key sources/symbols/rotate or csource/....
The default value is 90 which correspond to the “line” direction (remember, path components are
defined as horizontal ones). If instead of an angle value you use auto, the symbol will be rotated
so that the waveform is always vertical, similar to what happens in instruments:

1 \begin{circuitikz}
2 \draw (0,1) to[sqV] ++(3,0)
3 to[sqV] ++(1,-1)
4 to[sqV] ++(0,-3);
5 \ctikzset{sources/symbol/rotate=auto}
6 \ctikzset{sources/symbol/rotate=auto, sources/symbol/

thickness=3}
7 \draw[color=red] (0,0) to[sqV] ++(3,0)
8 to[sqV] ++(0,-3)
9 to[sqV] (0,0);

10 \end{circuitikz}

4.5.9.3 Polarity symbols. The symbols drawn into the american voltage source28 can be
changed by using the \ctikzset keys bipoles/vsourceam/inner plus and .../inner minus
(by default they are $+$ and $\vphantom{+}-$ respectively, in the current font), and move them
nearer of farther away by twiddling bipoles/vsourceam/margin (default 0.7, less means nearer).
The reason of the \vphantom can be found in section 5.5.6.
You can do the same with the american controlled voltage sources, substituting cvsourceam
to vsourceam (notice the initial “c”).

+

− V

5Ω

⊕
⊖

1 \begin{circuitikz}[american]
2 \ctikzset{bipoles/vsourceam/inner plus={\tiny $+$}}
3 \ctikzset{bipoles/vsourceam/inner minus={\tiny $-$}}
4 \draw (0,0) to[V, l_=V] ++(0,3)
5 to[R=\SI{5}{\ohm}] ++(3,0)
6 to[V, invert,
7 bipoles/vsourceam/inner plus={\color{red}\tiny \oplus},
8 bipoles/vsourceam/inner minus={\color{blue}\tiny $\ominus

$},
9 bipoles/vsourceam/margin=0.5]

10 ++(0,-3) to[short, -*] (0,0) node[ground]{};
11 \end{circuitikz}

4.5.9.4 Three-phase symbols. The three-phase symbols delta, wye, and zig follows the line
thickness exactly as the waveform ones (see above). Additionally, you can scale them up and down
by changing the value of the keys sources/symbol/delta scale, .../wye scale, and .../zig
scale (default 1).

28Since version 1.1.0, thanks to the suggestions and discussion in this TeX.SX question.

74

https://tex.stackexchange.com/questions/538723/circuitikz-what-should-i-do-to-put-the-and-on-the-appropriate-places-like-t

1 \begin{circuitikz}[scale=1.8, transform shape]
2 \tikzset{myoosource/.style={ooosource,
3 prim=wye, sec=delta, tert=zig,
4 }}
5 \draw (0,2) to[myoosource] ++(2,0);
6 \ctikzset{%
7 sources/symbol/thickness=0.5,
8 sources/symbol/delta scale=1.2,
9 sources/symbol/wye scale=1.4,

10 sources/symbol/zig scale=1.3,
11 }
12 \draw (0,0) to[myoosource] ++(2,0);
13 \end{circuitikz}

4.5.10 Source borders

Unfortunately, the border of the sources is only easily accessed if some anchor is provided. The bor-
der anchors of the shapes are not tight on them (see section 3.1.2), which is not easily changeable,
given that the algorithm that positions the labels depends on it.
On the other hand, TikZ powerful partway coordinate calculation (around section 13.5.3 of the
manual) makes it possible to easily identify points on a circle if the center and one point of the
circle are known, as you can see in the following example.

-90
-45

0

45
90

1 \begin{tikzpicture}[]
2 \path (0,0) to[oosourcetrans, name=T,]++(2,0);
3 % Use partway modifiers to reach a point on the left circle
4 \draw ($(T.centerprim)!1!45:(T.left)$) -- ++(-135:0.2)
5 -- ++(0,-1) node[ground]{};
6 \begin{scope}[font=\tiny\ttfamily, pin distance=2mm, inner sep=0pt]
7 \foreach \a in {-90,-45,...,90}
8 \node [circ, scale=0.5, pin=\a:\a, color=red] at
9 ($(T.centersec)!1!\a:(T.right)$){};

10 \end{scope}
11 \end{tikzpicture}

A similar approach can be used for dependent sources. Just remember that the anchors move
(rotate) together with the component.

+

−

1 \begin{tikzpicture}[american]
2 \draw (0,0) to [cvsource, name=S] ++(0,2);
3 \node [circ,red] at ($(S.e)!0.3333!(S.n)$) {};
4 \node [circ,blue] at ($(S.e)!0.6666!(S.n)$) {};
5 \end{tikzpicture}

4.6 Instruments

A ammeter: Ammeter, type: path-style, fillable,
nodename: ammetershape. Class: instruments.

V voltmeter: Voltmeter, type: path-style, fillable,
nodename: voltmetershape. Class: instruments.

75

Ω
ohmmeter: Ohmmeter, type: path-style, fillable,
nodename: ohmmetershape. Class: instruments.

left right

center

rmeter: Round meter (use t=... for the symbol), type:
path-style, fillable, nodename: rmetershape.
Class: instruments.

left right

center

rmeterwa: Round meter with arrow (use t=... for the
symbol), type: path-style, fillable, nodename:
rmeterwashape. Class: instruments.

left right

center
in 1 in 2

smeter: Square meter (use t=... for the symbol), type:
path-style, fillable, nodename: smetershape.
Class: instruments.

left right

center

qiprobe: QUCS-style current probe, type: path-style,
fillable, nodename: qiprobeshape. Class:
instruments.

left right

center

qvprobe: QUCS-style voltage probe, type: path-style,
fillable, nodename: qvprobeshape. Class:
instruments.

left right

center
v+ v-

qpprobe: QUCS-style power probe, type: path-style,
fillable, nodename: qpprobeshape. Class:
instruments.

left right

in 1 in 2

oscope: Oscilloscope29, type: path-style, fillable,
nodename: oscopeshape. Class: instruments.

left right

center

i

iloop: Current loop (symbolic), type: path-style,
nodename: iloopshape. Class: instruments.

left

rightcenter

i+ i-

iloop2: Current loop (real), type: path-style,
nodename: iloop2shape. Class: instruments.

4.6.1 Instruments customizations

You can change the scale of all the instruments (including the current loops) by setting the key
instruments/scale to something different from the default 1.0.

29Suggested by @nobrl on GitHub

76

4.6.1.1 Oscilloscope waveform. You can change the waveform shown in the oscilloscope
“screen”30. To change it, you just set the key bipoles/oscope/waveform to one of the available
shape. You have available the shapes in the following list (the default is ramps):

ramps sin square triangle lissajous zero none

1 \begin{circuitikz}
2 \foreach [count=\i] \wvf in {ramps, sin, square, triangle, lissajous, zero, none} {
3 \ctikzset{bipoles/oscope/waveform=\wvf}
4 \draw ({2*\i},1.4) node[oscopeshape](O){}
5 ({2*\i},0.65) node[anchor=base]{\texttt{\wvf}};
6 }
7 \ctikzset{bipoles/oscope/width=1.0}
8 \foreach [count=\i] \wvf in {ramps, sin, square, triangle, lissajous, zero, none} {
9 \ctikzset{bipoles/oscope/waveform=\wvf}

10 \draw ({2*\i},0) node[oscopeshape]{};
11 }
12 \end{circuitikz}

If you want more or different shapes, you can define your owns, but you have to use low-level pgf
commands (see part IX, “The Basic Layer”, in the PGF/TikZ manual). The code is executed into
a \pgfscope …\endpgfscope environment, and it must use the path built with a \pgfusepath.
The coordinates have been scaled so that the external box of the scope is a rectangle between
(-1cm, -1cm) and (1cm, 1cm); the oscilloscope grid is fixed and painted between (-0.75cm,
-0.5cm) and (0,75cm, 0.5cm). If you stretch the scope with the …width or …height keys, the
drawing will be stretched too.

1 \ctikzset{%
2 bipoles/oscope/waveform/mywave/.code={%
3 \pgfsetcolor{red}
4 \pgfpathmoveto{\pgfpoint{-.75cm}{-.5cm}}
5 \pgfpathlineto{\pgfpoint{.75cm}{.5cm}}
6 \pgfusepath{draw}
7 \pgfsetcolor{green}
8 \pgfpathmoveto{\pgfpoint{-.75cm}{.5cm}}
9 \pgfpathlineto{\pgfpoint{.75cm}{-.5cm}}

10 \pgfusepath{draw}
11 }}
12 \begin{circuitikz}
13 \ctikzset{bipoles/oscope/waveform=mywave}
14 \draw (0,0) node[oscopeshape]{};
15 \end{circuitikz}

4.6.2 Rotation-invariant elements

The oscope element will not rotate the “graph” shown with the component:
30Suggested by Mario Tafur on TeX.SX

77

https://tex.stackexchange.com/q/595062/38080

1 \begin{circuitikz}
2 \foreach \a in {0,45,...,350} {
3 \draw (0,0) to[oscope] (\a:3);
4 }
5 \end{circuitikz}

The rmeter, rmaterwa, and smeter have the same behavior.
However, if you prefer that the oscope, rmeter, smeter and rmeterwa instruments rotate the text
or the diagram, you can use the key or style rotated instruments (the default style is straight
instruments).

A

A

A A

1 \begin{circuitikz}[scale=0.8, transform shape]
2 \ctikzset{rotated instruments} % new default
3 \draw (0,0) to[oscope] ++(0:3);
4 \draw (0,0) to[oscope] ++(60:3);
5 \draw (0,0) to[rmeter, t=A] ++(120:3);
6 % local override
7 \draw (0,0) to[rmeterwa, t=A, straight instruments]

++(180:3);
8 \ctikzset{straight instruments} % back to default
9 \draw (0,0) to[rmeterwa, t=A] ++(240:3);

10 % local override
11 \draw (0,0) to[smeter, t=A, rotated instruments]

++(300:3);
12 \end{circuitikz}

4.6.3 Instruments as node elements

The node-style usage of the oscope is also interesting, using the additional in 1 and in 2 an-
chors; notice that in this case you can use the text content of the node to put labels above it.
Moreover, you can change the size of the oscilloscope by changing bipoles/oscope/width and
bipoles/oscope/height keys (which both default to 0.6).

C1

C2

1 \begin{circuitikz}
2 \draw (0,1)
3 to[oscope=C_1, fill=green!20!gray, name=O1] ++(2,0);
4 \path (O1.right)
5 node[ground, scale=0.5, below right=4pt]{};
6 \ctikzset{bipoles/oscope/width=1.0}
7 \draw (1,-1)
8 node[oscopeshape, fill=yellow!20!orange](O2){C_2};
9 \draw (O2.in 2) to[short, *-] ++(0,-0.5) node[ground]{};

10 \draw (O2.in 1) to[short, *-] ++(0,-0.5)
11 -- ++(-1,0) node[currarrow, xscale=-1]{};
12 \end{circuitikz}

78

4.6.4 Measuring voltage and currents, multiple ways

This is the classical (legacy) option, with the voltmeter and ammeter. The problem is that
elements are intrinsically horizontal, so they look funny if put in vertically.

AV

1 \begin{circuitikz}
2 \draw (0,0) -- ++(1,0) to[R] ++(2,0)
3 to [ammeter] ++(0,-2) node[ground]{};
4 \draw (1,0) to[voltmeter] ++(0,-2)
5 node[ground]{};
6 \end{circuitikz}

So the solution is often changing the structure to keep the meters in horizontal position.

A

V 1 \begin{circuitikz}
2 \draw (0,0) -- ++(1,0) to[R] ++(2,0)
3 to [ammeter] ++(2,0) --
4 ++(0,-1) node[ground]{};
5 \draw (1,0) -- (1,1) to[voltmeter]
6 ++(2,0) node[ground]{};
7 \end{circuitikz}

Since version 0.9.0 you have more options for the measuring instruments. You can use the generic
rmeterwa (round meter with arrow), to which you can specify the internal symbol with the option
t=... (and is fillable).

A

i

V

+

−

v

1 \begin{circuitikz}[american]
2 \draw (0,0) -- ++(1,0) to[R] ++(2,0)
3 to [rmeterwa, t=A, i=i] ++(0,-2) node[ground]{};
4 \draw (1,0) to[rmeterwa, t=V, v=v] ++(0,-2)
5 node[ground]{};
6 \end{circuitikz}

This kind of component will keep the symbol horizontal, whatever the orientation:

A
i

V
+ −

v
1 \begin{circuitikz}[american]
2 \draw (0,0) -- ++(1,0) to[R] ++(2,0)
3 to [rmeterwa, t=A, i=i] ++(2,0) --
4 ++(0,-1) node[ground]{};
5 \draw (1,0) -- (1,1) to[rmeterwa, t=V, v^=v]
6 ++(2,0) node[ground]{};
7 \end{circuitikz}

The plain rmeter is the same, without the measuring arrow:

79

A

i

V

+

−

v

1 \begin{circuitikz}[american]
2 \draw (0,0) -- ++(1,0) to[R] ++(2,0)
3 to [rmeter, t=A, i=i] ++(0,-2) node[ground]{};
4 \draw (1,0) to[rmeter, t=V, v=v] ++(0,-2)
5 node[ground]{};
6 \end{circuitikz}

If you prefer it, you have the option to use square meters, in order to have more visual difference
from generators:

A
i

V

+

−

v

1 \begin{circuitikz}[american]
2 \draw (0,0) -- ++(1,0) to[R] ++(2,0)
3 to [smeter, t=A, i=i] ++(0,-2) node[ground]{};
4 \draw (1,0) to[smeter, t=V, v=v] ++(0,-2)
5 node[ground]{};
6 \end{circuitikz}

Another possibility is to use QUCS31-style probes, which have the nice property of explicitly
showing the type of connection (in series or parallel) of the meter:

iv

1 \begin{circuitikz}[american]
2 \draw (0,0) -- ++(1,0) to[R] ++(2,0)
3 to [qiprobe, l=i] ++(0,-2) node[ground]{};
4 \draw (1,0) to[qvprobe, l=v] ++(0,-2)
5 node[ground]{};
6 \end{circuitikz}

If you want to explicitly show a power measurement, you can use the power probe qpprobe and
using the additional anchors v+ and v- :

iv

1 \begin{circuitikz}[american]
2 \draw (0,0) to[short,-*] ++(1,0) coordinate(b)
3 to[R] ++(2,0) to [qpprobe, l=i, a=v, name=P]
4 ++(0,-2.5) node[ground](GND){};
5 \draw (P.v-) -| ++(-0.5,-1) coordinate(a)
6 to [short, -*] (a-|GND);
7 \draw (P.v+) -| (b);
8 \end{circuitikz}

The final possibility is to use oscilloscopes. For example:

+

−

v

1 \begin{circuitikz}[american]
2 \draw (0,0) -- ++(1,0) to[R] ++(3,0)
3 to [iloop, mirror, name=I] ++(0,-2)
4 node[ground] (GND){};
5 \draw (1,0) to[oscope, v=v] ++(0,-2)
6 node[ground]{};
7 \draw (I.i) -- ++(-0.5,0) node[oscopeshape, anchor=

right, name=O]{};
8 \draw (O.south) -- (O.south |- GND) node[ground]{};
9 \end{circuitikz}

31QUCS is an open source circuit simulator: http://qucs.sourceforge.net/

80

http://qucs.sourceforge.net/

Or, if you want a more physical structure for the measurement setup:

1 \begin{circuitikz}[american]
2 \draw (0,0) -- ++(1,0) to[R] ++(3,0) to [iloop2, name=I] ++(0,-2)
3 node[ground] (GND){};
4 \ctikzset{bipoles/oscope/width=1.6}\ctikzset{bipoles/oscope/height=1.2}
5 \node [oscopeshape, fill=green!10](O) at (6,2){};
6 \node [bnc, xscale=-1, anchor=zero](bnc1) at (O.in 1){};
7 \node [bnc, , anchor=zero, rotate=-90](bnc2) at (O.in 2){};
8 \draw [-latexslim] (bnc1.hot) -| (1,0);
9 \draw (bnc2.hot) |- (I.i+);

10 \draw (I.i-) node[ground, scale=0.5]{};
11 \end{circuitikz}

4.7 Mechanical Analogy

damper: Mechanical Damping, type: path-style,
fillable, nodename: dampershape. Class:
mechanicals.

inerter: Mechanical Inerter, type: path-style,
fillable, nodename: inertershape. Class:
mechanicals.

spring: Mechanical Stiffness, type: path-style,
nodename: springshape. Class: mechanicals.

left right

center

viscoe: Mechanical viscoelastic element32, type:
path-style, fillable, nodename: viscoeshape.
Class: mechanicals.

mass: Mechanical Mass, type: path-style, fillable,
nodename: massshape. Class: mechanicals.

32Suggested by @Alex in https://tex.stackexchange.com/q/484268/38080

81

https://tex.stackexchange.com/q/484268/38080

4.7.1 Mechanical elements customizations

You can change the scale of all the mechanical elements by setting the key mechanicals/scale
to something different from the default 1.0.

4.8 Miscellaneous bipoles

Here you’ll find bipoles that are not easily grouped in the categories above.

thermocouple: Thermocouple, type: path-style,
nodename: thermocoupleshape. Class: misc.

fuse: Fuse, type: path-style, fillable, nodename:
fuseshape. Class: misc.

afuse: Asymmetric fuse, type: path-style, fillable,
nodename: afuseshape. Aliases: asymmetric fuse.
Class: misc.

squid: Squid, type: path-style, nodename:
squidshape. Class: misc.

barrier: Barrier, type: path-style, nodename:
barriershape. Class: misc.

openbarrier: Open barrier, type: path-style,
nodename: openbarriershape. Class: misc.

You can tune how big is the gap in the openbarrier component by setting the key bipoles/openbarrier/gap
(default value 0.5; 0 means no gap and 1 full gap).

european gas filled surge arrester: Euro-
pean gas filled surge arrester, type: path-style,
fillable, nodename: european gas filled surge
arrestershape. Class: misc.

american gas filled surge arrester: Ameri-
can gas filled surge arrester, type: path-style,
fillable, nodename: american gas filled surge
arrestershape. Class: misc.

If (default behaviour) europeangfsurgearrester option is active (or the style [european
gas filled surge arrester] is used), the shorthands gas filled surge arrester and
gf surge arrester are equivalent to the european version of the component.
If otherwise americangfsurgearrester option is active (or the style [american gas filled
surge arrester] is used), the shorthands the shorthands gas filled surge arrester and
gf surge arrester are equivalent to the american version of the component.

82

lamp: Lamp, type: path-style, fillable, nodename:
lampshape. Class: misc.

bulb: Bulb, type: path-style, fillable, nodename:
bulbshape. Class: misc.

north ne

east

se
south

sw

west

nw

left right

center

loudspeaker: loudspeaker, type: path-style,
fillable, nodename: loudspeakershape. Class: misc.

north

east

south

west
left right

center

mic: mic, type: path-style, fillable, nodename:
micshape. Class: misc.

north

east

south

west
left right

center

tlmic: tail-less mic33, type: path-style, fillable,
nodename: tlmicshape. Class: misc.

left right buzzer: Buzzer34, type: path-style, fillable,
nodename: buzzershape. Class: misc.

left right rbuzzer: Reversed buzzer, type: path-style,
fillable, nodename: rbuzzershape. Class: misc.

You can use microphones and loudspeakers with waves (see section 4.17) too:

A

1 \begin{circuitikz}
2 \draw (0,0) to[mic, name=M] ++(0,2)
3 to[amp, t=A] ++(2,0)
4 to[loudspeaker, name=L] ++(0,-2)
5 to[short, -*] (0,0) node[ground]{};
6 \node [waves, scale=0.7, left=5pt]
7 at(M.north) {};
8 \node [waves, scale=0.7, right]
9 at(L.north) {};

10 \end{circuitikz}

You have two types of microphones; mic has protruding connection and tlmic (for tail-less micro-
phone) is inline. This last one is handy for use as a separate shape (which is named tlmicshape).
You can change the (relative) thickness of the straight bar using the key bipoles/mic/bar
thickness (default 1).

33Suggested by Dr. Matthias Jung.
34Buzzers were suggested by user Michael.H on TeX.SX

83

https://github.com/circuitikz/circuitikz/issues/689
https://tex.stackexchange.com/questions/640501/buzzer-symbol-in-circuitikz

1 \begin{circuitikz}[]
2 \draw (0,2) to[mic, name=M] ++(2,0) to[tlmic] ++(2,0);
3 \node [color=red, tlmicshape](T) at (M.center) {};
4 \ctikzset{bipoles/mic/bar thickness=3}
5 \draw (0,0) to[mic] ++(2,0) to[tlmic] ++(2,0);
6 \end{circuitikz}

4.8.1 Miscellaneous element customization

You can change the scale of all the miscellaneous elements by setting the key misc/scale to
something different from the default 1.0.

4.9 Multiple wires (buses)

These are simple drawings to indicate multiple wires.

multiwire: Single line multiple wires, type:
path-style, nodename: multiwireshape. Aliases:
multiwire. Class: default.

bmultiwire: Double line multiple wires, type:
path-style, nodename: bmultiwireshape. Aliases:
bmultiwire. Class: default.

tmultiwire: Triple line multiple wires35, type:
path-style, nodename: tmultiwireshape. Aliases:
tmultiwire. Class: default.

4

6

3

1 \begin{circuitikz}
2 \draw (0,0) to[multiwire=4] ++(1,0);
3 \draw (0,-2) to[bmultiwire=6] ++(1,0);
4 \draw (0,-4) to[tmultiwire=3] ++(1,0);
5 \end{circuitikz}

35added by olfline

84

4.10 Crossings

Path style:

crossing: Jumper style non-contact crossing, type:
path-style, nodename: crossingshape. Aliases: xing.
Class: default.

Node style:

Jumper-style crossing node, type: node (node[jump
crossing]{}). No class.

Plain style crossing node, type: node (node[plain
crossing]{}). No class.

All circuit-drawing standards agree that to show a crossing without electric contact, a simple
crossing of the wires suffices; the electrical contact must be explicitly marked with a filled dot.

1 \begin{circuitikz}[]
2 \draw(1,-1) to[short] (1,1)
3 (0,0) to[short] (2,0);
4 \draw(4,-1) to[short] (4,1)
5 (3,0) to[short] (5,0)
6 (4,0) node[circ]{};
7 \end{circuitikz}

However, sometimes it is advisable to mark the non-contact situation more explicitly. To this end,
you can use a path-style component called crossing:

1 \begin{circuitikz}[]
2 \draw(1,-1) to[short] (1,1) (0,0) to[crossing] (2,0);
3 \draw(4,-1) to[short] (4,1) (3,0) to[short] (5,0)
4 (4,0) node[circ]{};
5 \end{circuitikz}

That should suffice most of the time; the only problem is that the crossing jumper will be put in
the center of the subpath where the to[crossing] is issued, so sometimes a bit of trial and error
is needed to position it.
For a more powerful (and elegant) way you can use the crossing nodes:

1 \begin{circuitikz}[]
2 \node at (1,1)[jump crossing](X){};
3 \draw (X.west) -- ++(-1,0);
4 \draw (X.east) to[R] ++(2,0);
5 \draw (X.north) node[vcc]{};
6 \draw (X.south) to[C] ++(0,-1.5);
7 \end{circuitikz}

Notice that the plain crossing and the jump crossing have a small gap in the straight wire,
to enhance the effect of crossing (as a kind of shadow).

85

4.10.1 Crossing customization

The size of the crossing elements can be changed with the key bipoles/crossing/size (default
0.2).
While the horizontal line will be drawn with the current path values, you can change the style
of the vertical line36 in a similar way to the one used for transistor’s bodydiodes, by setting keys
with the \ctikzset command under the crossing vertical hierarchy. The available keys are:

parameter default description

relative thickness 1.0 multiply the default thickness (which is the same
of the choke component).

color default stroke color: default is the same as the compo-
nent.

dash default dash pattern: default means not to change the
setting for the component; none means unbroken
line; every other input is a dash pattern.37

1 \begin{circuitikz}[every node/.append style={scale=2}]
2 \draw (0,2) node[jump crossing](A){};
3 \begin{scope}
4 \ctikzset{crossing vertical/.cd, color=red, dash={{2pt}{1pt}}}
5 \draw (0,1) node[jump crossing](B){};
6 \end{scope}
7 \ctikzset{crossing vertical/dash=none}
8 \draw[densely dotted, blue] (0,0) node[plain crossing](B){};
9 \end{circuitikz}

4.11 Arrows

These are pseudo-arrows used in lot of places in the packages (for transistors, flows, currents, and
so on). The first three arrows are magnified by a factor 3 in the boxes below; for the trarrow, the
anchor tip is exactly on the tip and btip is slightly receded.

center Arrow for current and voltage, type: node
(node[currarrow]{}). No class.

center Arrow that is anchored at its tip, useful for block dia-
grams., type: node (node[inputarrow]{}). No class.

center
tip

btip

Arrow the same size of currarrow but only filled., type:
node (node[trarrow]{}). No class.

Ip

center
eastwest

text Arrow used for the flows, with a text anchor, type: node
(node[flowarrow]{I_p}). No class.

36Suggested by user lkjell on GitHub, implemented in v1.6.2.
37Follows the syntax of the pattern sequence \pgfsetdash — see TikZ manual for details; phase is always zero.

Basically you pass pairs of dash-length – blank-length dimensions, see the examples.

86

https://github.com/circuitikz/circuitikz/issues/704

4.11.1 Arrows size

You can use the parameter current arrow scale to change the size of the arrows in various
components and indicators; the normal value is 16, higher numbers give smaller arrows and so on.
You need to use circuitikz/current arrow scale if you use it into a node.

f

f

f

1 \begin{circuitikz}
2 \draw (0,0) to[R, i=f] ++(2,0) node[npn, anchor=B]{};
3 \draw (0,-2) to[R, f=f, current arrow scale=8] ++(2,0)
4 node[pnp, anchor=B, circuitikz/current arrow scale=8]{};
5 \draw (0,-4) to[R, f=f, current arrow scale=24] ++(2,0)
6 node[nigbt, anchor=B]{};
7 \end{circuitikz}

Moreover, you have the arrow tip latexslim which is an arrow similar to the old (in deprecated
arrows library) latex' element:

1 \begin{circuitikz}[american,]
2 \draw [latexslim-latexslim] (0,0) -- (1,0);
3 \end{circuitikz}

4.11.2 Generic Tunable Arrows

The basic passive components (resistors, capacitors and inductors) come with a “tunable version”
(see for example 4.2.3.3) that conveys the information that their value is adjustable. For generic
components you can obtain a similar effect with the extra macro \ctikztunablearrow, introduced
in version 1.4.1. The macro should be called as:

\ctikztunablearrow[extra options]{thickness}{length}{angle}{name}

where extra options is an optional argument with generic TikZ keys, thickness is the relative
thickness (referred to the current line width when the macro is invoked), length is the length of
the arrow with respect to the diagonal size of the component, angle is the inclination with respect
to the normal direction of the component38, and finally name is the reference name of the bipole
or node.
The arrows are the ones set with the keys tunable start arrow and tunable end arrow (to
maintain coherency across the circuit), but you can override them in the extra options argument
as shown in the following example.

38which is the left-to-right direction of the component when shown in the component box in this manual.

87

−

+

1 \begin{circuitikz}
2 \draw (0,0) node[tlground]{} to[sV, name=A] ++(0,3)
3 node[op amp, anchor=+](B){};
4 \ctikztunablearrow{1}{1.2}{30}{A}
5 \ctikzset{tunable start arrow={Bar},
6 tunable end arrow={Stealth}}
7 \ctikztunablearrow[color=green,
8 {Latex[reversed]}-Circle]{1}{1.2}{90}{A}
9 \ctikztunablearrow[color=blue, densely dashed]{1}{1.2}{-30}{A}

10 \begin{scope}[transparency group, opacity=0.5]
11 \ctikztunablearrow[red, shorten <=3mm]{6}{0.8}{110}{B}
12 \end{scope}
13 \end{circuitikz}

Notice also the need to force a transparency group if you want a semitransparent arrow.

4.12 Terminal shapes

These are the so-called “bipole nodes” shapes, or poles (see section 6.1). These nodes are always
filled; the “open” versions (starting with an o) are by default filled with the color specified by the
key open nodes fill (by default white), but you can override locally it with the fill parameter.

Connected terminal, type: node (node[circ]{}). No
class.

Unconnected terminal, type: node (node[ocirc]{}). No
class.

Diamond-square terminal, type: node
(node[diamondpole]{}). No class.

Open diamond-square terminal, type: node
(node[odiamondpole]{}). No class.

Square-shape terminal, type: node
(node[squarepole]{}). No class.

Open square-shape terminal, type: node
(node[osquarepole]{}). No class.

Since version 0.9.0, “bipole nodes” shapes have all the standard geographical anchors, so you can
do things like these:

R
1 \begin{circuitikz}[american,]
2 \draw (0,-1) node[draw](R){R};
3 \draw (R.east) node[ocirc, right]{};
4 \end{circuitikz}

The size of the poles is controlled by the key nodes width (default 0.04, relative to the basic
length). Be sure to see section 6.1 for more usage and configurability.

4.13 Connectors

Connectors have a class by themselves (connectors), so you can use the scale, fill and
thickness properties as usual.

88

4.13.1 BNC connector/terminal

left right

center

hot

zero shield

BNC connector, type: node, fillable (node[bnc]{}).
Class: connectors.

The BNC connector is defined so that you can easily connect it as input or output (but remember
that you need to flip the text if you flip the component):

vi 50Ω vo

1 \begin{circuitikz}
2 \draw (0,0)
3 node[bnc](B1){v_i} to[R=\SI{50}{\ohm}] ++(3,0)
4 % you can also use \ctikzflipx{v_o} in LaTeX
5 node[bnc, xscale=-1](B2){\scalebox{-1}[1]{v_o}};
6 \node [ground] at (B1.shield) {};
7 \node [eground] at (B2.shield){};
8 \end{circuitikz}

It also has a zero anchor if you need to rotate it about its real center.

1 \begin{circuitikz}
2 \draw[thin, red] (0,0) -- ++(1,0) (0,-1) -- ++(1,0);
3 \path (0,0) node[bnc]{} ++(1,0) node[bnc, rotate=-90]{};
4 \path (0,-1) node[bnc, anchor=zero]{} ++(1,0) node[bnc, anchor=zero,

rotate=-90]{};
5 \end{circuitikz}

4.13.2 IEC 60617 socket-plug connectors

Plug and socket connectors (modeled on the IEC60617 standard) are available39 both in path-style
form and, with separated but matching shapes for plug and socket, in node-style. There are two
differently oriented shapes for each type to ease the construction of “split” connections (see the
examples below). Notice that the elements in the following table are scaled by a factor of 1.5, to
better show the position of the anchors.

left right

center

plug center

socket center

iec connector: IEC 60617 connector, type:
path-style, nodename: iecconnshape. Aliases:
iecconn. Class: connectors.

textleft right

center

IEC 60617 connector, type: node
(node[iecconnshape]{\tiny text}). Class:
connectors.

textleft right

center
socket center

IEC 60617 female socket, left side, type: node
(node[iecsocketL]{\tiny text}). Class: connectors.

39Since v1.5.0; thanks to Alexander Sauter for suggesting them and helping in the design.

89

https://github.com/circuitikz/circuitikz/issues/611

textleft right

center

plug center
IEC 60617 male plug, right side, type: node
(node[iecplugR]{\tiny text}). Class: connectors.

textleft right

center

plug center
IEC 60617 male plug, left side, type: node
(node[iecplugL]{\tiny text}). Class: connectors.

textleft right

center
socket center

IEC 60617 female socket, right side, type: node
(node[iecsocketR]{\tiny text}). Class: connectors.

The center anchors (as well as the text position) of the split elements of the connectors are on
the side of the component (similar to what happens with grounds and supply voltage arrows) to
ease the most common use.
Also, the text for the plug nodes is raised to the same level of the text in the sockets, and it will
ignore descendants, so that the two text lines up when the two components are put side by side.
The plug center anchor always point to the center of the rectangular plug shape, and the socket
center to the center of the semicircle in the sockets.

1 \begin{circuitikz}
2 \draw (0,1) node[bnc]{} to[R] ++(2,0)
3 to[iec connector] ++(1,0);
4 \draw (0,0) node[bnc]{} to[R] ++(2,0)
5 to[iec connector, invert] ++(1,0);
6 \end{circuitikz}

Aligning “disconnected” plugs and sockets is reasonably easy:

s1 p1

s2

p3

1 \begin{circuitikz}
2 \draw (0,2) to[iec connector, name=C1] ++(2,0) coordinate(stop)
3 (C1.nw) node[above left, inner xsep=0pt]{s1}
4 (C1.ne) node[above right, inner xsep=0pt]{p1};
5 \draw (0,1) coordinate(tmp) -- (tmp-|C1.left)
6 node[iecsocketL](S2){s2};
7 \draw (0,0) coordinate(tmp) (tmp-|C1.socket center)
8 node[iecplugR](P3){p3} (P3.right) -- (tmp-|stop);
9 \draw[red, dashed] ([yshift=1cm]C1.socket center) -- ++(0,-4);

10 \end{circuitikz}

You can choose the best shape when rotating them, to simplify the positioning (shape rotates
around the center anchor).

1 \begin{circuitikz}
2 \draw (0,0) -| ++(1,-1) node[iecsocketL, rotate=-90]{}
3 (2,-1) -| ++(1,1) node[iecplugR, rotate=90]{};
4 \end{circuitikz}

Choosing the proper left/right shape results in easily build “mixed” connectors; you can use the
node text position properties to have lined-up labels, but remember that the text is outside the
bounding box:

90

S1 P1

P2 S2

1 \begin{circuitikz}[]
2 \path (0,2); % for the bounding box, text is not accounted for
3 \draw (0,1)--++(1,0) node[iecsocketL](s1){S1};
4 \draw [color=red](s1.e) node[iecplugR](p1){P1} (p1.e)--++(1,0);
5 \draw (0,0) -- ++(1,0) node[iecplugL](p2){P2};
6 \draw [color=blue](p2.e) node[iecsocketR](s2){S2} (s2.e)--++(1,0);
7 \end{circuitikz}

You can use the plug center anchor to add the IEC “multiplier”:

output bus

8 1 \begin{circuitikz}[]
2 \draw (0,0) to[iec connector, connectors/scale=2, name=A,
3 a={\small\ttfamily output bus}] ++(3,0);
4 \draw (A.plug center) ++(-.2,-.4) -- ++(.4,.8) node[above]{8};
5 \end{circuitikz}

4.14 Block diagram components

Contributed by Stefan Erhardt.

w

s

e

n

center geocenter

mixer, type: node, fillable (node[mixer]{}). Class:
blocks.

right up

right down

left up

left down

mixer, boxed, type: node, fillable (node[mixer,
boxed]{}). Class: blocks.

west

south

east

north

adder, type: node, fillable (node[adder]{}). Class:
blocks.

w

s

e

n
center

geocenter

oscillator, type: node, fillable (node[oscillator]{}).
Class: blocks.

left

down

right

up

circulator, type: node, fillable (node[circulator]{}).
Class: blocks.

in

out2

out1

wilkinson divider, type: node, fillable
(node[wilkinson]{}). Class: blocks.

91

in

out2

out1

resistive splitter40, type: node, fillable
(node[splitter]{}). Class: blocks.

−3dBin

out2

out1

generic splitter41, type: node, fillable
(node[genericsplitter]{$\SI {-3}{\deci \bel
}$}). Class: blocks.

left right

center

up

down

gridnode42, type: node, fillable (node[gridnode]{}).
Class: blocks.

in

mod

out
Mach Zehnder Modulator43, type: node, fillable
(node[mzm]{}). Class: blocks.

w

s

e

n

center

twoport: generic two port (use t=… to specify
text), type: path-style, fillable, nodename:
twoportshape. Class: blocks.

right up

right down

left up

left down

twoportsplit: generic two port split (use t1=… and
t2=… to specify text), type: path-style, fillable,
nodename: twoportsplitshape. Class: blocks.

vco: vco, type: path-style, fillable, nodename:
vcoshape. Class: blocks.

right up

right down

left up

left down

vco,box: vco,box, type: path-style, fillable,
nodename: vco,boxshape. Class: blocks.

bandpass: bandpass, type: path-style, fillable,
nodename: bandpassshape. Class: blocks.

bandstop: bandstop, type: path-style, fillable,
nodename: bandstopshape. Class: blocks.

40added by matthuszagh
41added by frankplow
42added by olfline
43added by dl1chb

92

highpass: highpass, type: path-style, fillable,
nodename: highpassshape. Class: blocks.

lowpass: lowpass, type: path-style, fillable,
nodename: lowpassshape. Class: blocks.

allpass: allpass, type: path-style, fillable,
nodename: allpassshape. Class: blocks.

highpass2: simplified highpass (with only 2
waves), type: path-style, fillable, nodename:
highpass2shape. Class: blocks.

lowpass2: simplified lowpass (with only 2 waves), type:
path-style, fillable, nodename: lowpass2shape.
Class: blocks.

A
D

adc: A/D converter, type: path-style, fillable,
nodename: adcshape. Class: blocks.

D
A

dac: D/A converter, type: path-style, fillable,
nodename: dacshape. Class: blocks.

DSP dsp: DSP, type: path-style, fillable, nodename:
dspshape. Class: blocks.

FFT fft: FFT, type: path-style, fillable, nodename:
fftshape. Class: blocks.

amp: amplifier, type: path-style, fillable,
nodename: ampshape. Class: blocks.

vamp: VGA, type: path-style, fillable, nodename:
vampshape. Class: blocks.

piattenuator: π attenuator, type: path-style,
fillable, nodename: piattenuatorshape. Class:
blocks.

vpiattenuator: var. π attenuator, type: path-style,
fillable, nodename: vpiattenuatorshape. Class:
blocks.

tattenuator: T attenuator, type: path-style,
fillable, nodename: tattenuatorshape. Class:
blocks.

vtattenuator: var. T attenuator, type: path-style,
fillable, nodename: vtattenuatorshape. Class:
blocks.

93

φ
phaseshifter: phase shifter, type: path-style,
fillable, nodename: phaseshiftershape. Class:
blocks.

φ
vphaseshifter: var. phase shifter, type: path-style,
fillable, nodename: vphaseshiftershape. Class:
blocks.

detector: detector, type: path-style, fillable,
nodename: detectorshape. Class: blocks.

dc up in

dc down in

dc up out

dc down out

sdcdc: single wire DC/DC converter44, type:
path-style, fillable, nodename: sdcdcshape.
Class: blocks.

ac up in

ac down in

dc up out

dc down out

sacdc: single phase AC/DC converter, type:
path-style, fillable, nodename: sacdcshape.
Class: blocks.

dc up in

dc down in

ac up out

ac down out

sdcac: single phase DC/AC converter, type:
path-style, fillable, nodename: sdcacshape.
Class: blocks.

ac up in

ac down in

ac up out

ac down out

sacac: single phase AC/AC converter, type:
path-style, fillable, nodename: sacacshape.
Class: blocks.

ac up in

ac mid in

ac down in

dc up out

dc down out

tacdc: three phases AC/DC converter, type:
path-style, fillable, nodename: tacdcshape.
Class: blocks.

ac up out

ac mid out
ac down out

dc up in

dc down in

tdcac: three phases AC/DC converter, type:
path-style, fillable, nodename: tdcacshape.
Class: blocks.

ac up in

ac mid in

ac down in

ac up out

ac mid out

ac down out

tacac: three phases AC/DC converter, type:
path-style, fillable, nodename: tacacshape.
Class: blocks.

port1 port2

port3port4 Generic fourport, type: node, fillable
(node[fourport]{}). Class: blocks.

44the converter blocks added by olfline

94

left down right down

right upleft up
Coupler, type: node, fillable (node[coupler]{}). Class:
blocks.

Coupler with rounded arrows, type: node, fillable
(node[coupler2]{}). Class: blocks.

4.14.1 Blocks anchors

The ports of the mixer, adder, oscillator and circulator can be addressed with west, south,
east, north; the equivalent left, down, right, up; or the shorter w, s, e, n ones:

w

s

e

n
1 \begin{circuitikz} \draw
2 (0,0) node[mixer] (mix) {}
3 (mix.w) node[left] {w}
4 (mix.s) node[below] {s}
5 (mix.e) node[right] {e}
6 (mix.n) node[above] {n}
7 ;\end{circuitikz}

In addition, since v1.6.0, most blocks also have the left up, left down, right up and right
down anchors:

1 \begin{circuitikz} \draw
2 (0,0) to[bandpass, name=bp] ++(2,0)
3 (bp.left up) node[circ, red]{}
4 (bp.left down) node[circ, blue]{}
5 (bp.right up) node[circ, green]{}
6 (bp.right down) node[circ, yellow]{}
7 ;\end{circuitikz}

You can use those anchors to build “mixed-type” circuits, positioning the node-shapes:

LNA
Digital

1 \begin{tikzpicture}[
2 big/.style={circuitikz/blocks/scale=1.5},
3 long/.style={circuitikz/bipoles/twoportsplit/width=1.5}]
4 \path (0,0) node[sacdcshape, big](A){}
5 (5,0) node[twoportsplitshape, big, long, t1=LNA, t2=Digital](B){};
6 \draw (A.right up) -- (B.left up) (A.right down) to[cute choke] (B.left down);
7 \end{tikzpicture}

Notice also from the previous example that the generic blocks (twoport and twoportsplit) can
be made “longer” by setting different width and height (the other blocks are square, and just use
the width key for both dimensions).
Also, for amp and vamp, the up and down anchors follow the shape when they are not boxed.

95

1 \begin{tikzpicture}
2 \draw (0,0) to[vamp, name=a] ++(1.5,0)
3 to [vamp, boxed, name=ab] ++(1.5,0);
4 \path (a.up) node[circ, blue]{} (ab.up) node[circ, blue]{};
5 \path (a.down) node[circ, red]{} (ab.down) node[circ, red]{};
6 \end{tikzpicture}

The oscillator has a displaced center anchor, to simplify the task of putting it at the left side of
a circuit; it also as a special position for the node text. The four round elements (mixer, circulator,
adder, and the oscillator) have a geocenter anchor which always corresponds to the center of the
circle.

f0

1 \begin{tikzpicture}[>=Stealth]
2 \draw (0,0)node[oscillator](O){f_0} -- ++(1,0);
3 \draw[blue, ->] (1,1) -- (O.center);
4 \draw[red, ->] (1,1) -- (O.geocenter);
5 \end{tikzpicture}

Moreover, the have proper border anchors since version 1.2.3 (and fixed for boxed elements in
1.5.0), so you can do things like this:

1 \begin{circuitikz}
2 \draw (0,0) node[adder] (mix) {}
3 (-1,1) -- ++(0.5,0) -- (mix)
4 (-1,-1) -- ++(0.5,0) -- (mix) -- ++(1,0);
5 \draw [red, <-] (mix.45) -- ++(1,1);
6 \end{circuitikz}

Those components have also deprecated anchors named 1, 2, 3, 4; they are better not used
because they can conflict with the border anchor. They still work for backward compatibility, but
could be removed in a future release.

1

2

3

4

DON’T USE

1 \begin{circuitikz} \draw
2 (0,0) node[mixer] (mix) {}
3 (mix.1) node[left] {1} (mix.2) node[below] {2}
4 (mix.3) node[right] {3} (mix.4) node[above] {4};
5 \draw [ultra thick, red, opacity=0.5]
6 (-1,-1)--(1,1)(-1,1)--(1,-1);
7 \node [red, below] at (0,-1) {DON'T USE};
8 \end{circuitikz}

The Wilkinson divider has (notice that the node text is outside the bounding box, similarly to
what happens for transistors!):

3dB

in
out1

out2

1 \begin{circuitikz} \draw
2 (0,0) node[wilkinson] (w) {\SI{3}{dB}}
3 (w.in) to[short,-o] ++(-0.5,0)
4 (w.out1) to[short,-o] ++(0.5,0)
5 (w.out2) to[short,-o] ++(0.5,0)
6 (w.in) node[below left] {\texttt{in}}
7 (w.out1) node[below right] {\texttt{out1}}
8 (w.out2) node[above right] {\texttt{out2}}
9 ;

10 \end{circuitikz}

The couplers have:

96

10dB

left down right down

right upleft up

1 \begin{circuitikz} \draw (0,1.5) %bounding box
2 (0,0) node[coupler] (c) {\SI{10}{dB}}
3 (c.left down) to[short,-o] ++(-0.5,0)
4 (c.right down) to[short,-o] ++(0.5,0)
5 (c.right up) to[short,-o] ++(0.5,0)
6 (c.left up) to[short,-o] ++(-0.5,0)
7 (c.left down) node[below left] {\texttt{left

down}}
8 (c.right down) node[below right] {\texttt{right

down}}
9 (c.right up) node[above right] {\texttt{right

up}}
10 (c.left up) node[above left] {\texttt{left up}}
11 ;
12 \end{circuitikz}

Or you can also use port1 to port4 if you prefer:

3dB

port1 port2

port3port4

1 \begin{circuitikz} \draw (0,1.5) %bounding box
2 (0,0) node[coupler2] (c) {\SI{3}{dB}}
3 (c.port1) to[short,-o] ++(-0.5,0)
4 (c.port2) to[short,-o] ++(0.5,0)
5 (c.port3) to[short,-o] ++(0.5,0)
6 (c.port4) to[short,-o] ++(-0.5,0)
7 (c.port1) node[below left] {\texttt{port1}}
8 (c.port2) node[below right] {\texttt{port2}}
9 (c.port3) node[above right] {\texttt{port3}}

10 (c.port4) node[above left] {\texttt{port4}}
11 ;
12 \end{circuitikz}

Also they have the simpler 1, 2, 3, 4 anchors, and although they have no border anchors (for
now), it is better not to use them.

10dB

1 2

34

1 \begin{circuitikz} \draw(0,1.5) %bounding box
2 (0,0) node[coupler] (c) {\SI{10}{dB}}
3 (c.1) to[short,-o] ++(-0.5,0)
4 (c.2) to[short,-o] ++(0.5,0)
5 (c.3) to[short,-o] ++(0.5,0)
6 (c.4) to[short,-o] ++(-0.5,0)
7 (c.1) node[below left] {\texttt{1}}
8 (c.2) node[below right] {\texttt{2}}
9 (c.3) node[above right] {\texttt{3}}

10 (c.4) node[above left] {\texttt{4}}
11 ;
12 \end{circuitikz}

4.14.2 Blocks customization

You can change the scale of all the block elements by setting the key blocks/scale to something
different from the default 1.0.
With the option > you can draw an arrow to the input of the block diagram symbols.

A
D

1 \begin{circuitikz} \draw
2 (0,0) to[short,o-] ++(0.3,0)
3 to[lowpass,>] ++(2,0)
4 to[adc,>] ++(2,0)
5 to[short,-o] ++(0.3,0);
6 \end{circuitikz}

97

4.14.2.1 Multi ports Since inputs and outputs can vary, input arrows can be placed as nodes.
Note that you have to rotate the arrow on your own:

1 \begin{circuitikz} \draw
2 (0,0) node[mixer] (m) {}
3 (m.w) to[short,-o] ++(-1,0)
4 (m.s) to[short,-o] ++(0,-1)
5 (m.e) to[short,-o] ++(1,0)
6 (m.w) node[inputarrow] {}
7 (m.s) node[inputarrow,rotate=90] {};
8 \end{circuitikz}

4.14.2.2 Labels and custom two-port boxes You can use the keys t, t1, t2 (shorthands
for text, text in, text out) to fill the generic blocks:

B

in

out

1 \begin{circuitikz} \draw
2 (0,0) to[short,o-] ++(0.3,0)
3 to[allpass,>] ++(2,0)
4 to[twoport,>,t={B}] ++(2,0)
5 to[twoportsplit,t1={\tiny in},
6 t2={\tiny\color{red}out}] ++(0,-2.5);
7 \end{circuitikz}

Some two-ports have the option to place a normal label (l=) and a inner label (t=).

LNA

F=0.9dB

1 \begin{circuitikz}
2 \ctikzset{bipoles/amp/width=0.9}
3 \draw (0,0) to[amp,t=LNA,l_=$F{=}0.9\,$dB,o-o] ++(3,0);
4 \end{circuitikz}

4.14.2.3 Box option Several devices have the possibility to add a box around them with the
box or boxed option. The inner symbol scales down to fit inside the box. For the “circled” devices
(mixer, adder, oscillator and circulator) the inner circle is normally drawn, unless you use the box
only or boxed only option.45

1 \begin{circuitikz} \draw
2 (0,0) node[mixer, box only, anchor=east](m){}
3 to[amp, boxed, >, -o] ++(2.5,0)
4 (m.west) node[inputarrow]{} to[short,-o] ++(-0.8,0)
5 (m.south) node[inputarrow,rotate=90]{} --
6 ++(0,-0.7) node[oscillator, box, anchor=north]{};
7 \end{circuitikz}

4.14.2.4 Dash optional parts To show that a device is optional, you can dash it. The
inner symbol will be kept with solid lines, unless you set the key inner blocks dashed to true.
Moreover, the key dashed blocks pattern (default {{1mm}{1mm}}), be careful with the number
of braces!.

45Since 1.5.0, suggested by GitHub user myzinsky

98

https://github.com/circuitikz/circuitikz/issues/621

10dB opt.

10dB opt.

10dB opt.

1 \begin{circuitikz}
2 \draw (0,1.5) to[amp,l=\SI{10}{dB}] ++(2.5,0);
3 \draw[dashed] (2.5,1.5) to[lowpass,l=opt.] ++(2.5,0);
4 % or just the block
5 \draw (0,0) to[amp,l=\SI{10}{dB}] ++(2.5,0)
6 to[lowpass,l=opt., dashed] ++(2.5,0);
7 % or everything
8 \ctikzset{inner blocks dashed,
9 dashed blocks pattern={{1.5pt}{1pt}},

10 }
11 \draw (0,-1.5) to[amp,l=\SI{10}{dB}] ++(2.5,0)
12 to[lowpass,l=opt., dashed] ++(2.5,0);
13 \end{circuitikz}

4.14.2.5 Dashing the DC symbol in blocks. The symbol for the DC side can be different
across countries,46 with different kind of dashing on the bottom line. Moreover, sometimes the
dashing is used to convey different meanings (like rectified sinusoidal or stabilized DC). You can
change the general style for the DC symbol using the key blocks dc segments; using 1 (default)
will use a continuous line; using 2 you will have the international-styled symbol, and with 3 the
English one (you can use higher numbers; the only restriction is that it must be strictly greater
than 0). You can also change the input and output part separately with the keys blocks dc in
segments and blocks dc out segments (see the following example). The inner blocks dashed
option overrides these ones.

1 \begin{tikzpicture}[scale=0.9]
2 \ctikzset{blocks dc segments=3}
3 \draw (0,2) to[sacdc] ++(2,0) to[sdcdc]
4 ++(2,0) to[sdcac] ++(2,0);
5 \ctikzset{blocks dc segments=1}
6 \draw (0,0) to[sacdc, blocks dc out segments=2]
7 ++(2,0) to[sdcdc, blocks dc in segments=2]
8 ++(2,0) to[sdcac] ++(2,0);
9 \end{tikzpicture}

4.15 Transistors

4.15.1 Standard bipolar transistors

QB

C

E

npn, type: node (node[npn]{Q}). Class: transistors.

pnp, type: node (node[pnp]{}). Class: transistors.

schottky npn, type: node (node[npn, schottky
base]{}). Class: transistors.

46Head-up from user @dbstf on GitHub

99

https://github.com/circuitikz/circuitikz/issues/680

schottky pnp, type: node (node[pnp, schottky
base]{}). Class: transistors.

body C in

body E in

body C out

body E out

npn, type: node (node[npn, bodydiode]{}). Class:
transistors.

nobase photo npn, type: node (node[npn,photo]{}). Class:
transistors.

arrows photo pnp, type: node (node[pnp,photo]{}). Class:
transistors.

Q nigbt, type: node (node[nigbt]{Q}). Class:
transistors.

centergap pigbt, type: node (node[pigbt]{}). Class: transistors.

Q Lnigbt, type: node (node[Lnigbt]{Q}). Class:
transistors.

Lpigbt, type: node (node[Lpigbt]{}). Class:
transistors.

Q

body C in

body E in

body C out

body E out
Lpigbt, type: node (node[Lpigbt, bodydiode]{Q}).
Class: transistors.

4.15.2 Multi-terminal bipolar transistors

In addition to the standard BJTs transistors, since version 0.9.6 the bjtnpn and bjtpnp are also
available; these are devices where you can have more collectors and emitters (on the other hand,
they have no photo nor bodydiode options — they are silently ignored).
Basically they are the same as the normal npn and pnp, and they (by default) have similar sizes;
the options collectors and emitters will change the number of the relative terminals. The base

100

terminal is connected midway from the collector and the emitter, not on the center of the base; a
cbase anchor is available if you prefer to use it. The label of the component (the text) is set on
the right side, vertically centered around the base terminal. They will accept the schottky base
key.

QB

C

E

C1

E1
E2

nobase

cbase

center bjt npn, type: node (node[bjtnpn, collectors=1,
emitters=2]{Q}). Class: transistors.

QB

C

E

C1
C2
C3

E1
E2nobase

cbase

bjt pnp, type: node (node[bjtpnp, collectors=3,
emitters=2]{Q}). Class: transistors.

4.15.3 Field-effect transistors

QG

D

S

nmos, type: node (node[nmos]{Q}). Class: transistors.

centergap pmos, type: node (node[pmos]{}). Class: transistors.

QG

D

S

nmos depletion, type: node (node[nmosd]{Q}). Class:
transistors.

pmos depletion, type: node (node[pmosd]{}). Class:
transistors.

hemt, type: node (node[hemt]{}). Class: transistors.

101

QG

D

S
nogate

hemt without base terminal, type: node (node[hemt,
nobase]{Q}). Class: transistors.

QG

D

Snogate

Gallium Nitride hemt (a “styled” hemt, see 4.15.5.5),
type: node (node[GaN hemt]{Q}). Class: transistors.

nfets and pfets have been incorporated based on code provided by Clemens Helfmeier and
Theodor Borsche. Use the package options fetsolderdot/nofetsolderdot to enable/disable
solderdot at some fet-transistors. Additionally, the solderdot option can be enabled/disabled for
single transistors with the option solderdot and nosolderdot, respectively (You can adjust the
size of the solder dot, see section 4.15.5.12).

QG

D

S

nfet, type: node (node[nfet]{Q}). Class: transistors.

QG

D

S

nfet depletion, type: node (node[nfetd]{Q}). Class:
transistors.

Q
G

D

S

nigfete, type: node (node[nigfete]{Q}). Class:
transistors.

centergap nigfete, type: node (node[nigfete,solderdot]{}).
Class: transistors.

nigfetebulk, type: node (node[nigfetebulk]{}). Class:
transistors.

centergap nigfetd, type: node (node[nigfetd]{}). Class:
transistors.

QG

D

S

pfet, type: node (node[pfet]{Q}). Class: transistors.

102

QG

D

S

pfet depletion, type: node (node[pfetd]{Q}). Class:
transistors.

centergap
G

D

S

pigfete, type: node (node[pigfete]{}). Class:
transistors.

pigfetebulk, type: node (node[pigfetebulk]{}). Class:
transistors.

pigfetd, type: node (node[pigfetd]{}). Class:
transistors.

Since version 1.6.0, you can add the doublegate option to the *igfet* family of devices to have
a double gate MOS — the additional gate is called G2 or gate2 (the plain G is where it will be
without the doublegate option).

Q
G

G2

D

S

nigfete, doublegate, type: node (node[nigfete,
doublegate]{Q}). Class: transistors.

G1
centergapG2

nigfete, doublegate, type: node
(node[nigfete,solderdot, doublegate]{}). Class:
transistors.

G
G2 nigfetebulk, doublegate, type: node (node[nigfetebulk,

doublegate]{}). Class: transistors.

G1
centergapG2 nigfetd, doublegate, type: node (node[nigfetd,

doublegate]{}). Class: transistors.

G
centergapG2

D

S
pigfete, doublegate, type: node (node[pigfete,
doublegate]{}). Class: transistors.

G
G2

pigfetebulk, doublegate, type: node (node[pigfetebulk,
doublegate]{}). Class: transistors.

103

G1
G2

pigfetd, doublegate, type: node (node[pigfetd,
doublegate]{}). Class: transistors.

You can use the double-gated transistor for example like this:47

Q

1 \begin{circuitikz}[european, scale=0.7, transform shape,
2 circuitikz/resistors/scale=0.7]
3 \draw (0,0) to[C, o-*] ++(1,0) coordinate(in)
4 to[R, -*] ++(0,-3) coordinate(GND)
5 ++(1,0) to[C, *-] ++(0,4) -- ++(1,0) coordinate(div)
6 to[R, *-*] ++(0,2) coordinate(vdd)
7 (div) to[R, -*] (div|-GND)
8 (in) -- ++(2.5,0) node[nigfetd, doublegate, anchor=G1](Q){Q}
9 (Q.G2) to[short, -*] (Q.G2-|div)

10 (Q.D) to[R, -*] (Q.D|-vdd)
11 (Q.D) to[C, *-o] ++(2,0) coordinate(out)
12 (Q.S) to[R, *-*] (Q.S|-GND) (Q.S) -- ++(1,0) coordinate(Sd)
13 (Sd) to[C, -*] (Sd |- GND);
14 \draw (0,0|-GND) -- (out|-GND) (0,0|-vdd) -- (out|-vdd);
15 \end{circuitikz}

JFET are also available48, both n-type and p-type.

Q

G

D

S

n-type JFET, type: node (node[njfet]{Q}). Class:
transistors.

G

D

S

p-type JFET, type: node (node[pjfet]{}). Class:
transistors.

UJT transistors49 have a different anchor names although most of the others, like D and G, also
work (the exception is E and emitter!). Notice that if used with nobase, the anchor E follows the
wire, while G is fixed (as is kink).

Q

G

B1

B2

kink
E n-type UJT, type: node (node[nujt]{Q}). Class:

transistors.

QG

B1

B2

kink
E

p-type UJT, type: node (node[pujt]{Q}). Class:
transistors.

47Found at this page on electronics notes.
48based on code provided by Danilo Piazzalunga
49sugged by user JetherReis on GitHub.

104

https://www.electronics-notes.com/articles/electronic_components/fet-field-effect-transistor/dual-gate-mosfet.php
https://github.com/circuitikz/circuitikz/issues/522

Q

G

B1

B2

kink
E n-type UJT with nobase option, type: node (node[nujt,

nobase]{Q}). Class: transistors.

isfet:

Q isfet, type: node (node[isfet]{Q}). Class: transistors.

Graphene fet have been added in version 1.3.250. They look better if you set transistors/arrow
pos=end and transistor/thickness=3 or higher for them, so they are plotted with this option
here.

Q

outer hex up

outer hex down

right
N-type graphene FET, type: node, fillable
(node[ngfet]{Q}). Class: transistors.

Q

inner hex up

inner hex down

pgfet, type: node, fillable (node[pgfet]{Q}). Class:
transistors.

4.15.4 Transistor texts (labels)

In versions before 0.9.7, transistors text (the node text) was positioned near the collector ter-
minal; since version 0.9.7 the default has been changed to a more natural position near the
center of the device, similar to the multi-terminal transistors. You can revert to the old behav-
ior locally with the key legacy transistors text, or globally by setting the package option
legacytransistorstext.
Notice the use of the utility functions \ctikzflip{x,y,xy} as explained in section 3.2.1.

T1 T1 T1 T1

T1 T1

T1 T1

1 \begin{circuitikz}[scale=0.8, transform shape]
2 \draw (0,0) node [npn]{T1}
3 ++(1.2,0) node [npn, xscale=-1]{\ctikzflipx{T1}}
4 ++(2,0) node [npn, yscale=-1]{\ctikzflipy{T1}}
5 ++(1.2,0) node [npn, scale=-1]{\ctikzflipxy{T1}};
6 \ctikzset{legacy transistors text}
7 \draw (0,-2) node [npn]{T1}
8 ++(1.2,0) node [npn, xscale=-1]{\ctikzflipx{T1}}
9 ++(2,0) node [npn, yscale=-1]{\ctikzflipy{T1}}

10 ++(1.2,0) node [npn, scale=-1]{\ctikzflipxy{T1}};
11 \end{circuitikz}

50added by Romano Giannetti after a suggestion by Cees Keyer.

105

4.15.5 Transistors customization

4.15.5.1 Size. You can change the scale of all the transistors by setting the key transistors/scale
(default 1.0). The size of the arrows (if any) is controlled by the same parameters as currarrow
(see section 4.11.1) and the dots on P-type transistors (if any) are the same as the nodes/poles
(see section 6.1).

4.15.5.2 Arrows. The default position of the arrows in transistors is somewhat in the middle
of the terminal; if you prefer you can move them to the end with the style key transistors/arrow
pos=end (the default value is legacy).

1 \begin{circuitikz}
2 \ctikzset{tripoles/mos style=arrows}
3 \ctikzset{transistors/arrow pos=end}
4 \draw (0,0) node[npn,](npn){};
5 \draw (2,0) node[pnp,](npn){};
6 \draw (0,-2) node[nmos,](npn){};
7 \draw (2,-2) node[pmos,](npn){};
8 \end{circuitikz}

If the option arrowmos is used (or after the command \ctikzset{tripoles/mos style/arrows}
is given), this is the output:

nmos, type: node (node[nmos]{}). Class: transistors.

pmos, type: node (node[pmos]{}). Class: transistors.

nmos depletion, type: node (node[nmosd]{}). Class:
transistors.

pmos depletion, type: node (node[pmosd]{}). Class:
transistors.

You can go back to the no-arrows mos with noarrowmos locally or with \ctikzset{tripoles/mos
style/no arrows}.
To draw the PMOS circle non-solid, use the option emptycircle or the command
\ctikzset{tripoles/pmos style/emptycircle}. To remove the dot completely (only useful if
you have arrowmos enabled, otherwise there will be no difference between P-MOS and N-MOS),
you can use the option nocircle or \ctikzset{tripoles/pmos style/nocircle}.

106

pmos, type: node (node[pmos,emptycircle]{}). Class:
transistors.

pmos, type: node (node[pmos,nocircle,arrowmos]{}).
Class: transistors.

This example show the combined effects of the arrows and gate-circle options:

pmos nmos

default

arrows

emptycircle

nocircle

no circle,
no arrows,

DON’T
do it

1 \begin{circuitikz}[
2 info/.style={left=1cm, blue, text width=5em,

align=right},]
3 \draw (0,1) node{pmos} (2,1) node{nmos};
4 \draw (0,0) node[info]{default} node[pmos]{}

(2,0) node[nmos]{};
5 \ctikzset{tripoles/mos style/arrows}
6 \draw (0,-2) node[info]{arrows} node[pmos]{}

(2,-2) node[nmos]{};
7 \ctikzset{tripoles/pmos style/emptycircle}
8 \draw (0,-4) node[info]{emptycircle} node[pmos

]{} (2,-4) node[nmos]{};
9 \ctikzset{tripoles/pmos style/nocircle}

10 \draw (0,-6) node[info]{nocircle} node[pmos]{}
(2,-6) node[nmos]{};

11 \ctikzset{tripoles/mos style/no arrows}
12 \draw (0,-8) node[info, red]{no circle, no

arrows, DON'T do it}
13 node[pmos]{} (2,-8) node[nmos]{};
14 \end{circuitikz}

You can also change51 the type of the arrow for the “light rays” of the phototransistors with the
generic arrows options shown in 4.2.3.3, using the name opto, like in the following (overdone)
example. Also the opto arrows styling options (see section 4.4.3.1).

1 \begin{tikzpicture}
2 \draw (0,2) node[npn, photo]{} ++(2,0) node[pnp, photo]{};
3 \ctikzset{opto end arrow={Triangle[angle'=60]}}
4 \ctikzset{opto arrows/.cd, color=red, dash={{1pt}{1pt}}}
5 \draw (0,0) node[npn, photo]{} ++(2,0) node[pnp, photo]{};
6 \end{tikzpicture}

51Thanks to the idea by Dr. Matthias Jung on GitHub.

107

https://github.com/circuitikz/circuitikz/issues/655

4.15.5.3 Circles. Since 1.2.6, you can add a circle52 to most of the transistor shapes — with
the exception of multi-terminal (bjtnpn and bjtpnp, where it would be awkward anyway) and
graphene FETs. The circle is intended in some case as the component’s housing, and used to
distinguish discrete components from integrated ones.
To add the circle to a single transistor, you use the tr circle keys in the node; if you want all
of your transistors with a circle, you can set the property tr circle with a \ctikzset command
(it will respect normal grouping, of course); in that case, you can use tr circle=false to locally
disable them.

1 \begin{circuitikz}[]
2 \draw (0,2) node[npn]{} (2,2) node[npn, tr circle](Q){};
3 % collector connected to housing
4 \node [circ] at (Q.circle C){};
5 \ctikzset{tr circle=true} % or \ctikzset{tr circle} alone
6 \draw (0,0) node[nigfete]{}
7 (2,0) node[nigfete, tr circle=false]{};
8 \end{circuitikz}

You can tweak the appearance of transistor’s circles and even draw it partially; see 4.15.7 for
details.

4.15.5.4 Body diodes and similar things. For all transistors (minus bjtnpn and bjtpnp)
a body diode (or freewheeling or flyback diode) can automatically be drawn. Just use the global
option bodydiode, or for single transistors, the TikZ-option bodydiode. As you can see in the
next example, the text for the diode is moved if a bodydiode is present (but beware, if you change
a lot the relative dimension of components, it may become misplaced):

1

2

3

1 \begin{circuitikz}
2 \draw (0,0) node[npn,bodydiode](npn){1}
3 ++(2,0)node[pnp,bodydiode](npn){};
4 \draw (0,-2) node[nigbt,bodydiode](npn){2}
5 ++(2,0)node[pigbt,bodydiode](npn){};
6 \draw (0,-4) node[nfet,bodydiode](npn){3}
7 ++(2,0)node[pfet,bodydiode](npn){};
8 \end{circuitikz}

You can tweak the appearance of transistor’s bodydiodes; see 4.15.8.
For more complex snubs or protections, you can use the body ... anchors to add more or different
things to the transistors in addition (or instead) of the flyback diode.

52Suggested by Matthias Jung on GitHub

108

https://github.com/circuitikz/circuitikz/issues/442

1 \def\snubb#1#2{% add a snubber to a transistor
2 \draw (#1.body C #2) to[short, *-, nodes width=0.02]
3 ++(0.3,0) coordinate(tmp) to [R, resistors/scale=0.3]
4 % 2/3 space for R, 1/3 for C
5 ($(tmp)!0.66!(tmp|-#1.body E #2)$)
6 to [C, capacitors/scale=0.3] (tmp|-#1.body E #2)
7 to [short, -*, nodes width=0.02] (#1.body E #2);
8 }
9 \begin{circuitikz}

10 \node[npn](Q1) at(0,0) {};
11 \node[pnp](Q2) at(2,0) {};
12 \node[pnp, bodydiode](Q3) at(0,-3) {};
13 \node[npn, bodydiode](Q4) at(2,-3) {};
14 \snubb{Q1}{in} \snubb{Q2}{in}
15 \snubb{Q3}{out} \snubb{Q4}{out}
16 \end{circuitikz}

4.15.5.5 HEMT customization. Since v1.6.1 the shape of the hemt transistor can be cus-
tomized.53 There are several keys under the hierarchy tripoles/hemt that can be use to change
the appearance; some of them are common to other transistors and some are specific.
The main ones are …/split gate (boolean, default false) that will create a “split” gate, which
sometimes is used to convey that the device is enhancement-type; source arrow (default 0), to
add an arrow on the source terminal (1 for a right-facing one, -1 the other way around; the arrow
will obey arrow pos=end if issued, but otherwise the position is fixed); gate asym (default 0.0)
which displaces the gate asymmetrically. For example, the GaN hemt component is really a styled
hemt (predefined), with the definition:

1 \tikzset{GaN hemt/.style={hemt,
2 circuitikz/tripoles/hemt/base height=0.6,% length of the "base" vertical bar
3 circuitikz/tripoles/hemt/gate height=0.5,% distance of the S/D terminals
4 circuitikz/tripoles/hemt/bodydiode conn=0.85,% attachment point of body diode
5 circuitikz/tripoles/hemt/gate asym=-0.1,% slightly down
6 circuitikz/tripoles/hemt/split gate=true,% split gate
7 circuitikz/tripoles/hemt/source arrow=1,% right-facing arrow
8 },
9 }

A B

C D

1 \begin{circuitikz}[]
2 \path (-1,-1) rectangle (3,3);% bounding box
3 \node [hemt] at (0,2) {A};
4 \node [hemt,
5 circuitikz/tripoles/hemt/split gate=true
6] at (2,2) {B};
7 \node [GaN hemt] at (0,0) {C};
8 \node [GaN hemt,
9 circuitikz/tripoles/hemt/split gate=false

10] at (2,0) {D};
11 \end{circuitikz}

4.15.5.6 Schottky transistors. The Schottky transistors are generated by adding the schottky
base key (there is also a no schottky base key that can be used if you use the other one as a de-
fault). You can change the size of the Schottky “hook” changing the parameter tripoles/schottky
base size with \ctikzset{} (default 0.05; the unit is the standard resistor length, scaled if
needed.)

53After a suggestion from user @epsilon-phi on GitHub.

109

https://github.com/circuitikz/circuitikz/issues/691

1 \begin{circuitikz}
2 \draw (0,4) node[npn]{}
3 ++(2,0) node[npn, schottky base]{};
4 \draw (1,2) node[bjtnpn, collectors=2, emitters=3,
5 schottky base, rotate=90]{};
6 \tikzset{schottky base}
7 \ctikzset{tripoles/schottky base size=0.1}
8 \draw (0,0) node[pnp]{}
9 ++(2,0) node[npn, no schottky base]{};

10 \end{circuitikz}

4.15.5.7 Ferroelectric transistors You can add the ferroelectric modifier54 to the *mos and
*fet transistor types. Similarly to the Schottky bipolar transistors, you activate it by adding the
ferroel gate key (there is also a no ferroel base key that can be used if you use the other
one as a default).
The mark will follow the transistors class thickness, but you can adjust it independently using
the class parameter modifier thickness as in passive components — this value is relative to the
class’ thickness.

1 \begin{circuitikz}
2 \draw (0,2) node[nmos]{}
3 ++(2,0) node[nmos, ferroel gate]{};
4 \ctikzset{ferroel gate} % by default from now on
5 \ctikzset{transistors/.cd, % class properties
6 thickness=1, modifier thickness=3}
7 \draw (0,0) node[pfet]{}
8 ++(2,0) node[pfet, no ferroel gate]{};
9 \end{circuitikz}

4.15.5.8 IGBT outer base. Normally, in bipolar IGBTs the outer base is the same size
(height) of the inner one, and of the same thickness (which will depend on the class thickness
value). You can change this by setting (via \ctikzset) the keys tripoles/igbt/outer base
height (default 0.4, the same as base height), and tripoles/igbt/outer base thickness
(default 1.0), which will be relative to the class thickness.

54suggested by Mayeul Cantan

110

https://github.com/circuitikz/circuitikz/issues/515

1 \begin{circuitikz}
2 \draw (0,0)
3 -- ++(1,0) node[nigbt, anchor=B](B){} (B.nobase)
4 -- ++(1,0) node[pigbt, anchor=B](B){} (B.nobase)
5 -- ++(1,0) node[Lnigbt, anchor=B](B){} (B.nobase)
6 -- ++(1,0) node[Lpigbt, anchor=B](B){} (B.nobase)
7 ;
8 \ctikzset{tripoles/igbt/outer base height=0.3}
9 \ctikzset{tripoles/igbt/outer base thickness=1.5}

10 \draw (6,0)
11 -- ++(1,0) node[nigbt, anchor=B](B){} (B.nobase)
12 -- ++(1,0) node[pigbt, anchor=B](B){} (B.nobase)
13 -- ++(1,0) node[Lnigbt, anchor=B](B){} (B.nobase)
14 -- ++(1,0) node[Lpigbt, anchor=B](B){} (B.nobase)
15 ;
16 \end{circuitikz}

4.15.5.9 UJT transistors. They look better if you use transistors/arrow pos=end, espe-
cially if you use them with tr circle. If you use the key nobase with UJTs, the horizontal part
of the controlling terminal is not drawn; notice that this will move the E or emitter anchor, but
not the generic ones like G.

1 \begin{circuitikz}[scale=0.8]
2 \draw (0,5) node[nujt]{} ++(2,0) node[pujt]{}
3 ++(2,0) node[nujt, tr circle]{} ++(2,0)
4 node[pujt, tr circle]{};
5 \ctikzset{transistors/arrow pos=end}
6 \draw (0,2.5) node[nujt](A){} ++(2,0) node[pujt]{}
7 ++(2,0) node[nujt, tr circle]{} ++(2,0)
8 node[pujt, tr circle](C){};
9 \draw (0,0) node[nujt, nobase](B){} ++(2,0)

10 node[pujt, nobase]{} ++(2,0)
11 node[nujt, tr circle, nobase]{} ++(2,0)
12 node[pujt, tr circle, nobase](D){};
13 % "E" anchor follows the nobase option:
14 \draw[red] (A.E) |- (B.E) (C.E) |- (D.E);
15 \end{circuitikz}

4.15.5.10 Base/Gate terminal. The Base/Gate connection of all transistors can be disabled
by the options nogate or nobase, respectively. The Base/Gate anchors are floating, but there is an
additional anchor nogate/nobase , which can be used to point to the unconnected base:

E

C

B

1 \begin{circuitikz}
2 \draw (2,0) node[npn,nobase](npn){};
3 \draw (npn.E) node[below]{E};
4 \draw (npn.C) node[above]{C};
5 \draw (npn.B) node[circ]{} node[left]{B};
6 \draw[dashed,red,-latex] (1,0.5)--(npn.nobase);
7 \end{circuitikz}

111

4.15.5.11 Bulk terminals. You can add a bulk terminal55 to nmos and pmos using the key
bulk in the node (and nobulk if you set the bulk terminal by default); additional anchors bulk
and nobulk are added (in the next example, tripoles/mos style/arrows is enacted, too):

bulk

nobulk

pmos, type: node (node[nmos, bulk]{}). Class:
transistors.

pmos, type: node (node[pmos, bulk]{}). Class:
transistors.

bulk

nobulk

nmos depletion, type: node (node[nmosd, bulk]{}).
Class: transistors.

pmos depletion, type: node (node[pmosd, bulk]{}).
Class: transistors.

nobase

nobulk
nigbt, type: node (node[nigbt]{}). Class: transistors.

nobase

nobulk

pigbt with no base terminal56, type: node (node[pigbt,
nobase]{}). Class: transistors.

4.15.5.12 Solder dots. Solder dots are scaled-down57 version of the normal circ connection
dot (pole). This is to convey the information that the connection is internal to the device, and not
controllable from the outside. By default, they are scaled as the bodydiode connection dots (see
section 4.15.8), but you can change them with the command \ctikzset{transistor solderdot
scale=x}, where x is the scale with respect to the normal circ node (default: 0.7).

1 \begin{tikzpicture}[]
2 \draw (0,0) to[short,*-] ++(.1,0)
3 node[nigfete, solderdot, anchor=G]{};
4 \ctikzset{transistor solderdot scale=1}
5 \draw (2,0) to[short,*-] ++(.1,0)
6 node[nigfete, solderdot, anchor=G]{};
7 \end{tikzpicture}

55Thanks to Burak Kelleci <kellecib@hotmail.com>.
56Since v1.4.4, noticed by user hinata exc on Stack Exchange.
57Since v1.6.3, suggested by user Hartomes on TeX StackExchange; previously, the default scale was 1.0, which

created a clash with body diodes.

112

https://tex.stackexchange.com/q/619334/38080
https://tex.stackexchange.com/q/687225/38080

4.15.5.13 Simplified symbols for depletion-mode MOSFETs . The nmosd, pmosd (sym-
plified) symbols for depletion-mode MOSFET (introduced in 1.2.4) behave exactly like the normal
(without the final d) ones.
By default, the thick bar (indicating the pre-formed channel) is filled with the same color as the
drawing:

1 \begin{circuitikz}[]
2 \draw (0,2) to[R] ++(2,0) node[nmosd, anchor=G]{};
3 \draw[color=red] (0,0) to[R] ++(2,0) node[pmosd, anchor=G]{};
4 \end{circuitikz}

You can change this behavior by setting the key tripoles/nmosd/depletion color (default value
default, which means “use the draw color”) to the color you want; using none will lead to an
unfilled channel (note that in this case the color does not change automatically with the path!):

1 \begin{circuitikz}[]
2 \ctikzset{tripoles/nmosd/depletion color=gray}
3 \draw (0,2) to[R] ++(2,0) node[nmosd, anchor=G]{};
4 \ctikzset{tripoles/pmosd/depletion color=none}
5 \draw[color=red] (0,0) to[R] ++(2,0)
6 node[pmosd, anchor=G]{};
7 \ctikzset{tripoles/pmosd/depletion color=
8 {cyan!50!white}}
9 \draw[color=blue] (0,-2) to[R] ++(2,0)

10 node[pmosd, anchor=G, bulk]{};
11 \end{circuitikz}

Obviously you have the equivalent tripoles/pmosd/depletion color for type-P transistors.
They also have path-style syntax, as the other transistors.

1 \begin{circuitikz}[]
2 \draw (0,0) to[Tnmosd] ++(2,0)
3 to[Tpmosd, invert] ++(0,-2)
4 ;
5 \end{circuitikz}

4.15.5.14 Gate/Base gap coloring. You can color the space representing the gate capacitor
or the insulated base by using the key tr gap fill (default none, which means nothing is drawn
there). This fill is done after any circle fill but before any additional modifier (see the example
below). You can use it locally or set it globally (normal scoping works, as ever).

113

1 \begin{tikzpicture}
2 \node[nigfete, tr gap fill=green] at(0,0){};
3 \node[nigfete, tr gap fill=red, tr circle,
4 fill=cyan!30] at(1.5,0){};
5 \node[nmos, tr gap fill=cyan, ferroel gate](A)
6 at(3,0){};
7 \end{tikzpicture}

4.15.6 Multiple terminal transistors customization

You can create completely “bare” transistors (without the connection leads to the B, C y E ter-
minals), by changing the parameter tripoles/bjt/pins width (default 0.3; it is expressed
as a fraction of the basic (scaled) length) or using the style bjt pins width; and you can
change the distance between multiple collectors/emitters setting with \ctikzset{} the param-
eter tripoles/bjt/multi height (default 0.5) or the style bjt multi height.

QB

C

E

C1
C2

E1
E2nobase

cbase bjt npn with parameters, type: node (node[bjtnpn,
collectors=2, emitters=2, bjt pins width=0, bjt
multi height=0.8]{Q}). Class: transistors.

4.15.7 Transistor circle customization

4.15.7.1 Position and size. You can see in the following diagram where the circle is positioned
— when there is no bodydiode, it will pass through the anchors for the body diode and near the
base connection. The dimension of the circle is bigger when the bodydiode is in, to encompass it.
The anchors are present even if there is no circle, so you can use them to draw different kinds of
circles (say, encompassing two transistors) in a coherent way.

circle base circle C

circle E

circle center
npn with a circle, type: node (node[npn, tr circle]{}).
Class: transistors.

circle base circle C

circle E

circle center
npn with a circle, type: node (node[npn, tr circle,
bodydiode]{}). Class: transistors.

The position of the circle on collector and emitter by default is the one shown above; the position
along the base can be adjusted in most transistors using the \ctikzset parameter transistor
circle/default base in (by default 0.9); njfet and pjfet use transistor circle/njfet
base in (default 1.05; the same for pjfet) and, finally, isfet uses transistor circle/isfet
base in (default 0.65). You can change the resulting size of the circle by setting to something
different to 1.0 the parameter transistor circle/scale circle radius — that will move the
anchors too; for example:

114

1 \begin{circuitikz}[scale=1.5, transform shape]
2 \draw (0,0) node[npn, tr circle](Q1){};
3 \node [circ] at (Q1.circle C){};
4 \ctikzset{transistor circle/scale circle radius=1.2}
5 \draw[color=red] (0,0) node[npn, tr circle](Q2){};
6 \node [circ, color=red] at (Q2.circle C){};
7 \end{circuitikz}

4.15.7.2 Line and color. Normally the circle follows the style of the component — the line
thickness is fixed by the class element transistors/thickness and the color is the same as the
component color. You can change, if you need, all of these things using the parameters of the
following table (the parameters are under the \ctikzset category root transistor circle/.

parameter default description

relative thickness 1.0 multiply the class thickness
color default stroke color: default is the same as the component
dash default dash pattern: none means solid line, default means keep the global pattern58

partial borders none draw only part of the circle border: none means draw all
partial border dash {{2pt}{2pt}} dash pattern used in partial borders

1 \begin{circuitikz}[]
2 \draw (0,2) node[npn, tr circle](Q1){};
3 \ctikzset{transistor circle/relative thickness=2}
4 \draw (2,2) node[npn, tr circle](Q1){};
5 \ctikzset{transistor circle/color=red}
6 \draw (0,0) node[npn, tr circle](Q1){};
7 \ctikzset{transistor circle/color=default}
8 \ctikzset{transistor circle/dash={{4pt}{4pt}{1pt}{4pt}}}
9 \draw[color=blue] (2,0) node[npn, tr circle](Q1){};

10 \end{circuitikz}

Finally, using the class style you can do quite interesting things.

1 \begin{circuitikz}[]
2 \ctikzset{transistors/thickness=4, transistors/fill=cyan!30,
3 transistor circle/relative thickness=0.25,}
4 \draw (0,0) node[npn, tr circle](Q1){};
5 \ctikzset{transistor circle/dash={{2pt}{2pt}}}
6 \draw (1.5,0) node[npn, tr circle, xscale=-1](Q2){};
7 \end{circuitikz}

4.15.7.3 Partially drawn circle borders In some circuits, transistors are drawn with partial
or dashed border (to convey the meaning of several active components encased in the same physical
package, or to signify thermal contact). To achieve this effect, you can use the transistor
circle/partial border59 key (default none). This key can be set to none, or must be a sequence
of exactly 4 numbers, that can have value 0, 1, or 2. Each number defines the style of a part of
the border to be not drawn, solid or dashed respectively.
The part of the border are numbered from 1 to 4 as shown below:

58Follows the syntax of the pattern sequence \pgfsetdash — see TikZ manual for details; phase is always zero.
Basically you pass pairs of dash-length – blank-length dimensions, see the examples.

59Suggested by Jether Fernandes Reis for tubes, implemented by Romano in v1.5.2.

115

https://github.com/circuitikz/circuitikz/issues/602

1

23

4

The dashed line pattern can be changed by setting the key transistor circle/partial border
dash (default {{2pt}{2pt}}). Be careful with the extra set of braces here.

1 \begin{circuitikz}[]
2 \ctikzset{transistors/thickness=4, transistors/fill=cyan!30,
3 transistor circle/relative thickness=0.25,
4 transistor circle/partial borders=2211}
5 \draw (0,0) node[npn, tr circle](Q1){};
6 \ctikzset{transistor circle/dash={{2pt}{2pt}}}
7 \draw (1.5,0) node[npn, tr circle, xscale=-1](Q2){};
8 \end{circuitikz}

1 \begin{circuitikz}[]
2 \ctikzset{transistors/thickness=4, transistors/fill=cyan!30,
3 transistor circle/relative thickness=0.25,
4 transistor circle/partial borders=0011}
5 \draw (0,0) node[npn, tr circle](Q1){};
6 \ctikzset{transistor circle/dash={{2pt}{2pt}}}
7 \draw (1.5,0) node[npn, tr circle, xscale=-1](Q2){};
8 \draw[dashed] (Q1.circle top) -- (Q2.circle top);
9 \draw[dashed] (Q1.circle bottom) -- (Q2.circle bottom);

10 \end{circuitikz}

4.15.8 Transistor bodydiode customization

You can change the style of the bodydiode60 in a similar way to the one used for circles (albeit
with less options), by setting keys with the \ctikzset command (or, like in the following example,
directly in the node instantiation) under the transistor bodydiode hierarchy. The available keys
are:

parameter default description

relative thickness 1.0 multiply the class thickness
color default stroke color: default is the same as the compo-

nent
dash default dash pattern: default means not to change the

setting for the component; none means unbroken
line; every other input is a dash pattern61

scale 0.3 scale of the diode, with respect to the basic (not
scaled) diode dimension.

dot scale 0.7 scale of bodydiode connections dots, with respect
to the circ pole. Use zero to remove them (useful
if you have circles around the transistor).

60Suggested by user Alex Ghilas on TeX.SX, implemented in v1.5.4; scale suggested by user @sputeanus on
GitHub and added in version 1.6.2.

61Follows the syntax of the pattern sequence \pgfsetdash — see TikZ manual for details; phase is always zero.
Basically you pass pairs of dash-length – blank-length dimensions, see the examples.

116

https://tex.stackexchange.com/questions/653348/drawing-mosfet-bodydiode-dashed
https://github.com/circuitikz/circuitikz/issues/703
https://github.com/circuitikz/circuitikz/issues/703

The following is a quite extensive example. Obviously, a good strategy in this case is to define
styles for the options, or, better, set the option in your style file or in the preamble (for coherency).

Q1 Q2 Q3

Q4 Q5 Q6

1 \begin{tikzpicture}[red solid thin bodydiode/.style={bodydiode,
2 circuitikz/transistor bodydiode/dash=none,
3 circuitikz/transistor bodydiode/color=red,
4 circuitikz/transistor bodydiode/relative thickness=0.3}]
5 \draw (0,0) node (mosfet1) [nigfete,anchor=D,bodydiode] {Q_1};
6 \draw[densely dashed] (3,0) node (mosfet1) [nigfete,anchor=D,bodydiode] {Q_2};
7 \draw (6,0) node (mosfet1) [nigfete,anchor=D,bodydiode, tr circle,
8 circuitikz/transistor bodydiode/color=gray,
9 circuitikz/transistor bodydiode/scale=0.2,

10 circuitikz/transistor bodydiode/dot scale=0] {Q_3};
11 \draw (0,-2) node (mosfet1) [nigfete,anchor=D,bodydiode,
12 circuitikz/transistor bodydiode/dash={{2pt}{1pt}}] {Q_4};
13 \draw[densely dashed] (3,-2) node (mosfet1) [nigfete,anchor=D,
14 red solid thin bodydiode] {Q_5};
15 \ctikzset{transistor bodydiode/relative thickness=.5,
16 transistor bodydiode/scale=0.6}% from now on, in scope
17 \draw[densely dotted] (6,-2) node (mosfet1) [nigfete,anchor=D,bodydiode,
18 circuitikz/transistor bodydiode/dash=none,
19 circuitikz/transistor bodydiode/dot scale=1] {Q_6};
20 \path (7,0); %% adjust bounding box (node text is outside it!)
21 \end{tikzpicture}

4.15.9 Transistors anchors

For nmos, pmos, nfet, nigfete, nigfetd, pfet, pigfete, and pigfetd transistors one has
base, gate, source and drain anchors (which can be abbreviated with B, G, S and D):

G

D

S

1 \begin{circuitikz} \draw
2 (0,0) node[nmos] (mos) {}
3 (mos.gate) node[anchor=east] {G}
4 (mos.drain) node[anchor=south] {D}
5 (mos.source) node[anchor=north] {S}
6 ;\end{circuitikz}

G

D

S

Bulk

1 \begin{circuitikz} \draw
2 (0,0) node[pigfete] (pigfete) {}
3 (pigfete.G) node[anchor=east] {G}
4 (pigfete.D) node[anchor=north] {D}
5 (pigfete.S) node[anchor=south] {S}
6 (pigfete.bulk) node[anchor=west] {Bulk}
7 ;\end{circuitikz}

117

Similarly njfet and pjfet have gate, source and drain anchors (which can be abbreviated with
G, S and D):

G

D

S 1 \begin{circuitikz} \draw
2 (0,0) node[pjfet] (pjfet) {}
3 (pjfet.G) node[anchor=east] {G}
4 (pjfet.D) node[anchor=north] {D}
5 (pjfet.S) node[anchor=south] {S}
6 ;\end{circuitikz}

For npn, pnp, nigbt and pigbt transistors, the anchors are base, emitter and collector anchors
(which can be abbreviated with B, E and C):

B

C

E

1 \begin{circuitikz} \draw
2 (0,0) node[npn] (npn) {}
3 (npn.base) node[anchor=east] {B}
4 (npn.collector) node[anchor=south] {C}
5 (npn.emitter) node[anchor=north] {E}
6 ;\end{circuitikz}

B

C

E 1 \begin{circuitikz} \draw
2 (0,0) node[pigbt] (pigbt) {}
3 (pigbt.B) node[anchor=east] {B}
4 (pigbt.C) node[anchor=north] {C}
5 (pigbt.E) node[anchor=south] {E}
6 ;\end{circuitikz}

Notice that the geographical anchors of transistors are not affected by either the bodydiode and
the circle options; the label text is also outside of them. This is to permit aligning the components
independently from those features. On the other hand, this can sometimes create problems because
that element is outside the bounding box automatically calculated by TikZ.
The exception is the right anchor which, when a circle is present, indicates the edge of the circle
itself (since v1.3.2)

text

north north east

east

south eastsouthsouth west

west

north west

left right

center
text

north north east

east

south eastsouthsouth west

west

north west

left right

center
text

north north east

east

south eastsouthsouth west

west

north west

left right

center

All transistors, except the multi-terminal bjtnpn and bjtpnp, (since 0.9.6) have internal nodes
on the terminal corners, called inner up and inner down; you do not normally need them, but
they are here for special applications:

118

inner up

inner down

inner up

inner down

1 \begin{circuitikz}
2 \node [npn](A) at(0,2) {};
3 \node [pmos](B) at(0,0) {};
4 \foreach \e in {A, B}
5 \foreach \a in {inner up, inner down} {
6 \node[red, circle, inner sep=1pt, draw]
7 at (\e.\a) {};
8 \node [right, font=\tiny, blue]
9 at (\e.\a) {\a};

10 }
11 \end{circuitikz}

Additionally, you can access the position for the flyback diodes and possibly snubbers as shown
in 4.15.5.4.

body C in

body E in

body C out

body E out

body C in

body E in

body C out

body E out

body C in

body E in

body C out

body E out

Transistor circles also have several anchors on them:

circle center

circle top

circle left circle right

circle bottom

circle C

circle E
circle center

circle top

circle left circle right

circle bottom
circle C

circle E

The multi-terminal transistors have all the geographical anchors; note though that the center
anchor is not the geometrical center of the component, but the logical one (at the same height
as the base). The additional anchors vcenter (vertical geometric center of the collector–emitter
zone) and gcenter (graphical center) are provided, as shown in the following picture. They have
no bodydiode anchors nor inner up/down ones.

text

north north east

east

south eastsouthsouth west

west

north west

center

north

east

south

west
center

vcenter

gcenter
cbase

A complete example of multiple terminal transistor application is the following PNP double current
mirror circuit.

119

Q1 Q2

R0

I0

I0 I0

1 \begin{circuitikz}
2 \ctikzset{transistors/arrow pos=end}
3 \draw (0,0) node[bjtpnp, xscale=-1](Q1){%
4 \scalebox{-1}[1]{Q1}};
5 \draw (Q1.B) node[bjtpnp, anchor=B, collectors=2]
6 (Q2){Q2} (Q1.B) node[circ]{};
7 \draw (Q1.E) node[circ]{} node[vcc]{} (Q2.E)
8 node[vcc]{} (Q1.E) -| (Q1.B);
9 \draw (Q1.C) to[R, l_=R_0, f=I_0] ++(0,-3.5)

10 node[ground](GND){};
11 \draw (Q2.C) -- ++(0,-0.5) coordinate(a);
12 \draw (Q2.C1) -- ++(1,0) coordinate(b) -- (b|-a);
13 \draw (a) ++(0,-0.1) node[flowarrow, rotate=-90,
14 anchor=west]{\rotatebox{90}{I_0}};
15 \draw (b|-a) ++(0,-0.1) node[flowarrow, rotate=-90,
16 anchor=west]{\rotatebox{90}{I_0}};
17 \path (b) ++(0.5,0); % bounding box adjust
18 \end{circuitikz}

Here is one composite example (please notice that the xscale=-1 style would also reflect the label
of the transistors, so here a new node is added and its text is used, instead of that of pnp1):

Q2Q1

Q3 Q4

1 \begin{circuitikz} []\draw
2 (0,0) node[pnp] (pnp2) {Q2}
3 (pnp2.B) node[pnp, xscale=-1, anchor=B] (pnp1) {}
4 (pnp1) node[left, inner sep=0pt] {Q1}
5 (pnp1.C) node[npn, anchor=C] (npn1) {Q3}
6 (pnp2.C) node[npn, xscale=-1, anchor=C] (npn2)
7 {\scalebox{-1}[1]{Q4}}
8 (pnp1.E) -- (pnp2.E) (npn1.E) -- (npn2.E)
9 (pnp1.B) node[circ] {} |- (pnp2.C) node[circ] {}

10 ;\end{circuitikz}

Notice that the text labels of transistors are outside the bounding box of the component (that is,
the set of geographical anchors). If it is a problem, use a separate text node to set the transistor’s
label. Of course, transistors like other components can be reflected vertically:

Bulk
G

D

S

1 \begin{circuitikz} \draw
2 (0,0) node[pigfete, yscale=-1] (pigfete) {}
3 (pigfete.bulk) node[anchor=west] {Bulk}
4 (pigfete.G) node[anchor=east] {G}
5 (pigfete.D) node[anchor=south] {D}
6 (pigfete.S) node[anchor=north] {S}
7 ;\end{circuitikz}

Finally, double-gated components (MOSes, FETs, IGBTs) have an extra anchor centergap posi-
tioned in the middle of the “gate capacitor” or base.

centergap

centergap

centergap

1 \begin{circuitikz}
2 \node [nmos](A) at (0,3) {};
3 \node [nfet](B) at (0,1.5) {};
4 \node [pigbt](C) at (0,0) {};
5 \foreach \myn in {A, B, C}
6 \draw[color=red] (\myn.centergap)
7 node[ocirc]{} -- ++(1,0)
8 node[right, font=\tiny]{centergap};
9 \end{circuitikz}

120

For UJT transistors anchors, see section 4.15.5.9.

4.15.10 Transistor paths

For syntactical convenience standard transistors (not multi-terminal ones) can be placed using the
normal path notation used for bipoles. The transistor type can be specified by simply adding a
“T” (for transistor) in front of the node name of the transistor. It will be placed with the base/gate
orthogonal to the direction of the path:

1

2 3 1 \begin{circuitikz} \draw
2 (0,0) node[njfet] {1}
3 (-1,2) to[Tnjfet=2] (1,2)
4 to[Tnjfet=3, mirror] (3,2)
5 ;\end{circuitikz}

Access to the gate and/or base nodes can be gained by naming the transistors with the n or name
path style:

p1

n1

n2

p2
1 \begin{circuitikz} \draw[yscale=1.1, xscale=.8]
2 (2,4.5) -- (0,4.5) to[Tpmos=p1, n=p1] (0,3)
3 to[Tnmos=n1, n=n1] (0,1.5)
4 to[Tnmos=n2, n=n2] (0,0) node[ground] {}
5 (2,4.5) to[Tpmos=p2,n=p2] (2,3) to[short, -*] (0,3)
6 (p1.G) -- (n1.G) to[short, *-o] ($(n1.G)+(3,0)$)
7 (n2.G) ++(2,0) node[circ] {} -| (p2.G)
8 (n2.G) to[short, -o] ($(n2.G)+(3,0)$)
9 (0,3) to[short, -o] (-1,3)

10 ;\end{circuitikz}

Transistors used in path are fully path-style components, so to flip and rotate them you should
use mirror and invert as shown in section 3.1.4.2.
Transistor paths have the possibility to use the poles syntax (see section 6.1) but they have no
voltage, current, flow, annotation options. Also, the positioning of the labels is very simple and is
not foolproof for all rotations; if you need to control them more please name the node and position
them by hand, or use the more natural node style for transistors.
The name property is available also for bipoles; this is useful mostly for triac, potentiometer and
thyristor (see 4.4.1).

121

4.16 Electronic Tubes

Electronic tubes, also known as vacuum tubes, control current flow between electrodes. They
come in many different flavours. Contributed by J. op den Brouw (J.E.J.opdenBrouw@hhs.nl).

anode

cathode

Tube Diode, type: node, fillable (node[diodetube]{}). Class:
tubes.

anode

cathode

control Triode, type: node, fillable (node[triode]{}). Class: tubes.

anode

cathode

control

screen
Tetrode, type: node, fillable (node[tetrode]{}). Class: tubes.

anode

cathode

control
screen

suppressor
Pentode, type: node, fillable (node[pentode]{}). Class:
tubes.

Some pentodes have the suppressor grid internally connected to the control grid, which saves a pin on the
tube’s housing.

anode

cathode

control
screen

Pentode with suppressor grid connected to cathode, type:
node, fillable (node[pentode suppressor to cathode]{}).
Class: tubes.

122

Note that the diodetube is used as component name to avoid clashes with the semiconductor diode.
Normally, the filament is not drawn. If you want a filament, put the filament option in the node
description:

anode

filament 1 filament 2

Tube Diode, type: node, fillable
(node[diodetube,filament]{}). Class: tubes.

Sometimes, you don’t want the cathode to be drawn (but you do want the filament). Use the nocathode
option in the node description:

anode

Tube Diode, type: node, fillable
(node[diodetube,filament,nocathode]{}). Class: tubes.

If you want a full cathode to be drawn, use the fullcathode option in the node description. You can then
use the anchors cathode 1 and cathode 2.

anode

cathode 1 cathode 2

Tube Diode, type: node, fillable
(node[diodetube,fullcathode]{}). Class: tubes.

4.16.1 Tubes customization

The tubes can be scaled using the key tubes/scale, default 1.0. In addition, they are fully configurable,
and the attributes are described below:

123

Key Default value Description
tubes/scale 1 scale factor
tubes/width 1 relative width
tubes/height 1.4 relative height
tubes/tube radius 0.40 radius of tube circle
tubes/anode distance 0.40 distance from center
tubes/anode width 0.40 width of an anode/plate
tubes/grid protrusion 0.25 distance from center
tubes/grid dashes 5 number of grid dashes
tubes/grid separation 0.2 separation between grids
tubes/grid shift 0.0 y shift of grids from center
tubes/cathode distance 0.40 distance from grid
tubes/cathode width 0.40 width of a cathode
tubes/cathode corners 0.06 corners of the cathode wire
tubes/cathode right extend 0.075 extension at the right side
tubes/filament distance 0.1 distance from cathode
tubes/filament angle 15 angle from the centerpoint

Conventionally, the model of the tube is indicated at the east anchor:

12AX7

1 \ctikzset{tubes/width=1.4}
2 \ctikzset{tubes/height=1}
3

4 \begin{circuitikz}
5 \draw (0,0) node[triode] (Tri) {};
6 \draw (Tri.east) node[right] {12AX7};
7 \end{circuitikz}

Example triode amplifier:

1 \begin{circuitikz}
2 \draw (0,0) node (start) {}
3 to[sV=V_i] ++(0,2+\ctikzvalof{tubes/height})
4 to[C=C_i] ++(2,0) coordinate(Rg)
5 to[R=R_g] (Rg |- start)
6 (Rg) to[short,*-] ++(1,0)
7 node[triode,anchor=control] (Tri) {} ++(2,0)
8 (Tri.cathode) to[R=R_c,-*] (Tri.cathode |- start)
9 (Tri.anode) to [R=R_a] ++(0,2)

10 to [short] ++(3.5,0) node(Vatop) {}
11 to [V<=V_a] (Vatop |- start)
12 to [short] (start)
13 (Tri.anode) ++(0,0.2) to[C=C_o,*-o] ++(2,0)
14 (Tri.cathode) ++(0,-0.2) to[short,*-] ++(1.5,0) node(Cctop) {}
15 to[C=C_c,-*] (start -| Cctop)
16 ;
17 \draw[red,thin,dashed] (Tri.north west) rectangle (Tri.south east);
18 \draw (Tri.east) node[right] {12AX7};
19 \end{circuitikz}

124

Vi

Ci

Rg

Rc

Ra

Va

Co

Cc

12AX7

4.16.2 Tubes anchors

Apart from the geographic anchors, which take into account the leads of the components, you have several
anchors on the border:

text

north north east

east

south eastsouthsouth west

west

north west

left right

center
text

north north east

east

south eastsouthsouth west

west

north west

left right

center
text

north north east

east

south eastsouthsouth west

west

north west

left right

center

tube top

tube left tube right

tube bottom

tube top righttube top left

tube bottom right
tube bottom left

tube top center

tube bottom center

tube top

tube left
tube right

tube bottom

tube top right
tube top left

tube bottom righttube bottom left

tube right center

tube left center

4.16.3 Partially drawn tube borders

In some circuits, tubes are drawn with partial or dashed border (to convey the meaning of several active
components encased in the same physical tube). To achieve this effect, you can use the tubes/partial
border62 key (default none). This key can be set to none, or must be a sequence of exactly 6 numbers,
which can have value 0, 1, or 2. Each number defines the style of a part of the border to be not drawn,
solid or dashed respectively.
The part of the border are numbered from 1 to 6 as shown below:

1

2

34

5

6
1

2
3

4
5

6

62Suggested by Jether Fernandes Reis, implemented by Romano in v1.5.2.

125

https://github.com/circuitikz/circuitikz/issues/602

(notice that the straight parts, if they exist, are numbered 2 and 5 in both tubes, vertical or horizontal).
The dashed line pattern can be changed by setting the key tubes/partial border dash (default {{2pt}{2pt}}).63

Be careful with the extra set of braces here.

1 \begin{circuitikz}[circuitikz/tubes/fill=cyan!20,
2 circuitikz/tubes/partial borders=012012]
3 \draw (0,0) node[pentode]{};
4 \draw (2,0) node[pentode,
5 circuitikz/tubes/width=1.4,
6 circuitikz/tubes/height=1]{};
7 \draw (1,-2) node[triode,
8 circuitikz/tubes/height=1,
9 circuitikz/tubes/partial border dash=%

10 {{3pt}{1pt}{1pt}{1pt}}]{};
11 \end{circuitikz}

4.16.4 Other tubes-like components

The magnetron and dynode shapes will also scale with tubes/scale.

anode

cathode1 cathode2

left right

top

Magnetron, type: node, fillable (node[magnetron]{}). Class:
tubes.

D

top

bottom
left right

centerarc

top righttop left

Dynode64, type: node (node[dynode]{D}). Class: tubes.

HV
1 2

RFout

1 \begin{circuitikz}
2 \draw (0,-2)node[rground](gnd){} to[voltage

source,v<={HV}]++(0,3)--++(1,0)to[V,n=DC
]++(2,0);

3 \draw (2,-1) node[magnetron,scale=1](magn){};
4 \draw (DC.left)++(-0.2,0)to [short,*-] ++(0,-1)

to [short] (magn.cathode1);
5 \draw (DC.right)++(0.2,0)to [short,*-] ++(0,-1)

to [short] (magn.cathode2);
6 \draw (magn.anode) to [short] (magn.anode|-gnd)

node[rground]{};
7 \draw (magn.cathode1)node[above]{1};
8 \draw (magn.cathode2)node[above]{2};
9 \draw[->](magn.east) --++(1,0)node[right]{$RF_{

out}$};
10 \end{circuitikz}

63Follows the syntax of the pattern sequence \pgfsetdash — see TikZ manual for details; phase is always zero.
Basically you pass pairs of dash-length – blank-length dimensions, see the examples.

64Suggested by the user ferdymercury on GitHub.

126

https://github.com/circuitikz/circuitikz/issues/469

4.16.4.1 Dynode customization. The dynode element can be heavily customized. The parame-
ters are the following (all of them under the \ctikzset family monopoles/dynode):

parameter default description

width 0.4 Total width (relative to the base length) measured at the arc width.
height 0.8 Total height (same units as width).
arc angle 30 Angle (from the horizontal, going down) where the arc starts. A value of 90

don’t plot any arc, 0 plots a semicircle. To avoid artifacts, use a value between
-60 and 90; the arc horizontal size is always equal to the width.

arc pos 0.5 Vertical position (relative to the height) of the arc center.
top width 1.0 Relative width of the top bar; a value of 1 means full width, 0 means no bar.

1 \begin{circuitikz}[american] \ctikzset{tubes/thickness=4}
2 \draw (0,0) to[R] (2,0) node[dynode]{} to[R,-*] (4,0);
3 \ctikzset{monopoles/dynode/.cd,
4 arc angle=0, arc pos=0.7, top width=0.5}
5 \draw (4,0) node[dynode]{};
6 \end{circuitikz}

You can use styles and the parameters to create different types of electrodes:

1 \begin{circuitikz}[american] \ctikzset{tubes/thickness=4}
2 \tikzset{anode/.style={dynode,
3 circuitikz/monopoles/dynode/arc angle=90},
4 photocatode/.style={dynode,
5 circuitikz/monopoles/dynode/arc pos=1,
6 circuitikz/monopoles/dynode/top width=0},
7 }
8 \draw (0,0) node[dynode]{} (1,0) node[anode]{}
9 (2,0) node[photocatode]{};

10 \end{circuitikz}

4.17 RF components

For the RF components, similarly to the grounds and supply rails, the center anchor is put on the
connecting point of the symbol, so that you can use them directly in a path specification.
Notes that in the transmission and receiving antennas, the “waves” are outside the geographical anchors.

A

top

bottom
left

right

center

Bare Antenna, type: node, fillable (node[bareantenna]{A}).
Class: RF.

A

left right

center

DIN antenna65, type: node, fillable (node[dinantenna]{A}).
Class: RF.

65Since 1.5.0, suggested by GitHUb user myzinsky

127

https://github.com/circuitikz/circuitikz/issues/621

Tx

top

center

waves
Bare TX Antenna, type: node, fillable
(node[bareTXantenna]{Tx}). Class: RF.

Rx

top

center

waves
Bare RX Antenna, type: node, fillable
(node[bareRXantenna]{Rx}). Class: RF.

north north east

east

south eastsouthsouth west

west

north west

left

top

right

bottom

Waves, type: node (node[waves]{}). Class: RF.

left right

center

mstline: Microstrip transmission line66, type: path-style,
fillable, nodename: mstlineshape. Class: RF.

textleft right

center

Microstrip linear stub, type: node, fillable
(node[mslstub]{text}). Class: RF.

T
left right

center

Microstrip port, type: node, fillable (node[msport]{T}). Class:
RF.

left right

center

Microstrip radial stub, type: node, fillable (node[msrstub]{}).
Class: RF.

center

Legacy antenna (with tails), type: node (node[antenna]{}).
Class: RF.

Legacy receiving antenna (with tails), type: node
(node[rxantenna]{}). Class: RF.

Legacy transmitting antenna (with tails), type: node
(node[txantenna]{}). Class: RF.

66These four components were suggested by @tcpluess on GitHub

128

Transmission line stub, type: node, fillable
(node[tlinestub]{}). Class: RF.

left righttop left
top right

bottom left bottom right
center rightcenter left

TL: Transmission line, type: path-style, fillable,
nodename: tlineshape. Aliases: transmission line, tline.
Class: RF.

left right TL, bipoles/tline/bare=true: Transmission line without
wires (notice that if you fill it, the fill will overwrite the ex-
iting wire), type: path-style, nodename: tlineshape.
Aliases: transmission line, tline. Class: RF.

match, type: node (node[match]{}). Class: RF.

4.17.1 RF elements customization

The RF elements can be scaled using the key RF/scale, default 1.0.

4.17.2 Microstrip customization

The microstrip linear components’ (mstline, mslstub, msport) heights can be changed by setting the
parameter bipoles/mstline/height (for the three of them, default 0.3). The widths are specified in
bipoles/mstline/width for the first two and by monopoles/msport/width for the port (defaults: 1.2,
0.5).
For the length parameter of the transmission line there is a shortcut in the form of the direct parameter
mstlinelen.

longer stubsh
or
t

1 \begin{circuitikz}
2 \draw (0,0) node[msport, right, xscale=-1]{}
3 to[mstline, -o] ++(3,0) coordinate(there)
4 to[mstline, mstlinelen=2, l=longer, o-*] ++(4,0)
5 coordinate(here) -- ++(0.5,0) node[mslstub, fill=yellow]{stub}
6 (here) -- ++(0,0.5) node[mslstub, rotate=90, mstlinelen=0.5]{short};
7 \draw (there) to[short, o-] ++(0, 0.5) node[msrstub]{};
8 \draw (here) -- ++(0, -0.5) node[msrstub, yscale=-1]{};
9 \end{circuitikz}

The legacy tline can be used as in the following example. You can change the length with the key
bipoles/tline/width (default 0.6). The “bare” version, which differs only for the small line on the
visible ellipse, and activated with the boolean key …/bare, is useful as a substitute for tlinestub (with
more flexibility).

129

1 \begin{tikzpicture}[]
2 \tikzset{bare tl/.style={tlineshape,
3 circuitikz/bipoles/tline/bare=true}}
4 \draw (0,0) node[bare tl](A){} (A.right)
5 to[TL, bipoles/tline/width=1] ++(3,0)
6 node[bare tl, anchor=left]{};
7 \end{tikzpicture}

4.18 Electro-Mechanical Devices

The internal part of the motor and generator are, by default, filled with white (to avoid compatibility
problems with older versions of the package).

M

bottom

left right

top

45
Motor, type: node, fillable (node[elmech]{M}). Class:
electromechanicals.

G
block down right

block north east
Generator, type: node, fillable (node[elmech]{G}). Class:
electromechanicals.

4.18.1 Electro-Mechanical Devices anchors

Apart from the standard geographical anchors, elmech has the border anchors (situated on the inner circle)
and the following anchors on the “block”:

A

block north east

block south eastblock south west

block north west
150

180
210

60
-60 B

block up right

block down rightblock down left

block up left
north

south

eastwest

M
ω

1 \begin{circuitikz}
2 \draw (2,0) node[elmech](motor){M};
3 \draw (motor.north) |-(0,2) to [R] ++(0,-2) to[dcvsource

]++(0,-2) -| (motor.bottom);
4 \draw[thick,->>](motor.right)--++(1,0)node[midway,above]{$\

omega$};
5 \end{circuitikz}

130

ω

1 \begin{circuitikz}
2 \draw (2,0) node[elmech](motor){};
3 \draw (motor.north) |-(0,2) to [R] ++(0,-2) to[dcvsource

]++(0,-2) -| (motor.bottom);
4 \draw[thick,->>](motor.center)--++(1.5,0)node[midway,above

]{ω};
5 \end{circuitikz}

The symbols can also be used along a path, using the transistor-path-syntax(T in front of the shape name,
see section 4.15.10). Don’t forget to use parameter n to name the node and get access to the anchors:

M

M

G
ω

1 \begin{circuitikz}
2 \draw (0,0) to [Telmech=M,n=motor] ++(0,-3) to [Telmech=M]

++(3,0) to [Telmech=G,n=generator] ++(0,3) to [R] (0,0);
3 \draw[thick,->>](motor.left)--(generator.left)node[midway,

above]{ω};
4 \end{circuitikz}

4.19 Double bipoles (transformers)
Transformers automatically use the inductor shape currently selected. These are the three possibilities:

T1A1

A2

B1

B2

north

inner dot A1

inner dot A2

inner dot B1

inner dot B2

Transformer (cute inductor), type: node
(node[transformer]{T_1}). Class: inductors.

outer dot A1

outer dot A2

outer dot B1

outer dot B2

Transformer (american inductor), type: node
(node[transformer]{}). Class: inductors.

Transformer (european inductor), type: node
(node[transformer]{}). Class: inductors.

Gyrator, type: node, fillable (node[gyrator]{}). Class:
inductors.

131

Transformers with core are also available:

Transformer core (cute inductor), type: node
(node[transformer core]{}). Class: inductors.

Transformer core (american inductor), type: node
(node[transformer core]{}). Class: inductors.

Transformer core (european inductor), type: node
(node[transformer core]{}). Class: inductors.

You can also build generic double bipoles67 (although it’s often better to use subcircuits in this case; see
section 3.4).

+
−

Av

north

center

east
N-L.south

N-R.west

Generic double bipole (configurable components), type: node
(node[double bipole](N){A_v}). Class: misc.

Av

north

center

east
N-L.south N-R.west

Generic double bipole (this specific configuration is
shown in section 4.19.4), type: node (node[double
bipole](N){A_v}). Class: misc.

4.19.1 Transformer anchors

All the double bipoles/quadrupoles have the four anchors, two for each port. The first port, to the left, is
port A, having the anchors A1 (up) and A2 (down); same for port B.
They also expose the base anchor, for labeling, and anchors for setting dots or signs to specify polarity.
The set of anchors, to which the standard “geographical” north, north east, etc. is here:

67The idea of generic double bipoles was originated by user erwindenboer on GitHub.

132

https://github.com/circuitikz/circuitikz/issues/641

inner dot A1

inner dot A2

inner dot B1

inner dot B2

outer dot A1

outer dot A2

outer dot B1

outer dot B2

A1

A2

B1

B2

base

Also, the standard “geographical” north, north east, etc. are defined. A couple of examples follow:

A1

A2

B1

B2

K

1 \begin{circuitikz} \draw
2 (0,0) node[transformer] (T) {}
3 (T.A1) node[anchor=east] {A1}
4 (T.A2) node[anchor=east] {A2}
5 (T.B1) node[anchor=west] {B1}
6 (T.B2) node[anchor=west] {B2}
7 (T.base) node{K}
8 (T.inner dot A1) node[circ]{}
9 (T.inner dot B2) node[circ]{}

10 ;\end{circuitikz}

A1

A2

B1

B2

K
1 \begin{circuitikz} \draw
2 (0,0) node[gyrator] (G) {}
3 (G.A1) node[anchor=east] {A1}
4 (G.A2) node[anchor=east] {A2}
5 (G.B1) node[anchor=west] {B1}
6 (G.B2) node[anchor=west] {B2}
7 (G.base) node{K}
8 ;\end{circuitikz}

Moreover, you can access the two internal coils (inductances); if your transformer node is called T, they
are named T-L1 and T-L2. Notice that the two inductors are rotated (by -90 degrees the first, +90 degrees
the second) so you have to be careful with the anchors. Also, the midtap anchor of the inductors can be
on the external or internal side depending on the numbers of coils. Finally, the anchors L1.a and L1.b
are marking the start and end of the coils.

T-L1.midtap

T-L1.south west

T-L1.south east

T-L2.south

T-L2.south west

T-L2.south east

T-L1.a

T-L1.b

T-L2.midtap

T-L2.south west

T-L2.south east

inductors/coils=5
T-L2.a

T-L2.b

T-L2.midtap

T-L2.south west

T-L2.south east

inductors/coils=6

1 \begin{circuitikz}
2 \draw (0,0) node[ground](GND){} to [sV] ++(0,2) -- ++(1,0)
3 node[transformer, circuitikz/inductors/coils=6,
4 anchor=A1](T){};
5 \draw (T.A2) to[short, -*] (T.A2-|GND);
6 \draw (T-L2.midtap) to[short, *-o] (T.B1 |- T-L2.midtap);
7 \node [ocirc] at (T.B1){}; \node [ocirc] at (T.B2){};
8 \end{circuitikz}

4.19.2 Transformers customization

Transformers are in the inductors class (also the gyrator…), so they scale with the key inductors/scale.
You can change the aspect of a quadpole using the corresponding parameters quadpoles/*/width and
quadpoles/*/heigth (substitute the star for transformer, transformer core or gyrator; default value
is 1.5 for all). You have to be careful to not choose value that overlaps the components!

133

K 1 \begin{circuitikz}
2 \ctikzset{quadpoles/transformer/width=1,
3 quadpoles/transformer/height=2}
4 \draw (0,0) node[transformer] (T) {}
5 (T.base) node{K}
6 (T.inner dot A1) node[circ]{}
7 (T.inner dot B2) node[circ]{};
8 \end{circuitikz}

Transformers also inherit the inductors/scale (see 4.3.5) and similar parameters. It’s your responsibility
to set the aforementioned parameters if you change the scale or width of inductors.
Transformers core line distance is specified by the parameter quadpoles/transformer core/core width
(default 0.05) and the thickness of the lines follows the choke one; in other words, you can set it changing
bipoles/cutechoke/cthick.
You can change the style of the core lines68 in a similar way to the one used for transistor’s bodydiodes,
by setting keys with the \ctikzset command under the transformer core hierarchy. The available keys
are:

parameter default description

relative thickness 1.0 multiply the default thickness (which is the same of
the choke component).

color default stroke color: default is the same as the component.
dash default dash pattern: default means not to change the set-

ting for the component; none means unbroken line;
every other input is a dash pattern.69

1 \begin{circuitikz}[]
2 \draw (0,0) node[transformer core](A){};
3 \ctikzset{transformer core/.cd, relative thickness=2,

color=red, dash={{4pt}{2pt}}}
4 \draw (2,0) node[transformer core](B){};
5 \end{circuitikz}

Another very useful parameter is quadpoles/*/inner (default 0.4) that determine which part of the
component is the “vertical” one. So, setting that parameter to 1 will eliminate the horizontal part of the
component (obviously, to maintain the general aspect ratio you need to change the width also):

A1

A2

B1

B2

K

T

1 \begin{circuitikz}
2 \draw (0,0) node[transformer] (T) {}
3 (T.A1) node[anchor=east] {A1}
4 (T.A2) node[anchor=east] {A2}
5 (T.B1) node[anchor=west] {B1}
6 (T.B2) node[anchor=west] {B2}
7 (T.base) node{K} ;
8 \ctikzset{quadpoles/transformer/inner=1, quadpoles/transformer/

width=0.6}
9 \draw (0,-3) node[transformer] (P) {}

10 (P.base) node{T}
11 (P.inner dot A2) node[ocirc]{}
12 (P.inner dot B2) node[ocirc]{};
13 \end{circuitikz}

68Suggested by user myzinsky on GitHub, implemented in v1.6.2.
69Follows the syntax of the pattern sequence \pgfsetdash — see TikZ manual for details; phase is always zero.

Basically you pass pairs of dash-length – blank-length dimensions, see the examples.

134

https://github.com/circuitikz/circuitikz/issues/702

This can be useful if you want to put seamlessly something in series with either side of the component;
for simplicity, you have a style setting quadpoles style to toggle between the standard shape of double
bipoles (called inward, default) and the one without horizontal leads (called inline):

⊕

+

1 \begin{circuitikz}
2 \ctikzset{inductor=cute, quadpoles style=inline}
3 \draw
4 (0,0) to[R] ++(0,-2)
5 node[transformer, anchor=A1](T){}
6 (T.A2) node[ground](GND){}
7 (T.inner dot A1) node[font=\small\boldmath]{\oplus}
8 (T.inner dot B2) node[]{$+$}
9 (T.B1) node[above, ocirc]{}

10 (T.B2) -- (GND);
11 \end{circuitikz}

4.19.3 Styling transformer’s coils independently

Since 0.9.6, you can tweak the style of each of the coils of the transformers by changing the value of
the two styles transformer L1 and transformer L2; the default for both are {}, that means inherit the
inductors style in force.

1 \begin{circuitikz}[american]
2 \begin{scope}
3 \ctikzset{transformer L1/.style={inductors/coils=1, inductors/width=0.2}}
4 \draw (0,0) node[transformer core](T1){};
5 \end{scope}
6 \draw (3,0) node[transformer](T2){};
7 \ctikzset{cute inductors, quadpoles style=inline}
8 \ctikzset{transformer L1/.style={inductors/coils=2, inductors/width=0.2}}
9 \draw (6,0) node[transformer core](T3){};

10 \ctikzset{transformer L1/.style={american inductors, inductors/coils=1, inductors/
width=0.2}}

11 \ctikzset{transformer L2/.style={inductors/coils=7, inductors/width=1.0}}
12 \draw (9,0) node[transformer](T4){};
13 \foreach \t in {T1, T2, T3, T4} {
14 \foreach \l in {L1, L2} {
15 \foreach \a/\c in {a/blue, b/red}
16 \node [circle, fill=\c, inner sep=1pt] at (\t-\l.\a) {};
17 }
18 }
19 \end{circuitikz}

Caveat: the size of the transformer is independent from the styles for L1 and L2, so they follow whatever
the parameters for the inductances were before applying them. In other words, the size of the transformer
could result too small if you are not careful.

135

1 \begin{circuitikz}
2 \ctikzset{transformer L1/.style={inductors/width=1.8,

inductors/coils=13}}
3 % too small!
4 \draw (0,0) node[transformer core](T1){};
5 % adjust it
6 \ctikzset{quadpoles/transformer core/height=2.4}
7 \draw (2.5,0) node[transformer core](T1){};
8 \end{circuitikz}

You can obviously define a style for a “non-standard” transformer. For example, you can have a current
transformer70 defined like this:

1 \begin{circuitikz}[
2 TA core/.style={transformer core,
3 % at tikz level, you have to use circuitikz/ explicitly
4 circuitikz/quadpoles style=inline,
5 circuitikz/transformer L1/.style={
6 american inductors, inductors/coils=1,
7 inductors/width=0.3},
8 }]
9 \draw (0,0) node[TA core](T1){};

10 % changes are local
11 \draw (0,-3) node[transformer]{};
12 \end{circuitikz}

Remember that the default pgfkeys directory is /tikz for nodes and for the options of the environment,
so you have to use the full path (with circuitikz/) there.

4.19.4 Generic double bipoles

Generic double bipoles have more or less the same keys for size that the transformers (like ../width,
.../inner etc.) using the component name double bipole. Also the anchors are similar, with the main
difference that the “dot” anchors are fixed, so they do not adapt to the size of the component. Another
important difference is that the class of the generic double bipole is misc, not inductors (which is reserved
to transformers and, for an historical hiccup, to the gyrator).
By default, the left component is a generic impedance, and the right one is an (American-style, it will not
change automatically) voltage generator. You can use quadpoles style=inner as shown in the rightmost
drawing below.

+
−

text
north north east

east

south eastsouthsouth west

west

north west

center

+
−

text
north north east

east

south eastsouthsouth west

west

north west

center

The other anchors behave similarly to the transistor’s ones; you also have access to the internal components
nodes by using nodename-R and nodename-L names for the right and left element, which is supposed to
be T in the drawing below. Be wary that given that here you can (see later) reverse the direction of one
or both of the elements, the rotation (and so the anchors) is not fixed (you can see that in the blue and
green examples below).

70Suggested by Alex Pacini on GitHub

136

https://github.com/circuitikz/circuitikz/issues/297

+
−

inner dot A1

inner dot A2

inner dot B1

inner dot B2

T-L.south

+
−

outer dot A1

outer dot A2

outer dot B1

outer dot B2

T-R.a

T-R.b
T-R.south

+
−

A1

A2

B1

B2

base

T-R.a

T-R.b
T-R.north

Generic double bipoles are meant to be used through a style, choosing the left and right components. The
keys that let you change the components are the following ones:

• double bipole L, double bipole R: the nodename of the component you want on the left and
right side (default: genericshape and vsourceAMshape).

• double bipole L invert, double bipole R invert: controls the direction of the element inserted
(default false for both; that means that the left bipole goes “down” and the second one “up”).

• every double bipole L, every double bipole R: a style that is enacted when drawing the com-
ponent; by default it’s void.

For example, the LED-diode double bipole at the start of the section could be obtained this way:

1 \begin{circuitikz}[
2 led to D/.style={double bipole,
3 % at tikz level, you have to use circuitikz/ explicitly
4 circuitikz/double bipole L=fulllediodeshape,
5 circuitikz/double bipole R=emptydiodeshape,
6 circuitikz/every double bipole L/.style={diodes/scale=0.6},
7 circuitikz/every double bipole R/.style={diodes/scale=0.6},
8 circuitikz/double bipole R invert,
9 },

10]
11 \draw (0,0) node[led to D]{};
12 \end{circuitikz}

As a final example, and given that the addition of generic double bipole was stimulated by an issue opened
by user erwindenboer on GitHub suggesting the addition of a nullor shape, the nullor can be obtained like
this:

1 \begin{circuitikz}[
2 nullor/.style={double bipole,
3 % at tikz level, you have to use circuitikz/ explicitly
4 circuitikz/double bipole L=nullatorshape,
5 circuitikz/double bipole R=noratorshape,
6 circuitikz/every double bipole L/.style={sources/scale=0.5},
7 },
8]
9 \draw (0,0) node[nullor](T1){};

10 \end{circuitikz}

although now adding currents and voltages is not as trivial as if the component is built with a subcircuit…

4.20 Amplifiers

−

++

-
out

up

down

Operational amplifier, type: node, fillable (node[op amp]{}).
Class: amplifiers.

137

https://github.com/circuitikz/circuitikz/issues/641

−

+

▷∞
Operational amplifier compliant to DIN/EN 60617 standard,
type: node, fillable (node[en amp]{}). Class: amplifiers.

−

+
−
+

out +

out -

Fully differential operational amplifier71, type: node, fillable
(node[fd op amp]{}). Class: amplifiers.

−

+

transconductance amplifier, type: node, fillable (node[gm
amp]{}). Class: amplifiers.

−

+

up

down

refv up

refv down

plain instrumentation amplifier, type: node, fillable
(node[inst amp]{}). Class: amplifiers.

−

+ −

+
Fully differential instrumentation amplifier, type: node, fillable
(node[fd inst amp]{}). Class: amplifiers.

−

+

ra+

ra-
instrumentation amplifier with amplification resistance ter-
minals, type: node, fillable (node[inst amp ra]{}). Class:
amplifiers.

A1

in up

in down

up

out

bin up

bin down

bout
Plain amplifier, unmarked, two inputs, type: node, fillable
(node[plain amp]{A$_1$}). Class: amplifiers.

in out

up

center

bin bout Plain amplifier, one input, type: node, fillable (node[plain
mono amp]{}). Class: amplifiers.

71Contributed by Kristofer M. Monisit.

138

in out

center

bin bout
Buffer, type: node, fillable (node[buffer]{}). Class:
amplifiers.

4.20.1 Amplifiers anchors

The op amp defines the inverting input (-), the non-inverting input (+) and the output (out) anchors:

−

+v+

v−

vo

5V

-5V

1 \begin{circuitikz} \draw
2 (0,0) node[op amp] (opamp) {}
3 (opamp.+) node[left] {v_+}
4 (opamp.-) node[left] {v_-}
5 (opamp.out) node[right] {v_o}
6 (opamp.up) --++(0,0.5) node[vcc]{5\,\textnormal{V}}
7 (opamp.down) --++(0,-0.5) node[vee]{-5\,\textnormal{V}}
8 ;\end{circuitikz}

There are also two more anchors defined, up and down, for the power supplies:

−

+v+

v−

vo

12V
1 \begin{circuitikz} \draw
2 (0,0) node[op amp] (opamp) {}
3 (opamp.+) node[left] {v_+}
4 (opamp.-) node[left] {v_-}
5 (opamp.out) node[right] {v_o}
6 (opamp.down) node[ground] {}
7 (opamp.up) ++ (0,.5) node[above] {\SI{12}{\volt}}
8 -- (opamp.up)
9 ;\end{circuitikz}

The fully differential op amp defines two outputs:

−

+
−
+

v+

v− out +

out -

1 \begin{circuitikz} \draw
2 (0,0) node[fd op amp] (opamp) {}
3 (opamp.+) node[left] {v_+}
4 (opamp.-) node[left] {v_-}
5 (opamp.out +) node[right] {out +}
6 (opamp.out -) node[right] {out -}
7 (opamp.down) node[ground] {}
8 ;\end{circuitikz}

The instrumentation amplifier inst amp defines also references (normally you use the down, unless you are
flipping the component):

−

+v+

v−

out

1 \begin{circuitikz} \draw
2 (0,0) node[inst amp] (opamp) {}
3 (opamp.+) node[left] {v_+}
4 (opamp.-) node[left] {v_-}
5 (opamp.out) node[right] {out}
6 (opamp.up) node[vcc]{}
7 (opamp.down) node[vee] {}
8 (opamp.refv down) node[ground]{}
9 (opamp.refv up) to[short, -o] ++(0,0.3)

10 ;\end{circuitikz}

139

The fully differential instrumentation amplifier inst amp defines two outputs:

−

+ −

+

v+

v− out +

out -

1 \begin{circuitikz} \draw
2 (0,0) node[fd inst amp] (opamp) {}
3 (opamp.+) node[left] {v_+}
4 (opamp.-) node[left] {v_-}
5 (opamp.out +) node[right] {out +}
6 (opamp.out -) node[right] {out -}
7 (opamp.up) node[vcc]{}
8 (opamp.down) node[vee] {}
9 (opamp.refv down) node[ground]{}

10 (opamp.refv up) to[short, -o] ++(0,0.3)
11 ;\end{circuitikz}

The instrumentation amplifier with resistance terminals (inst amp ra) also defines terminals to add an
amplification resistor:

−

+v+

v−

out

1 \begin{circuitikz} \draw
2 (0,0) node[inst amp ra] (opamp) {}
3 (opamp.+) node[left] {v_+}
4 (opamp.-) node[left] {v_-}
5 (opamp.out) node[right] {out}
6 (opamp.up) node[vcc]{}
7 (opamp.down) node[vee] {}
8 (opamp.refv down) node[ground]{}
9 (opamp.refv up) to[short, -o] ++(0,0.3)

10 (opamp.ra-) to[R] (opamp.ra+)
11 ;\end{circuitikz}

Amplifiers also have “border” anchors (just add b, without space, to the anchor, like b+ or bin up and so
on). These can be useful to add “internal components” or to modify the component. Also the leftedge
anchor (on the border midway between input) is available.

−

+

IA1

A

1 \begin{circuitikz}[]
2 \draw (0,2.2) node[op amp](OA){IA1};
3 \node[oosourceshape, rotate=90, scale=0.5]
4 at (OA.leftedge) {};
5 \draw (0,0) node[plain amp](A){A};
6 \draw [color=red] (A.bin up) -- ++(0.2,0)
7 coordinate (tmp)
8 to[R, resistors/scale=0.5]
9 (tmp|-A.bin down) -- (A.bin down);

10 \end{circuitikz}

4.20.2 Amplifiers customization

You can scale the amplifiers using the key amplifiers/scale and setting it to something different from
1.0. The font used for symbols will not scale, so it’s your responsibility to change it if the need arises.

4.20.2.1 Input polarity. All these amplifiers have the possibility to flip input and output (if needed)
polarity. You can change polarity of the input with the noinv input down (default) or noinv input up
key; and the output with noinv output up (default) or noinv output down key:

140

+

− +

−v+

v− out +

out -

1 \begin{circuitikz} \draw
2 (0,0) node[fd inst amp,
3 noinv input up,
4 noinv output down] (opamp) {}
5 (opamp.+) node[left] {v_+}
6 (opamp.-) node[left] {v_-}
7 (opamp.out +) node[right] {out +}
8 (opamp.out -) node[right] {out -}
9 (opamp.up) node[vcc]{}

10 (opamp.down) node[vee] {}
11 (opamp.refv down) node[ground]{}
12 (opamp.refv up) to[short, -o] ++(0,0.3)
13 ;\end{circuitikz}

When you use the noinv input/output ... keys the anchors (+, -, out +, out -) will change with the
effective position of the terminals. You also have the anchors in up, in down, out up, out down that will
not change with the positive or negative sign.

4.20.2.2 Input and output pins symbols. You can change the symbols “+” or “−” appearing
in the amplifiers if you want, both globally and on component-by-component basis. The plus and minus
symbols can be changed with \ctikzset of the keys amplifiers/plus and amplifiers/minus (which
defaults to the math mode plus or minus cited before), or using the styles amp plus and amp minus.
The font used is set in several keys, but you can change it globally with \tikzset{amp symbol font},
which has a default of 10-point (in LATEX, and the corresponding one in ConTEXt). You can change it for
example with

1 \tikzset{amp symbol font={%
2 \color{blue}\fontsize{12}{12}\selectfont\boldmath}}

to have plus and minus symbols that are bigger and blue.

−

⊕

−

+

⊖

⊕
⊖
⊕

1 \begin{circuitikz}[]
2 % change in this circuit only
3 \tikzset{amp symbol font={\color{blue}\small\boldmath}}
4 % local change
5 \draw (0,2.2) node[op amp, amp plus=\oplus]{};
6 \draw (0,0) node[op amp]{};
7 % from now on...
8 \ctikzset{amplifiers/plus={\oplus}}
9 \ctikzset{amplifiers/minus={\ominus}}

10 \draw (0,-2.2) node[fd op amp]{};
11 \end{circuitikz}

If you want different symbols for input and output you can use a null symbol and put them manually
using the border anchors.

1

2

3
4

1 \begin{circuitikz}[]
2 \ctikzset{amplifiers/plus={}}
3 \ctikzset{amplifiers/minus={}}
4 \draw (0,0) node[fd op amp](A){};
5 \node [font=\small\bfseries, right] at(A.bin up) {1};
6 \node [font=\small\bfseries, right] at(A.bin down) {2};
7 \node [font=\small\bfseries, below] at(A.bout up) {3};
8 \node [font=\small\bfseries, above] at(A.bout down) {4};
9 \end{circuitikz}

141

4.20.2.3 Input and output pins length. The length of the wires that extends outside the main
amplifier shape is not easily changed globally. You can use a trick72 though if you want to remove them
completely: the size of an amplifier (included the pins) is set by the circuitikz key tripoles/amplifier
style/width and the size of the body of the amplifier, relative to it, is set by the keytripoles/amplifier
style/port width. Making the latter equal to one will set the length of the pin to zero; if you want to
maintain the same aspect ratio of the shape you need to compensate with the width.
For example, for the normal operational amplifier the key tripoles/op amp/width defaults to 1.7 and
tripoles/op amp/port width is 0.7 (you need to peek that values in the source file pgfcirctripoles.tex).
So you can do this:

−

+

−

+

1 \begin{tikzpicture}[]
2 \draw (0,0) node[op amp](A){};
3 \ctikzset{tripoles/op amp/port width=1,
4 tripoles/op amp/width=1.19, % 1.7*0.7
5 }
6 \draw (2.5,0) node[op amp](B){};
7 \draw
8 (A.out) node[red, circ]{} (A.+) node[blue, circ]{}
9 (B.out) node[red, circ]{} (B.+) node[blue, circ]{};

10 \end{tikzpicture}

4.20.2.4 Main amplifier label. The amplifier label (given as the text of the node) is normally
more or less centered in the shape (in the case of the triangular shape, it is shifted a bit to the left to
seem visually centered); since version 1.1.0 you can move it at the left side plus a fixed offset setting the
key component text or the style with the same name to left; by default the key is center. You can
change the offset with the key left text distance (default 0.3em; you must use a length here). These
parameters are shared with IEEE-style logic ports.

741 741

−

+

741
−

+

741

1 \begin{circuitikz}[]
2 \draw (0,2.5) node[plain amp]{\texttt{741}};
3 \draw (3,2.5)
4 node[plain amp, component text=left]
5 {\texttt{741}};
6 \ctikzset{component text=left}
7 \draw (0,0) node[op amp]{\texttt{741}};
8 \ctikzset{left text distance=0.6em}
9 \draw (3,0) node[op amp]{\texttt{741}};

10 \end{circuitikz}

These keys are also used for the positioning of the labels in the label positioning of IEEE logic gates
(see 4.22.2).

4.20.2.5 European-style amplifier customization. Thanks to the suggestions from David
Rouvel (david.rouvel@iphc.cnrs.fr) there are several possible customization for the European-style ampli-
fiers.
Since 0.9.0, the default appearance of the symbol has changed to be more in line with the standard;
notice that to have a bigger triangle by default we should require more packages, and I fear ConTEXt
compatibility; but see later on how to change it. Notice that the font used for the symbol is defined in
tripoles/en amp/font2 and that the font used for the + and - symbols is tripoles/en amp/font.
You can change the distances of the inputs, using tripoles/en amp/input height (default 0.3):

72See the discussion with user @erwindenboer on GitHub;notice that this method is using internal keys and can
stop working in the future.

142

mailto:david.rouvel@iphc.cnrs.fr
https://github.com/circuitikz/circuitikz/issues/645

−

+

▷∞

vout

vin−

vin+

1 \begin{circuitikz}
2 \ctikzset{tripoles/en amp/input height=0.45}
3 \draw (0,0)node[en amp](E){}
4 (E.out) node[right] {v_{out}}
5 (E.-) node[left] {$v_{\mathrm{in}-}$}
6 (E.+) node[left] {$v_{\mathrm{in}+}$};
7 \end{circuitikz}

and of course the key noinv input up is fully functional:

+

−

▷∞

vout

vin−

vin+

1 \begin{circuitikz}
2 \ctikzset{tripoles/en amp/input height=0.45}
3 \draw (0,0)node[en amp, noinv input up](E){}
4 (E.out) node[right] {v_{out}}
5 (E.-) node[left] {$v_{\mathrm{in}-}$}
6 (E.+) node[left] {$v_{\mathrm{in}+}$};
7 \end{circuitikz}

To flip the amplifier in the horizontal direction, you can use xscale=-1 as usual:

+

−

▷∞

vout

vin−

vin+

1 \begin{circuitikz}
2 \ctikzset{tripoles/en amp/input height=0.45}
3 \draw (0,0)node[en amp, xscale=-1, noinv input up](E){}
4 (E.out) node[left] {v_{out}}
5 (E.-) node[right] {$v_{\mathrm{in}-}$}
6 (E.+) node[right] {$v_{\mathrm{in}+}$};
7 \end{circuitikz}

Notice that the label is fully mirrored, so check below for the generic way to change this.
You can use the new key en amp text A to change the infinity symbol with an A:

−

+

▷A

vout

vin−

vin+

1 \begin{circuitikz}
2 \draw (0,0)node[en amp, en amp text A](E){}
3 (E.out) node[right] {v_{out}}
4 (E.-) node[left] {$v_{\mathrm{in}-}$}
5 (E.+) node[left] {$v_{\mathrm{in}+}$} ;
6 \end{circuitikz}

And if you want, you can completely change the text using the key en amp text=, which by default is
$\mathstrut{\triangleright}\,{\infty}$:

−

+

▷ 200

vout

vin−

vin+

1 \begin{circuitikz}
2 \draw (0,0)node[en amp, en amp text={%
3 ${\triangleright}$ \small 200}](E){}
4 (E.out) node[right] {v_{out}}
5 (E.-) node[left] {$v_{\mathrm{in}-}$}
6 (E.+) node[left] {$v_{\mathrm{in}+}$} ;
7 \end{circuitikz}

Notice two things here: the first, that \triangleright is enclosed in braces to remove the default spacing
it has as a binary operator, and that en amp text A is simply a shortcut for

1 en amp text={$\mathstrut{\triangleright}\,\mathrm{A}$}

To combine flipping with a generic label you just do:

143

−

+

▷A

vout

vin−

vin+

1 \begin{circuitikz}
2 \draw (0,0)node[en amp, xscale=-1, en amp text A](E){}
3 (E.out) node[left] {v_{out}}
4 (E.-) node[right] {$v_{\mathrm{in}-}$}
5 (E.+) node[right] {$v_{\mathrm{in}+}$} ;
6 \end{circuitikz}

But notice that the “A” is also flipped by the xscale parameter. So the solution in this case is to use
scalebox, like this:

−

+

▷200

vout

vin−

vin+

1 \begin{circuitikz}
2 \draw (0,0)node[en amp, xscale=-1, en amp text={%
3 ${\triangleright}$ \scalebox{-1}[1]{\small 200}}](E){}
4 (E.out) node[left] {v_{out}}
5 (E.-) node[right] {$v_{\mathrm{in}-}$}
6 (E.+) node[right] {$v_{\mathrm{in}+}$} ;
7 \end{circuitikz}

4.20.3 Designing your own amplifier

If you need a different kind of amplifier, you can use the muxdemux (see section 4.24) shape for defining one
that suits your needs (you need version 1.0.0 for this to work, and 1.3.8 for the draw only... option).

TDA1 TDA2

1 \tikzset{tdax/.style={muxdemux,
2 muxdemux def={NL=2, Lh=3, NR=1, Rh=0,
3 NB=4, NT=5}, font=\scriptsize\ttfamily}}
4 \begin{circuitikz}
5 \draw (0,0) node[tdax](A){TDA1};
6 \draw (2.5,0) node[tdax, muxdemux def={Rh=0.5},
7 draw only top pins={1,4-5}]{TDA2};
8 \end{circuitikz}

4.21 Switches, buttons and jumpers

Switches and buttons come in to-style (the simple ones and the pushbuttons), and as nodes.
The switches can be scaled with the key switches/scale (default 1.0). Notice that scaling the switches
will not scale the poles, which are controlled with their own parameters (see section 4.12).

4.21.1 Traditional switches

These are all of the to-style type:

switch: Switch, type: path-style, nodename: cspstshape.
Aliases: spst. Class: switches.

closing switch: Closing switch, type: path-style,
nodename: cspstshape. Aliases: cspst. Class: switches.

opening switch: Opening switch, type: path-style,
nodename: ospstshape. Aliases: ospst. Class: switches.

normal open switch: Normally open switch, type:
path-style, nodename: nosshape. Aliases: nos. Class:
switches.

144

normal closed switch: Normally closed switch, type:
path-style, nodename: ncsshape. Aliases: ncs. Class:
switches.

tip
push button: Normally open push button, type:
path-style, nodename: pushbuttonshape. Aliases:
normally open push button, nopb. Class: switches.

tip
normally closed push button: Normally closed push button,
type: path-style, nodename: ncpushbuttonshape. Aliases:
ncpb. Class: switches.

tip
normally open push button closed: Normally open push
button (in closed position), type: path-style, nodename:
pushbuttoncshape. Aliases: nopbc. Class: switches.

tip
normally closed push button open: Normally closed push
button (in open position), type: path-style, nodename:
ncpushbuttonoshape. Aliases: ncpbo. Class: switches.

toggle switch: Toggle switch, type: path-style,
nodename: toggleswitchshape. Class: default.

reed: Reed switch, type: path-style, fillable, nodename:
reedshape. Class: switches.

while this is a node-style component:

in
out 1

out 2
spdt, type: node (node[spdt]{}). Class: switches.

in
out 1

out 2

1 \begin{circuitikz} \draw
2 (0,0) node[spdt] (Sw) {}
3 (Sw.in) node[left] {in}
4 (Sw.out 1) node[right] {out 1}
5 (Sw.out 2) node[right] {out 2}
6 ;\end{circuitikz}

1 \begin{circuitikz} \draw
2 (0,0) to[C] (1,0) to[toggle switch , n=Sw] (2.5,0)
3 -- (2.5,-1) to[battery1] (1.5,-1) to[R] (0,-1) -| (0,0)
4 (Sw.out 2) -| (2.5, 1) to[R] (0,1) -- (0,0)
5 ;\end{circuitikz}

145

4.21.2 Cute switches

These switches have been introduced after version 0.9.0, and they come in also in to-style and in node-style,
but they are size-matched so that they can be used together in a seamless way.
The path element (to-style) are:

mid

in out

cute closed switch: Cute closed switch, type: path-style,
nodename: cuteclosedswitchshape. Aliases: ccsw. Class:
switches.

out

B-out.s

cute open switch: Cute open switch, type: path-style,
name=B, nodename: cuteopenswitchshape. Aliases: cosw.
Class: switches.

cute closing switch: Cute closing switch, type:
path-style, nodename: cuteclosingswitchshape. Aliases:
ccgsw. Class: switches.

cute opening switch: Cute opening switch, type:
path-style, nodename: cuteopeningswitchshape. Aliases:
cogsw. Class: switches.

while the node-style components are the single-pole, double-throw (spdt) ones:

in
out 1

out 2

mid Cute spdt up, type: node (node[cute spdt up]{}). Class:
switches.

Cute spdt mid, type: node (node[cute spdt mid]{}). Class:
switches.

mid
Cute spdt down, type: node (node[cute spdt down]{}).
Class: switches.

Cute spdt up with arrow, type: node (node[cute spdt up
arrow]{}). Class: switches.

Cute spdt mid with arrow, type: node (node[cute spdt mid
arrow]{}). Class: switches.

Cute spdt down with arrow, type: node (node[cute spdt
down arrow]{}). Class: switches.

146

4.21.2.1 Cute switches anchors The nodes-style switches have the following anchors:

center
in

out 1

out 2

center
in

out 1

out 2

mid

cin

cout 1

cout 2

Please notice the position of the normal anchors at the border of the ocirc shape for the cute switches;
they are thought to be compatible with an horizontal wire going out. Additionally, you have the cin, cout
1 y cout 2 which are anchors on the center of the contacts.
For more complex situations, the contact nodes are available73 using the syntax name of the node-in,
…-out 1 and …-out 2, with all their anchors.

in
out 1

in
out 2

1 \begin{circuitikz}
2 \draw (0,0) node[cute spdt up] (S1) {}
3 (S1.in) node[left] {in}
4 (S1.out 1) node[right] {out 1};
5 \draw (0,-2) node[cute spdt up,
6 /tikz/circuitikz/bipoles/cuteswitch/height=0.8] (S2) {}
7 (S2.in) node[left] {in}
8 (S2.out 2) node[right] {out 2};
9 \draw [red] (S1-in.s) -- (S2-in.n);

10 \draw [blue] (S1-out 2.s) -- (S2-out 1.n);
11 \end{circuitikz}

The mid anchor in the cute switches (both path- and node-style) can be used to combine switches to get
more complex configurations:

1 \begin{circuitikz}
2 \draw (0,1.4) node[cute spdt up](S1){};
3 \draw (0,0) node[cute spdt up](S2){};
4 \draw (0,-1) node[cuteclosedswitchshape, yscale=-1](S3){};
5 \draw [densely dashed] (S1.mid)--(S2.mid)--(S3.mid);
6 \end{circuitikz}

4.21.2.2 Cute switches customization You can use the key bipoles/cuteswitch/thickness
to decide the thickness of the switch lever. The units are the diameter of the ocirc connector, and the
default is 1.

1 \begin{circuitikz}
2 \ctikzset{bipoles/cuteswitch/thickness=0.5}
3 \draw (0,1.4) node[cute spdt up](S1){};
4 \draw (0,0) node[cute spdt up](S2){};
5 \draw (0,-1) node[cuteclosedswitchshape, yscale=-1](S3){};
6 \draw [densely dashed] (S1.mid)--(S2.mid)--(S3.mid);
7 \end{circuitikz}

Finally, the switches are normally drawn using the ocirc shape, but you can change it, as in the following
example, with the key bipoles/cuteswitch/shape. Be careful that the shape is used with its defaults
(which can lead to strange results), and that the standard anchors will be correct only for circ and ocirc
shapes, so you have to use the internal node syntax to connect it.

73Thanks to @marmot on tex.stackexchange.com.

147

https://tex.stackexchange.com/a/492599/38080

1 \begin{circuitikz}
2 \begin{scope}
3 \ctikzset{bipoles/cuteswitch/thickness=0.5,
4 bipoles/cuteswitch/shape=circ}
5 \draw (0,2) node[cute spdt up](S1){};
6 \ctikzset{bipoles/cuteswitch/thickness=0.25,
7 bipoles/cuteswitch/shape=emptyshape}
8 \draw (0,0) node[cute spdt up](S2){};
9 \draw (S2.cin) node[draw, inner sep=2pt]{};

10 \draw (S2.cout 1) node[draw, inner sep=2pt]{};
11 \draw (S2.cout 2) node[draw=red, inner sep=2pt]{};
12 \end{scope}
13 \draw (0,-2) node[cuteclosedswitchshape, yscale=-1](S3){};
14 \draw [densely dashed] (S1.mid)--(S2.mid)--(S3.mid);
15 \end{circuitikz}

4.21.3 Proximity switches

texthlines nw hlines ne

hlines sw hlines secenter

proximeter, type: node, fillable (node[proximeter]{text}).
Class: switches.

left right inline proximeter: proximeter switch, inline, type:
path-style, fillable, nodename: proximeter. Class:
switches.

The proximeter shape74 can be used as a dipole with the inline proximeter variant.
It has been assigned to the switches class; you can adjust the (relative) thickness of the inside hori-
zontal lines with the key proximeter/hlines thickness (default 0.5) and their vertical position with
proximeter/hlines position (default 0.3). You can also change the default size of all proximeter sym-
bols by changing proximeter/width (only safe at picture level; better set in the preamble if you need to
change it. The default value is 0.3).
Notice in the following example that, as ever for node-type shape, the text is not included in the bounding
box:

P1

Fe

1 \begin{tikzpicture}
2 \tikzset{small up proxi/.style={proximeter, solid,
3 circuitikz/switches/scale=0.707,
4 circuitikz/proximeter/hlines thickness=1,
5 circuitikz/proximeter/hlines position=0.1}}
6 \draw (0,0) to[inline proximeter, l=P1] ++(2,0)
7 to[ccgsw, name=P2] ++(2,0);
8 \draw[dashed] (P2.mid) -- ++(0,0.5)
9 node[small up proxi, above](P2p){Fe}

10 (P2p.north) ++ (0,0.5); % extend bounding box
11 \end{tikzpicture}

74Suggested by Anisio Rogerio Braga, implemented in v1.5.2; see also here.

148

https://github.com/circuitikz/circuitikz/issues/631
https://knowledge.autodesk.com/support/autocad-electrical/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/AutoCAD-Electrical/files/GUID-1B18023D-241C-4E50-822A-94F873FC258B-htm.html

4.21.4 Rotary switches

Rotary switches are a kind of generic multipole switches; they are implemented as a strongly customizable
element (and a couple of styles to simplify its usage). The basic element is the following one, and it has
the same basic anchors of the cute switches, included the access to internal nodes (shown in blue here).

in
cin

center

mid
out 1cout 1

N-out 1.n

N-out 4.w

Rotary switch, type: node (node[rotaryswitch](N){}). Class:
switches.

Notice that the name of the shape is rotaryswitch, no spaces. The default rotary switch component
has 5 channels (this is set in the parameter multipoles/rotary/channels), spanning form −60◦ to 60◦

(parameter multipoles/rotary/angle) and with the wiper at 20◦ (parameter multipoles/rotary/wiper).
Moreover, there are by default no arrows on the wiper; if needed, you can change this default setting the
parameter multipoles/rotary/arrow which can assume the values none, cw (clockwise), ccw (counter-
clockwise) or both.
To simplify the usage of the component, a series of styles are defined: rotary switch=<channels> in
<angle> wiper <wiper angle> (notice the space in the name of the style!). Using rotary switch without
parameters will generate a default switch.
To add arrows, you can use the styles rotary switch - (no arrow, whatever the default), rotary switch
<- (counterclockwise arrow), rotary switch -> (clockwise) and rotary switch <-> (both).
Notice that the defaults of the styles are the same as the default values of the parameters, but that if you
change globally the defaults using the keys mentioned above, you only change the defaults for the “bare”
component rotaryswitch, not for the styles.

1 \begin{circuitikz}
2 \ctikzset{multipoles/rotary/arrow=both}
3 \draw (0,0) -- ++(1,0) node[rotary switch <-=8 in 120 wiper 40, anchor=in](A){};
4 \draw (3,0) -- ++(1,0) node[rotary switch, anchor=in](B){}; % default values
5 \draw[red] (A.out 4) -| (3,0);
6 \draw[blue] (A-out 2.n) -- ++(0,0.5) -| (B-out 1.n);
7 \draw (B.out 3) -- ++(1,0) node[rotary switch -=5 in 90 wiper 15, anchor=in](C){};
8 \draw (C.out 3) -- ++(1,0) node[rotary switch ->, xscale=-1, anchor=out 3](D){};
9 \draw[green, dashed] (B.mid) -- ++(-.5,-1) -| (C.mid);

10 \end{circuitikz}

4.21.4.1 Rotary switch anchors Rotary switches anchors are basically the same as the cute
switches, including access (with the <node name>-<anchor name> notation) to the internal connection
nodes. The geographical anchors work as expected, marking the limits of the component.

149

north north east

east

south eastsouthsouth west

west

north west

center

north north east

east

south eastsouthsouth west

west

north west

center

In addition to the anchors they have in common with the cute switches, the rotary switch has the so called
“angled” anchors and the “external square anchors”. Angled anchors, called aout 1, aout 2 and so forth,
are anchors placed on the output poles at the same angle as the imaginary lines coming from the input
pole; square anchors, called sqout 1…, are located on an imaginary square surrounding the rotary switch
on the same line.

aout 4
sqout 4

out 3
cout 3

ext north ext north east

ext east

ext south eastext southext south west

ext west

ext north west

ext center

aout 12
sqout 12

The code for the diagram at the left, above, without the markings for the anchors, is:

1 \begin{circuitikz}
2 \draw (8,0) node[rotary switch -=31 in 150 wiper 10](D){};
3 \foreach \i in {1,...,31} \draw (D.sqout \i) -- (D.aout \i);
4 \draw[blue, densely dotted] (D.ext north west) rectangle (D.ext south east);
5 \end{circuitikz}

One possible application for the angled and the “on square” anchors is that you can use them to move
radially from the output poles, for example for adding numbers:

1 2 3 4
5

6

7
8

9
10111213

1 \begin{circuitikz}
2 \draw (0,0) node[rotary switch=13 in 120 wiper 0](S){};
3 \foreach \i in {1,...,13} % requires "calc"
4 \path ($(S.aout \i)!1ex!(S.sqout \i)$)
5 node[font=\tiny\color{red}]{\i};
6 \end{circuitikz}

Finally, notice that the value of width for the rotary switches is taken from the one for the “cute switches”
which in turn is taken from the width of traditional spdt switch, so that they match (notice that the
“center” anchor is better centered in the rotary switch, so you have to explicitly align them).

1 \begin{circuitikz}
2 \draw (0,0) node[color=blue, rotary switch=2 in 35 wiper 30,
3 anchor=in](R){};
4 \draw (0,-1) node[cute spdt up, anchor=in](C){};
5 \draw (0,-2) node[color=blue, rotary switch=3 in 35 wiper 30,
6 anchor=in](R){};
7 \end{circuitikz}

150

4.21.4.2 Rotary switch customization Apart from the basic customization seen above (number
of channels, etc.) you can change, as in the cute switches, the shape used by the connection points with the
parameter multipoles/rotary/shape, and the thickness of the wiper with multipoles/rotary/thickness.
The optional arrow has thickness equal to the standard bipole thickness bipoles/thickness (default 2).

1 \begin{circuitikz}
2 \ctikzset{multipoles/rotary/thickness=0.5}
3 \draw (0,1.6) node[rotary switch ->, color=blue](S1){};
4 \ctikzset{multipoles/rotary/shape=circ}
5 \draw (0,0) node[rotary switch ->](S2){};
6 \ctikzset{bipoles/thickness=0.5}
7 \draw (0,-1.6) node[rotary switch ->, color=red](S3){};
8 \end{circuitikz}

Finally, the size can be changed using the parameter tripoles/spdt/width (default 0.85).

1 \begin{circuitikz}
2 \draw (0,2) node[rotary switch ->, color=blue](S1){};
3 \ctikzset{tripoles/spdt/width=1.6, fill=cyan,
4 multipoles/rotary/shape=osquarepole}
5 \draw (0,0) node[rotary switch ->](S2){};
6 \end{circuitikz}

4.21.5 Switch arrows

You can change the arrow tips used in all switches (traditional and “cute”) with the key switch end arrow
(by default the key is the word “default” to obtain the default arrow, which is latexslim). Also you
can change the start arrow with the corresponding switchable start arrow or wiper start arrow (the
default value “default” is equivalent to {}, which means no arrow). The keys are settable with \ctikzset
as with \tikzset (to ease their usage in nodes).
You can change that globally or locally, as ever. The tip specification is the one you can find in the TikZ
manual (“Arrow Tip Specifications”).

1 \begin{circuitikz}
2 \draw (0,2) to[cspst] ++(2,0)
3 node[cute spdt up arrow, anchor=in]{};
4 \draw (0,0) to[cspst] ++(2,0)
5 node[cute spdt up arrow, anchor=in,
6 switch start arrow={Bar[red]},
7 switch end arrow={Triangle[blue]}]{};
8 \end{circuitikz}

151

4.21.5.1 Rotary switch arrows. You can change the rotary switch arrow shape in the same way
as you change the ones in regular switches. Notice however that if you set either switch end arrow
or switch start arrow they will be followed only if you have set both arrows with <-> or equivalent,
otherwise just one will be used.

1 \begin{circuitikz}
2 \ctikzset{multipoles/rotary/arrow=both}
3 \draw (0,0) -- ++(1,0) node[rotary switch <-=8 in 120 wiper 40, anchor=in](A){};
4 \draw (3,0) -- ++(1,0) node[rotary switch, anchor=in](B){}; % default values
5 \draw (B.out 3) -- ++(1,0) node[rotary switch -=5 in 90 wiper 15, anchor=in](C){};
6 \draw (C.out 3) -- ++(1,0) node[rotary switch ->, xscale=-1, anchor=out 3](D){};
7 \ctikzset{switch end arrow={Triangle[blue]}}
8 \ctikzset{switch start arrow={Bar[red]}}
9 \begin{scope}[yshift=-2cm]

10 \draw (0,0) -- ++(1,0) node[rotary switch <-=8 in 120 wiper 40, anchor=in](A){};
11 \draw (3,0) -- ++(1,0) node[rotary switch, anchor=in](B){}; % default values
12 \draw (B.out 3) -- ++(1,0) node[rotary switch -=5 in 90 wiper 15, anchor=in](C){};
13 \draw (C.out 3) -- ++(1,0) node[rotary switch ->, xscale=-1, anchor=out 3](D){};
14 \end{scope}
15 \end{circuitikz}

4.21.6 Jumpers

You can think of jumpers like a kind of switches (they have the same function, just the way of operating
them is different). CircuiTikZ has two types of jumper symbols available, the simple ones and the three
pins (or two-ways) ones.

4.21.6.1 Simple jumpers. These are the most common ones. They come in three variations, bare,
open and closed.

in out
B-out.n bare jumper: Bare jumper, type: path-style, fillable,

name=B, nodename: bjumpershape. Class: switches.

in outtop arc

B-out.s

open jumper: Open jumper, type: path-style, fillable,
name=B, nodename: ojumpershape. Class: switches.

left righttop arc

B-in.s

closed jumper: Closed jumper, type: path-style,
fillable, name=B, nodename: cjumpershape. Class:
switches.

The top arc anchor can be used to locate the position of the top of the wire (when present). In bare
jumper, the anchor is located in the middle of the connectors gap.

152

J1

J2

J3
open to enable

1 \begin{circuitikz}[scale=0.8]
2 \draw (0,0) to[open jumper, l=J1] ++(2,0)
3 to[closed jumper, l_=J2, name=J2] ++(2,0)
4 to[bare jumper=J3] ++(2,0);
5 \draw [dashed] (J2.top arc) -- ++(0,0.5)
6 node[above] {\tiny open to enable};
7 \end{circuitikz}

Similarly to switches, you have access to the subnodes representing the contacts, to be able to draw wires
at different angles.
The kind of poles used in the diagram can be changed with the \ctikzset key bipoles/jumpers/shape.

J1

J2
marked hot

1 \begin{circuitikz}[scale=0.8]
2 \draw (0,0) to[open jumper, l=J1, name=J1] ++(2,0)
3 to[closed jumper, l_=J2, name=J2,
4 bipoles/jumper/shape=odiamondpole] ++(2,0);
5 \draw [red] (J2-in.-135) -- ++(-135:1)
6 node[font=\tiny, below]{marked \emph{hot}};
7 \end{circuitikz}

4.21.6.2 Two-ways (three-pins) jumpers. In this case, the symbol represent two-ways jumpers
(normally, three pins that can be connected in a couple of ways).
To maintain flexibility, every possible combination of bare, open or closed is available; but to avoid having
to define too much different bipoles, a different approach is used here. You have to specify the style using
a different key, namely tjumper connections.

in out

tap

B-out.n three-pins jumper: Three-pins jumper (see later for connec-
tions), type: path-style, fillable, name=B, nodename:
tjumpershape. Class: switches.

top arc left top arc right

tap B-out.n

three-pins jumper: Three-pins jumper (connections
12), type: path-style, fillable, name=B, nodename:
tjumpershape. Class: switches.

top arc left top arc right

tap B-out.n

three-pins jumper: Three-pins jumper (connections
S1), type: path-style, fillable, name=B, nodename:
tjumpershape. Class: switches.

The option is used as shown in the following example, or by setting the key using \ctikzset. The value
must be two characters, either two numbers (where 0 means “bare”, 1 means “open”, and 2 means
“closed”) or the letter S (for “span”) and one number. In the latter case, the arc will connect the fist and
last pole75

75Although really I never saw an example of this use…You never know.

153

J1 J2 J3

JA JB JB

1 \begin{circuitikz}
2 \draw (0,1.5) to[three-pins jumper, l=J1, name=T] ++(3,0)
3 to[three-pins jumper, tjumper connections=21, l=J2] ++(3,0)
4 to[three-pins jumper, tjumper connections=20, l=J3] ++(3,0);
5 \draw (T.tap) -- ++(0,-0.5);
6 \ctikzset{bipoles/jumper/shape=osquarepole}
7 \draw (0,0) to[three-pins jumper, l=JA, name=T] ++(3,0)
8 to[three-pins jumper, tjumper connections=S1, l=JB] ++(3,0)
9 to[three-pins jumper, tjumper connections=S2, l=JB] ++(3,0);

10 \end{circuitikz}

4.21.7 Solder jumpers.

Solder jumpers are basically jumpers that can be closed or opened on the printed circuit board. Although
electrically they behave exactly as jumpers, these are thought to change configurations in a more stable
way (to change them from their default connection you have to use a cutter and/or a soldering iron).

in out open solder jumper: Open solder jumper, type:
path-style, nodename: osjumpershape. Class: switches.

left right closed solder jumper: Closed solder jumper, type:
path-style, nodename: csjumpershape. Class: switches.

in outtap open double solder jumper: Open double solder jumper,
type: path-style, nodename: odsjumpershape. Class:
switches.

left righttap up

tap down

left double solder jumper: Left double solder jumper,
type: path-style, nodename: ldsjumpershape. Class:
switches.

left righttap up

tap down

right double solder jumper: Right double solder jumper,
type: path-style, nodename: rdsjumpershape. Class:
switches.

closed double solder jumper: Closed double solder jumper,
type: path-style, nodename: cdsjumpershape. Class:
switches.

J1

J2

J3
1 \begin{circuitikz}[scale=0.8]
2 \draw (0,0) to[open solder jumper, l=J1] ++(2,0)
3 to[closed solder jumper, l_=J2, name=J2] ++(2,0)
4 to[right double solder jumper, l=J3,
5 name=J3] ++(2,0);
6 \draw (J3.tap down) -- ++(0,-1) node[ocirc]{};
7 \end{circuitikz}

154

4.22 Logic gates
Logic gates, with two or more input, are supported. Albeit in principle these components are multipoles,
the are considered tripoles here, for historical reasons (when they just had two inputs).

4.22.1 American Logic gates

in 1
in 2

out American and port, type: node, fillable (node[american and
port]{}). Class: logic ports.

bin 1

bin 2
bout

American or port, type: node, fillable (node[american or
port]{}). Class: logic ports.

American nand port, type: node, fillable (node[american
nand port]{}). Class: logic ports.

American nor port, type: node, fillable (node[american nor
port]{}). Class: logic ports.

American xor port, type: node, fillable (node[american xor
port]{}). Class: logic ports.

American xnor port, type: node, fillable (node[american
xnor port]{}). Class: logic ports.

American buffer port, type: node, fillable (node[american
buffer port]{}). Class: logic ports.

American not port, type: node, fillable (node[american not
port]{}). Class: logic ports.

There is no “european” version of the following symbols; for now they are used both in american and
european styles, but iy may change in the future.

Non-Inverting Schmitt trigger, type: node, fillable
(node[schmitt]{}). Class: logic ports.

Inverting Schmitt trigger, type: node, fillable
(node[invschmitt]{}). Class: logic ports.

155

4.22.2 IEEE logic gates

In addition to the legacy ports, since release 1.1.0, logic ports following the recommended geometry of
distinctive-shape symbols in IEEE Std 91a-1991 Annex A (Recommended symbol proportions) are also
available76.
These ports are completely independent from the legacy set (either american or european); they are not
enabled by default because the relative size of the ports is very different from the legacy ones, and that
will disrupt every schematic (especially if drawn with absolute coordinate). If you want to use them as
default, you can use the command \ctikzset{logic ports=ieee} and by default the shapes and port,
or port and so on will be the IEEE standard ones.
The transmission gate (also known as “bowtie”) components are not described in the IEEE standard, so
they are simply inspired by the other IEEE ports — this is why their name is prefixed by ieee and not
by ieeestd. They are aliased to tgate and double tgate though, and it is recommended to use those
names (maybe in the future there will be american ports and/or european ports versions available).

in 1
in 2

out
bout IEEE standard “and” port, type: node, fillable (node[ieeestd

and port]{}). Class: logic ports.

in 1
out

bout IEEE standard “nand” port, type: node, fillable
(node[ieeestd nand port]{}). Class: logic ports.

in 1

bin 2

out
bout IEEE standard “or” port, type: node, fillable (node[ieeestd

or port]{}). Class: logic ports.

left
center

up

down

N-not
IEEE standard “nor” port, type: node, fillable (node[ieeestd
nor port](N){}). Class: logic ports.

left

bin 1 ibin 1
right IEEE standard “xor” port xor, type: node, fillable

(node[ieeestd xor port]{}). Class: logic ports.

body left

body right

out
bout IEEE standard “xnor” port, type: node, fillable

(node[ieeestd xnor port]{}). Class: logic ports.

in 1
bin 1

up

down

IEEE standard buffer port, type: node, fillable (node[ieeestd
buffer port]{}). Class: logic ports.

in
bin

out
bout IEEE standard “not” port, type: node, fillable (node[ieeestd

not port]{}). Class: logic ports.

in out
bout Schmitt port matched to IEEE standard ports, type: node, fil-

lable (node[ieeestd schmitt port]{}). Class: logic ports.

76Thanks to Jason for proposing it and digging out the info, see this GitHub issue.

156

https://github.com/circuitikz/circuitikz/issues/383

Inverting Schmitt port matched to IEEE standard ports, type:
node, fillable (node[ieeestd invschmitt port]{}). Class:
logic ports.

in 1
bin 1

up

down
out

bout

notgate

gate

IEEE style transmission gate, type: node, fillable (node[ieee
tgate]{}). Class: logic ports.

in
bin

out
bout

up

down

bnotgate

bgate

IEEE style double transmission gate, type: node, fillable
(node[ieee double tgate]{}). Class: logic ports.

west east Inverting dot for IEEE ports, type: node, fillable
(node[notcirc]{}). Class: logic ports.

north west

south east

Schmitt symbol to add to input pins if needed, type: node,
fillable (node[schmitt symbol]{}). Class: logic ports.

4.22.3 European Logic gates

&
in 1
in 2

out European and port, type: node, fillable (node[european and
port]{}). Class: logic ports.

≥ 1

bin 1

bin 2
bout

European or port, type: node, fillable (node[european or
port]{}). Class: logic ports.

& European nand port, type: node, fillable (node[european
nand port]{}). Class: logic ports.

≥ 1
European nor port, type: node, fillable (node[european nor
port]{}). Class: logic ports.

= 1
European xor port, type: node, fillable (node[european xor
port]{}). Class: logic ports.

= 1
European xnor port, type: node, fillable (node[european
xnor port]{}). Class: logic ports.

1
European buffer port, type: node, fillable (node[european
buffer port]{}). Class: logic ports.

157

1
European not port, type: node, fillable (node[european not
port]{}). Class: logic ports.

If (default behaviour) americanports option is active (or the style [american ports] is used), the
shorthands and port, or port, buffer port, nand port, nor port, not port, xor port, xnor port,
schmitt port and invschmitt port are equivalent to the american version of the respective logic
port.
If otherwise europeanports option is active (or the style [european ports] is used), the shorthands
and port, or port, buffer port, nand port, nor port, not port, xor port, xnor port are equiv-
alent to the european version of the respective logic port; schmitt port and invschmitt port are
the same as in american ports style.
Finally, for version 1.1.0 and up, you can use the style ieee ports to set the shorthands to the set
of ieeestd ports. (There is no global option for this).

4.22.4 Path-style logic ports

The one-input, one-output ports have a handy path-style equivalent; they are the following:

inline not: “not” logic port, type: path-style, fillable,
nodename: not port. Class: logic ports.

inline buffer: “buffer” logic port, type: path-style,
fillable, nodename: buffer port. Class: logic ports.

inline schmitt: Schmitt logic port, type: path-style,
fillable, nodename: schmitt port. Class: logic ports.

inline invschmitt: Inverting Schmitt logic port, type:
path-style, fillable, nodename: invschmitt port.
Class: logic ports.

bgate

bnotgate
inline tgate: transmission gate, type: path-style,
fillable, nodename: tgate. Class: logic ports.

bgate

bnotgate

inline double tgate: double transmission gate, type:
path-style, fillable, nodename: double tgate. Class:
logic ports.

Those ports follow the current selected style, although you can change it on the fly (even if it does not
have a lot of sense); you can apply labels, annotations and (again, not a lot of sense) voltages to them.
The assigned value is typeset as if it were the main text of the node.

158

I1

label

+ −

∆V

1

ann

1 \begin{circuitikz}[american]
2 \ctikzset{logic ports=ieee}
3 \draw (0,0) to[inline not=I1, l=label, v=ΔV] ++(2,0);
4 \draw (0,-2) to[inline not, a=ann, european ports] ++(2,0);
5 \end{circuitikz}

Notice that in the inline version the leading pins are not drawn, so in the case of the transmission gates
you have to use the border pins to connect the gates.

1 \begin{circuitikz}[]
2 \ctikzset{logic ports=ieee,
3 logic ports/fill=yellow}
4 \draw (0,0) to[inline not] ++(2,0)
5 to[inline double tgate, name=P] ++(3,0)
6 (P.bnotgate) |- ++(-3,1);
7 \end{circuitikz}

4.22.5 American ports usage

Since version 1.0.0, the default shape of the family of american “or” ports has changed to a more “pointy”
one, for better distinguish them from the “and”-type ports. You can still go back to the previous aspect
with the key american or shape that can be set to pointy or roundy. The legacy style will enact the
old, roundy style also.

1 \begin{circuitikz}[
2 american]
3 % legacy shapes
4 \ctikzset{american or shape=roundy}
5 \ctikzset{logic ports/fill=yellow}
6 \node [or port](O1) at (0,0) {};
7 \node [nor port](O2) at (0,-1.5) {};
8 \node [xor port](O3) at (0,-3) {};
9 \node [xnor port](O4) at (0,-4.5) {};

10 \begin{scope}[xshift=3cm]
11 % new shapes
12 \ctikzset{american or shape=pointy}
13 \node [or port](O1) at (0,0) {};
14 \node [nor port](O2) at (0,-1.5) {};
15 \node [xor port](O3) at (0,-3) {};
16 \node [xnor port](O4) at (0,-4.5) {};
17 \end{scope}
18 \end{circuitikz}

4.22.5.1 American logic port customization Logic port class is called logic ports, so you
can scale them all with logic ports/scale (default 1.0).
As for most components, you can change the width and height of the ports; the thickness is given by the
parameter tripoles/thickness (default 2).
It is possible to change height and width of the logic ports using the parameters tripoles/american type
port/ plus width or height:

159

1 \tikz \draw (0,0) node[nand port] {}; \par
2 \ctikzset{tripoles/american nand port/input height=.2}
3 \ctikzset{tripoles/american nand port/port width=.4}
4 \ctikzset{tripoles/thickness=4}
5 \tikz \draw (0,0) node[nand port] {};

This is especially useful if you have ports with more than two inputs, which are instantiated with the
parameter number inputs :

P1

P2

P3

1 \begin{circuitikz}
2 \draw (0,3) node[american and port] (A) {P1};
3 \begin{scope}
4 \ctikzset{tripoles/american or port/height=1.6}
5 \draw (A.out) -- ++(0.5,0)
6 node[american or port,
7 number inputs=5,
8 anchor=in 1] (B) {P2};
9 \end{scope}

10 \draw (0,1.5) node[american or port] (C) {P3};
11 \draw (C.out) |- (B.in 2);
12 \end{circuitikz}

You can suppress the drawing of the logic ports input leads by using the boolean key logic ports draw
input leads (default true) or, locally, with the style no inputs leads (that can be reverted with input
leads), like in the following example. The anchors do not change and you have to take responsibility to
make the connection to the “border”-anchors.

1 \begin{circuitikz}
2 \node [or port](O1) at (0,2) {};
3 \node [or port, no input leads](O1) at (2,2) {};
4 \ctikzset{logic ports draw input leads=false}
5 \node [and port](O1) at (0,0) {};
6 \node [nand port, input leads](O1) at (2,0) {};
7 \end{circuitikz}

This is useful if you need to draw a generic port, like the one following here:

Pn…

1 \begin{circuitikz}
2 \ctikzset{tripoles/american nand port/height=1.6}
3 \draw (0,0)
4 node[american nand port,
5 circuitikz/tripoles/american nand port/height=1.1,
6 number inputs=5, no input leads,
7] (B) {Pn};
8 \draw (B.in 1) -- (B.bin 1) (B.in 5) -- (B.bin 5);
9 \node[rotate=90] at (B.in 3) {\dots};

10 \end{circuitikz}

In an analogous manner, there is a setting logic ports draw output leads (and a corresponding style
no output leads) that suppresses the drawing of the output lead. A shortcut boolean key logic ports
draw leads will suppress or enable all leads (the corresponding styles are no leads and all leads).
You can tweak the appearance of american “or” family (or, nor, xor and xnor) ports, too, with the
parameters inner (how much the base circle goes “into” the shape, default 0.3) and angle (the angle at
which the base starts, default 70).

160

1 \tikz \draw (0,0) node[xnor port] {};
2 \ctikzset{tripoles/american xnor port/inner=.7}
3 \ctikzset{tripoles/american xnor port/angle=40}
4 \tikz \draw (0,0) node[xnor port] {};

4.22.5.2 American logic port anchors These are the anchors for logic ports:

IC1
left right

out

in 1
in 2
in 3 IC1

northnorth west

west

south west south
south east
east
north east

left right

center

You also have “border pin anchors”:

IC1bin 1
bin 2
bin 3

bout
IC1bin 1

bin 2
bin 3

bout
bin 1
bin 2

bout

These anchors are especially useful if you want to negate inputs:

P1

P2

P3

1 \begin{circuitikz}
2 \draw (0,3) node[american and port] (A) {P1};
3 \node at (A.bin 1) [ocirc, left]{} ;
4 \begin{scope}
5 \ctikzset{tripoles/american or port/height=1.6}
6 \draw (A.out) -- ++(0.5,0) node[american or port,
7 number inputs=5, anchor=in 1] (B) {P2};
8 \node at (B.bin 3) [ocirc, left]{} ;
9 \end{scope}

10 \draw (0,1.5) node[american or port] (C) {P3};
11 \node at (C.bin 2) [ocirc, left]{} ;
12 \draw (C.out) |- (B.in 2);
13 \end{circuitikz}

As you can see, the center anchor is (for historic reasons) not in the center at all. You can fix this with
the command \ctikzset{logic ports origin=center}:

1
2

3

center

1 \begin{circuitikz}
2 \ctikzset{logic ports origin=center}
3 \draw (0,0) node[and port] (myand) {}
4 (myand.in 1) node[anchor=east] {1}
5 (myand.in 2) node[anchor=east] {2}
6 (myand.out) node[anchor=west] {3};
7 \draw[<-] (myand.center) -- ++(1,-1)
8 node{center};
9 \end{circuitikz}

161

1 \begin{circuitikz} \draw
2 (0,2) node[and port] (myand1) {}
3 (0,0) node[and port] (myand2) {}
4 (2,1) node[xnor port] (myxnor) {}
5 (myand1.out) -| (myxnor.in 1)
6 (myand2.out) -| (myxnor.in 2)
7 ;\end{circuitikz}

In the case of not, there are only in and out (although for compatibility reasons in 1 is still defined and
equal to in):

1 \begin{circuitikz} \draw
2 (1,0) node[not port] (not1) {}
3 (3,0) node[not port] (not2) {}
4 (0,0) -- (not1.in)
5 (not2.in) -- (not1.out)
6 ++(0,-1) node[ground] {} to[C] (not1.out)
7 (not2.out) -| (4,1) -| (0,0)
8 ;\end{circuitikz}

This last circuit could be drawn also (and probably in a more natural manner) using the path-style
components:

1 \begin{circuitikz}[american]
2 \draw (0,0) node[ground]{} to[C] ++(0,1.5)
3 coordinate(c)
4 to[inline not] ++(2.5,0) -- ++(0,1)
5 -| ++(-5,-1)
6 to[inline not] (c);
7 \end{circuitikz}

4.22.6 IEEE logic gates usage.

The rest of this section will assume you have issued the command \ctikzset{logic ports=ieee}, so that
the short form of the names is used.
IEEE standard logic gates have a basic difference with the legacy ones: the proportions of their shapes do
not change when you change the size, so you can’t have a “tall” port or a “squatty” one. The two-inputs
gates, by default, have their default size designed so that they match the chips component (see 4.25).

4 5

3 6

2 7

1 8

IC
IC2A

1 \begin{circuitikz}
2 \draw (0,0) node[dipchip](C){IC} (C.pin 8)
3 node[or port, anchor=in 1,
4 color=red](A){IC2A};
5 \end{circuitikz}

If you need, say, a 4-inputs port, the port will look like this:

4 5

3 6

2 7

1 8

IC
IC2A

1 \begin{circuitikz}
2 \draw (0,0) node[dipchip](C){IC} (C.pin 8)
3 node[or port, anchor=in 1, number inputs=4,
4 color=red](A){IC2A};
5 \end{circuitikz}

162

…and in this case it is clear that it does not match. With standard ports, there are two possibilities. The
first one is to scale the port; if you set the port height so that it has the same size (see “IEEE logic gates
customization” below for details) as the number of ports, they will match again.

4 5

3 6

2 7

1 8

IC IC2A

1 \begin{circuitikz}
2 \draw (0,0) node[dipchip](C){IC} (C.pin 8)
3 node[or port, anchor=in 1,
4 number inputs=4,
5 circuitikz/ieeestd ports/height=4,
6 color=red](A){IC2A};
7 \end{circuitikz}

But then the size of the port is quite “unusual”. The solution in technical literature is to use what we can
call a “rack” for the inputs; basically, only a certain number of pins are kept on the port, and the others
are put on an extended input line.

4 5

3 6

2 7

1 8

IC IC2A

1 \begin{circuitikz}
2 \draw (0,0) node[dipchip](C){IC} (C.pin 8)
3 node[or port, anchor=in 1,
4 number inputs=4,
5 inner inputs=2,
6 color=red](A){IC2A};
7 \end{circuitikz}

When using the inner inputs key, keep in mind the rule of thumbs:

• the distance between the pins is matched with the chip ones when the inner inputs match the
/ieeestd ports/height key;

• when the number of pins in the rack is odd, the result is often quite ugly, so try to avoid it.

For example, look at the following example; given that we are asking an odd number of pins on the rack,
some of the inputs are drawn on the port’s border, resulting in a less-than-ideal diagram.

4 5

3 6

2 7

1 8

IC
IC2A

1 \begin{circuitikz}
2 \draw (0,0) node[dipchip](C){IC} (C.pin 8)
3 node[or port, anchor=in 1,
4 number inputs=5,
5 inner inputs=2,
6 color=red](A){IC2A};
7 \end{circuitikz}

In this case, if you don’t like the solution, the better approach is to let the gate grow a bit.

4 5

3 6

2 7

1 8

IC
IC2A

1 \begin{circuitikz}
2 \draw (0,0) node[dipchip](C){IC} (C.pin 8)
3 node[or port, anchor=in 1,
4 number inputs=5,
5 inner inputs=3,
6 circuitikz/ieeestd ports/height=3,
7 color=red](A){IC2A};
8 \end{circuitikz}

The good thing about the rack mechanism is that you can have quite big ports without problems.

163

IC1A

1 \begin{circuitikz}[scale=0.75, transform shape]
2 \draw node[nor port, number inputs=32, inner inputs=2,
3 rotate=90](A){\rotatebox{-90}{IC1A}};
4 \end{circuitikz}

You can use the additional elements (the notcirc and the schmitt symbol to obtain circuits like the
following ones (well, a bit of a mix of conventions, but...):

A B

1 \begin{circuitikz}
2 \draw (0,0) node[and port](A){A} (A.out)
3 node[buffer port, anchor=in,
4 component text=left](B){B} (B.bin)
5 node[schmitt symbol, above left]{}
6 (A.bin 1) node[schmitt symbol, right]{};
7 \node [notcirc, left] at (A.bin 1) {};
8 \node [notcirc, above](C) at (B.up) {};
9 \draw (C.north) |- ++(-1,1) (B.down) --++(0,-1);

10 \end{circuitikz}

Notice the key component text=left that moves the label near to the left border of the component. There
is also a \ctikzset{component text=left} if you prefer to have it as a default for all the IEEE ports.77

4.22.6.1 Stacking and aligning IEEE standard gates. The standard gates are designed so
that they stacks up nicely when positioned using the external leads as anchors. Notice that the ports do
have different sizes, but the leads lengths are designed to counter the differences.

A1

A2

A3

A4

A1

A2

A3

A4

1 \begin{circuitikz}
2 \draw
3 (0,0) node[and port, anchor=in 1]{A1}
4 (0,-1.2) node[nand port, anchor=in 1]{A2}
5 (0,-2.4) node[or port, anchor=in 1]{A3}
6 (0,-3.6) node[xnor port, anchor=in 1]{A4};
7 \draw
8 (3,0) node[and port, anchor=in 1](A1){A1}
9 (3,-1.2) node[nand port, anchor=in 1]{A2}

10 (3,-2.4) node[or port, anchor=in 1]{A3}
11 (3,-3.6) node[xnor port, anchor=in 1](A4){A4};
12 \draw[red, dashed]([yshift=0.8cm]A1.body left)
13 -- ([yshift=-0.8cm]A4.body left);
14 \end{circuitikz}

The length of the external leads can be changed by the user, but notice that if you use a too small value
you can jeopardize that property.
The single input ports (not port, buffer port and their Schmitt equivalent) are smaller than the six
standard ports, so they are not kept aligned by default; the just have the same distance at the input side.
For the not ports, the left position of the text results often in a better look (the centered text in the
triangle seems to be much more at the right).

77You can use the same key with amplifiers, too.

164

A1

A2

A3

A1

A2

A3

1 \begin{circuitikz}
2 \ctikzset{component text=left}
3 \draw (0,0) node[nand port, anchor=in 1]{A1}
4 (0,-1.8) node[buffer port, anchor=in 1]{A2}
5 (0,-3.2) node[not port, anchor=in 1]{A3};
6 \draw (3,0) node[nand port, anchor=in 1](A1){A1}
7 (3,-1.8) node[buffer port, anchor=in 1]{A2}
8 (3,-3.2) node[not port, anchor=in 1](A3){A3};
9 \draw[red, dashed]([yshift=0.8cm]A1.body left)

10 -- ([yshift=-0.8cm]A3.body left);
11 \end{circuitikz}

4.22.6.2 IEEE standard ports customization There are several parameters that can be used
to customize the IEEE standard ports, although less than the ones in the legacy american ones — the
basic shape is set to follow the IEEE recommendation. The basic parameters are shown in the following
table, and they can be set via \ctikzset{ieeestd ports/...}

key default description

baselen 0.4 the basic length for every dimension, as a fraction of the
(scaled) resistor length

height 2 the height of the port, in term of baselen. Pin distance is
given by this parameter divided by the inner pins.

pin length 0.7 length of the external pin leads that are drawn with the port.
This length is always calculated starting from the inner body
of the shape.

not radius 0.154 radius of the “not circle” added to the negated-output ports.
The default value is the IEEE recommended one.

xor bar distance 0.192 distance of the detached input shape in xor and xnor ports.
The default value is the IEEE recommended one.

xor leads in 1 If set to 0, there will be no leads drawn between the detached
input line and the body in the xor and xnor ports. IEEE rec-
ommends 1 here.

schmitt symbol size 0.3 Size of the small Schmitt symbol to use near input leads.

For example, using a not radius of 0.1 will give a “not ball” of the same size of a connecting pole, as it
is in the legacy ports.

1 \begin{circuitikz}
2 \draw (0,2) node[xnor port](P){}
3 (P.out) to[short, -o] ++(1,0);
4 \ctikzset{ieeestd ports/.cd, not radius=0.1,
5 xor bar distance=0.3, xor leads in=0}
6 \draw (0,0) node[xnor port](P){}
7 (P.out) to[short, -o] ++(1,0);
8 \end{circuitikz}

In addition to the specific parameters, you can also apply to these ports the boolean style no input leads
as in legacy ones (this simply does not draw the input leads, but the anchors stays where they should):

Pn…

1 \begin{circuitikz}
2 \draw (0,0) node[nand port,
3 number inputs=5, no input leads,](B){Pn};
4 \draw (B.in 1) -- (B.bin 1) (B.in 5) -- (B.bin 5);
5 \node[rotate=90] at (B.in 3) {\dots};
6 \end{circuitikz}

165

Changing the leads length must be done with a bit of care, because if the length is shorter than the port
left or right extrusions strange things can happen (yes, a 4-inputs xnor gates is not so well defined…but
it’s a nice example to show):

1 \begin{circuitikz}
2 \ctikzset{ieeestd ports/pin length=0.2}
3 \draw (0,0) node[xnor port,
4 number inputs=4, inner inputs=2](B){};
5 \end{circuitikz}

4.22.6.3 IEEE standard ports anchors Geographical anchors define the rectangular space that
the port is using, included the leads if presents.

text

north north east

east

south eastsouthsouth west

west

north west

center

text

north north east

east

south eastsouthsouth west

west

north west

center

Most of the anchors can be seen in the following diagram:

in 1
bin 1

in 2
bin 2

in 3
bin 3

in 4
bin 4 out

boutleft

right
ibin 1

ibin 2

bin 1 out
boutleft

body left right
body right up

down

in 1
in 2
in 3

in 4
in 5
in 6

The inputs anchor are in number (on the tip of the lead) and bin number (border inputs) on the com-
ponent’s border (useful if you draw the ports with no inut leads). Additionally, you have ibin number
(inner border inputs) for the x-type ports. The anchor named left is where a central border input would
be.
In one-input ports (not port, the buffer, and Schmitt-type ports) you can use plain in or in 1 indifferently.
On the output, out is on the tip of the lead, and bout on the rightmost border (so, if there is a negation
circle, it is on it); right is the same as bout.
The main body of the port is marked with body left and body right anchors (as seen in the middle port
in the diagram above); you also have an up and down anchors centered on the body (you can use them as
enable signals or similar things).
Finally, the internal notcirc node used for the output negation is accessible with the name nodename-not,
where nodename is the name given to the logic port node.

4.22.6.4 Transmission gate symbols. The tgate and double tgate components are available
since 1.2.4 but only in the IEEE style. An additional parameter tgate scale (default 0.7; if you set
this to 1 the triangles will have the same size as a ieeestd buffer port) select the relative scale of the
components.

1 \begin{circuitikz}
2 \ctikzset{logic ports=ieee}
3 \draw (0,0) to[inline not, *-*] ++(2,0)
4 node[tgate, anchor=in]{};
5 \end{circuitikz}

166

The anchors for the tgate’s control point are called gate and notgate (and the corresponding bgate and
bnotgate for the border anchors).

in
bin

out
bout

left right

gate bgate

notgate bnotgate

in
bin

out
bout

left right

gate bgate

notgate bnotgate

4.22.7 European logic port usage

European logic port are the same class as american and IEEE-style ones, and they obey the same class
modifier. Moreover, you can use the no inputs pin as in the other logic ports to suppress input pins.

4.22.7.1 European logic port customization Normally the European-style logic port with in-
verted output are marked with a small triangle; if you want you can change it with the key tripoles/european
not symbol; its default is triangle but you can set it to circle like in the following example. As you
can see, the circle size is the same as the circuit poles; if you prefer the size used in the IEEE standard
ports, you can use set it to ieee circle.

&

&

&

1 \begin{circuitikz}[european]
2 \draw (0,3) node[nand port](A){}
3 (A.out) to[short, *-o] ++(0.5,0);
4 \ctikzset{tripoles/european not symbol=circle}
5 \draw (0,1.5) node[nand port](A){}
6 (A.out) to[short, *-o] ++(0.5,0);
7 \ctikzset{tripoles/european not symbol=ieee circle}
8 \draw (0,0) node[european nand port](A){}
9 (A.out) to[short, *-o] ++(0.5,0);

10 \end{circuitikz}

In some standard, the xnor port is different — without the negation at the end and with just an = sign.78

You can switch to this if you like, with the key european xnor style that can be default or direct.

= 1 =

1 \begin{circuitikz}[european]
2 \draw (0,0) node[xnor port]{};
3 \ctikzset{european xnor style=direct}
4 \draw (3,0) node[xnor port]{};
5 \end{circuitikz}

4.22.7.2 European logic port anchors The anchors are basically the same as in the american-
style ports.

&
left right

center
&bin 1

bin 2
bout

&bin 1
bin 2

bout
&bin 1

bin 2
bout

78Suggested by user Schlepptop on GitHub.

167

4.23 Flip-flops

Flip-flops (available since version 1.0.0) are an hybrid between the logic ports and the chips. They have
a class by themselves (flipflops) but the default parameters are set at the same values as the logic gates
one.
The default flip flop is empty: it is just a rectangular box like a blank dipchip with 6 pins.

FF

pin 1

pin 2

pin 3

bpin 1 bpin 6

up

down

bup

bdown

pin 6

pin 5

pin 4

Blank (void) flip flop, type: node, fillable
(node[flipflop]{FF}). Class: flipflops.

As you can see, in a void flip flop no external pins are drawn: you have to define the meaning of each
of them to see them. To define a specific flip-flop, you have to set a series of keys under the \ctikzset
directory multipoles/flipflop/, corresponding to pins 1…6, u for “up” and d for “down”:

• a text value t0, t1, …t6, and tu and td (the last ones for up and down) which will set a label on
the pin;

• a clock wedge flag (c0, …c6, cu, cd), with value 0 or 1, which will draw a triangle shape on the
border of the corresponding pin;

• a negation flag (n0, …n6, nu, nd), with value 0 or 1, which will put an ocirc shape on the outer
border of the corresponding pin.

To set all these keys, an auxiliary style flipflop def is defined, so that you can do the following thing:

1 \tikzset{flipflop AB/.style={flipflop,
2 flipflop def={t1=A, t3=B, t6=Q, t4={\ctikztextnot{Q}},
3 td=rst, nd=1, c2=1, n2=1, t2={\texttt{CLK}}},
4 }}

to obtain:

B Q

CLK

A Q

rst

pin 1

pin 2

pin 3

bpin 1 bpin 6

down
bdown

pin 6

Example custom flip flop, type: node, fillable (node[flipflop
AB]{}). Class: flipflops.

\ctikztextnot{} is a small utility macro to set a overbar to a text, like RST (created by \ctikztextnot{RST}).
By default, the following flip-flops are defined, as well as a support shape for the clock wedge:

168

CLK Q

D Q

D-type latch, type: node, fillable (node[latch]{}). Class:
flipflops.

R Q

S Q

flip-flop SR, type: node, fillable (node[flipflop SR]{}).
Class: flipflops.

Q

D Q

Edge-triggered synchronous flip-flop D, type: node, fillable
(node[flipflop D]{}). Class: flipflops.

Q

T Q

Edge-triggered synchronous flip-flop T, type: node, fillable
(node[flipflop T]{}). Class: flipflops.

K Q

J Q

Edge-triggered synchronous flip-flop JK, type: node, fillable
(node[flipflop JK]{}). Class: flipflops.

textcenter

nw

sw

right
clock wedge shape, type: node (node[clockwedge]{text}).
Class: flipflops.

If you prefer that the negated output is labelled Q and a dot indicating negation is shown, you can add
the dot on notQ key:

K Q

J Q
synchronous flip-flop JK with asynchronous set and reset,
type: node, fillable (node[flipflop JK, dot on notQ]{}).
Class: flipflops.

You can also add “vertical” asynchronous set and reset (active low) adding the style add async SR to all
of them:

169

K Q

J Q
SET

RST

synchronous flip-flop JK with asynchronous set and reset,
type: node, fillable (node[flipflop JK, add async SR]{}).
Class: flipflops.

4.23.1 Custom flip-flops

If you like different pin distributions, you can easily define different flip-flops to your taste. For example,
somebody likes the clock pin on the bottom pin:

1 \tikzset{flipflop myJK/.style={flipflop,
2 flipflop def={t1=J, t2=K, t6=Q, t4={\ctikztextnot{Q}}, c3=1}}
3 }

Q

K

J Q

Example custom flip flop, type: node, fillable (node[flipflop
myJK]{}). Class: flipflops.

The standard definition of the default flip-flops are the following (in the file pgfcircmultipoles.tex):

1 \tikzset{
2 % async
3 latch/.style={flipflop, flipflop def={t1=D, t6=Q, t3=CLK, t4=\ctikztextnot{Q}}},
4 flipflop SR/.style={flipflop, flipflop def={t1=S, t3=R, t6=Q, t4=\ctikztextnot{Q}}},
5 % sync
6 flipflop D/.style={flipflop, flipflop def={t1=D, t6=Q, c3=1, t4=\ctikztextnot{Q}}},
7 flipflop T/.style={flipflop, flipflop def={t1=T, t6=Q, c3=1, t4=\ctikztextnot{Q}}},
8 flipflop JK/.style={flipflop,
9 flipflop def={t1=J, t3=K, c2=1, t6=Q, t4=\ctikztextnot{Q}}},

10 % additional features
11 add async SR/.style={flipflop def={%
12 tu={\ctikztextnot{SET}}, td={\ctikztextnot{RST}}}},
13 dot on notQ/.style={flipflop def={t4={Q}, n4=1}},
14 }

4.23.2 Flip-flops anchors

Flip-flops have all the standard geometrical anchors, although it should be noticed that the external pins
are outside them. The pins are accessed by the number 1 to 6 for the lateral ones (like in DIP chips), and
with the up and down anchors for the top and bottom one. All the pins have the “border” variant (add a
b in front of them, no spaces).

170

K Q

J Q

text

north north east

east

south eastsouthsouth west

west

north west

center K Q

J Q
SET

RST

pin 1

pin 2

pin 3

up

down

pin 6

pin 5

pin 4

bpin 1

bpin 2

bpin 3

bup

bdown

bpin 6

bpin 5

bpin 4

If you have negated pins, you can access the ocirc shapes with the name as <nodename>-N<pin number>,
and all the respective anchors (for example — myFFnode-N4.west).

4.23.3 Flip-flops customization

Flip-flop’s size is controlled by the class parameters (like flipflops/scale) and the specific \ctikzset
keys multipoles/flipflop/width and multipoles/flipflop/pin spacing. Class parameters are also
used for line thickness and fill color. The default values are matched with the logic ports ones.
The fonts used for the pins 1…6 is set by the key multipoles/flipflop/font (by default \small in LATEX
and the equivalent in other formats) and the font used for pins u and d is multipoles/flipflop/fontud
(\tiny by default). You can change it globally or specifically for each flip flop.
As in chips, you can change the length of the external pin with the key external pins width; you can
for example have a pinless flip-flop like this:

K Q

J Q
SET

RST

synchronous flip-flop JK, type: node, fillable (node[flipflop
JK, add async SR, external pins width=0]{}). Class:
flipflops.

Notice however that negated pins when the pins width is zero has to be handled with care. As explained
in the poles sections, the ocirc shape is drawn at the end of the shape to cancel out the wires below;
so if you use a pinless flipflop when you make the connection you should take care of connecting the
symbol correctly. To this end, the shapes of the negation circles are made available as <nodename>-N<pin
number>, as you can see in the next (contrived) example.

K Q

/c

J Q

1 \begin{circuitikz}[scale=3, transform shape]
2 \clip (0.2,0.5) rectangle (1.2,-1.3);
3 \node [flipflop JK,
4 flipflop def={n5=1,n4=1,t5={/c},c5=1},
5 external pins width=0,
6](A){};
7 \draw (A-N5.east) -- ++(1,0); % correct
8 \draw (A.pin 4) -- ++(1,0); % wrong
9 \end{circuitikz}

171

Normally the symbols on the flip-flop are un-rotated when you rotate the symbol, but as in case of chips,
you can avoid it.

K Q

J Q
SET

RST

K

Q

J

Q

SET RST

K
Q

J
Q

S
E

T

R
S

T

1 \begin{tikzpicture}
2 \draw (0,0) node[flipflop JK, add async SR]{};
3 \draw (3,0) node[flipflop JK, add async SR, rotate=90]{};
4 \draw (7,0) node[flipflop JK, add async SR, rotate=90, rotated numbers]{};
5 \end{tikzpicture}

You can also change the size of the wedge, with the key multipoles/flipflop/clock wedge size (default
value 0.2).

K Q

J Q

JK

K Q

J Q

JK

K Q

J Q

JK

1 \begin{circuitikz}[]
2 \draw (0,0) node[flipflop JK]{JK};
3 \ctikzset{multipoles/flipflop/clock

wedge size=0.1}
4 \draw (2.3,0) node[flipflop JK]{JK};
5 \ctikzset{multipoles/flipflop/clock

wedge size=0.4}
6 \draw (4.6,0) node[flipflop JK]{JK};
7 \end{circuitikz}

Flip-flops “not circles” follows the current logic port setting (either if you choose ieee ports, or if you
are using european ports with european not symbol set to cirle or ieee circle.

&

K Q

J Q

JK

&

K Q

J Q

JK

1 \begin{circuitikz}[]
2 \ctikzset{logic ports=european,
3 tripoles/european not symbol=ieee circle}
4 \draw (0,0) node[nand port](A){}
5 (A.out) to[short] ++(0.5,0)
6 node[flipflop JK, dot on notQ, anchor=pin 2]{JK};
7 \ctikzset{logic ports=european,
8 tripoles/european not symbol=circle}
9 \draw (0,-3) node[nand port](A){}

10 (A.out) to[short] ++(0.5,0)
11 node[flipflop JK, dot on notQ, anchor=pin 2]{JK};
12 \end{circuitikz}

4.24 Multiplexer and de-multiplexer

The shape used for muxes and de-muxes is probably the most configurable shape of the package; it has
been added by Romano in v1.0.0. The basic shape is a multiplexer with 8 input pin, one output pin, and
three control pins (23 → 1 multiplexer). The pins are not named as input or output pins (see below for a
full description for anchors) for reasons that will be clear later.

172

MD1

lpin 1
lpin 2

bpin 1

blpin 1
blpin 2

bbpin 1

rpin 1
brpin 1 mux-demux, type: node, fillable (node[muxdemux]{MD1}).

Class: muxdemuxes.

base

top

apex
midcenter Inversion marker for European logic symbols79, type: node

(node[wedgeinv, scale=2]{}). Class: muxdemuxes.

base

top

apex
midcenter

bottom

Circle-shaped inversion marker, type: node (node[circleinv,
scale=2]{}). Class: muxdemuxes.

You can define a custom shape for the muxdemuxes using an interface similar to the one used in flip-flops;
for example:

1 \tikzset{demux/.style={muxdemux, muxdemux def={Lh=4, Rh=8, NL=1, NB=3, NR=8}}}

will generate the following shape (the definition above is already defined in the package):

MD2 Demultiplexer 1 → 23 with Lh=4, Rh=8, NL=1, NB=3, NR=8 ,
type: node, fillable (node[demux]{MD2}). Class: muxdemuxes.

The shape can also be defined with an inset. For example it can be used like this to define a 1-bit adder
(also already available):

1 \tikzset{one bit adder/.style={muxdemux,
2 muxdemux def={Lh=4, NL=2, Rh=2, NR=1, NB=1, w=1.5,
3 inset w=0.5, inset Lh=2, inset Rh=1.5}}}

⊕ One-bit adder, type: node, fillable (node[one bit
adder]{\Large $\oplus $}). Class: muxdemuxes.

Or a Arithmetic Logic Unit (again, already defined by default):
79Thanks for the contribution by yashpalgoyal1304 on GitHub.

173

https://github.com/circuitikz/circuitikz/issues/679

1 \tikzset{ALU/.style={muxdemux,
2 muxdemux def={Lh=5, NL=2, Rh=2, NR=1, NB=2, NT=1, w=2,
3 inset w=1, inset Lh=2, inset Rh=0, square pins=1}}}

AL
U ALU, type: node, fillable (node[ALU]{\rotatebox

{90}{\small \ttfamily ALU}}). Class: muxdemuxes.

4.24.1 Mux-Demux: design your own shape

In designing the shape there are several pa-
rameters to be taken into account. In the dia-
gram on the right they are shown in a (hope-
fully) practical way. The parameter can be set
in a node or in a style using the muxdemux def
key as shown above, or set with \ctikzset as
multipoles/muxdemux/Lh keys and so on.

Lh

in
se
t
Lh

in
se
t
Rh Rh

w

inset w

The default values are Lh = 8, Rh = 6, w = 3 and no inset: inset Lh = inset Rh = inset w = 0. In
addition, you can set the following parameters:

NL, NR, NB, NT : number of pins relatively on the left, right, bottom and top side (default 8, 1, 3,
0). When an inset is active (in other words, when Lh > 0) the pins are positioned on the top and
bottom part, not in the inset; the exception is when the number of left pins is odd, in which case
you have one pin set on the center of the inset. If you do not want a pin in one side, use 0 as number
of pins.

square pins : set to 0 (default) if you want the square pins to stick out following the slope of the bottom
or top side, 1 if you want them to stick out in a square way (see the example above for the ALU).

All the distances are multiple of multipoles/muxdemux/base len (default 0.4, to be set with \ctikzset),
which is relative to the basic length. That value has been chosen so that, if you have a number of pins
which is equal to the effective distance where they are spread (which is Lh without inset, Lh− (inset Lh)
with an inset), then the distance is the same as the default pin distance in chips, as shown in the next
circuit. In the same drawing you can see the effect of square pins parameters (without it, the rightmost
bottom lead of the mux 4by2 shape will not connect with the below one).

4 5

3 6

2 7

1 8

IC1 MUX

2
4

5

8
1

3

6
7

IC2

1 \begin{circuitikz}
2 \tikzset{mux 4by2/.style={muxdemux,
3 muxdemux def={Lh=4, NL=4, Rh=3,
4 NB=2, w=2, square pins=1}}}
5 \node [dipchip, num pins=8](A) at (0,0) {IC1};
6 \node [one bit adder, scale=-1, anchor=lpin 2]
7 at (A.pin 1){};
8 \node [mux 4by2, anchor=lpin 1](B)
9 at (A.pin 8){MUX};

10 \node [qfpchip, num pins=8, anchor=pin 8] at
11 (B.bpin 1) {IC2};
12 \end{circuitikz}

174

4.24.2 Mux-Demux customization

Mux-demuxes have the normal parameters of their class (muxdemuxes): you can scale them with the
\ctikzset key muxdemuxes/scale, control the border thickness with muxdemuxes/thickness and the
default fill color with muxdemuxes/fill — they are set, by default, at the same values than logic ports.
External pins’ length is controlled by the key multipoles/external pins width (default 0.2) or by the
style external pins width. The parameter multipoles/external pins thickness is also respected.
like in chips. In addition, like in logic ports, you can suppress the drawing of the leads by using the
boolean key logic ports draw input leads (default true) or, locally, with the style no inputs leads
(that can be reverted with input leads). The main difference between setting external pins width to
0 or using no inputs lead is that in the first case the normal pin anchors and the border anchors will
coincide, and in the second case they will not move and stay where they should have been if the leads
were drawn.
You can draw only selected pins and leave out the rest by setting the keys multipoles/draw only side
pins and the corresponding style draw only side pins where side can be left, right, top, bottom.
Those key accept a comma-separated list of pin numbers or ranges of pin numbers (a range is given as
⟨start⟩ - ⟨end⟩, ends are inclusive). The numbers will not be expanded in any way, except those given
as ends of ranges. A special value (and the initial one) is all, in which case all pins are drawn. The
anchors will be adjusted, such that each xpin n will be placed at the end of the pins which are drawn,
and coincide with the bxpin n anchors for the suppressed pins.

X

1 \begin{circuitikz}
2 \node [muxdemux, muxdemux def={NL=4, NR=3, NT=5, NB=3, w=2,
3 inset w=0.5, Lh=4, inset Lh=2.0, inset Rh=1.0,
4 square pins=1},
5 draw only right pins={1,3},
6 draw only top pins={1-3},
7 draw only bottom pins={3}](C) at (0,0) {X};
8 \end{circuitikz}

4.24.3 Mux-Demux anchors

Mux-demuxes have a plethora of anchors. As in the case of chips, the geographic anchors mark the
rectangle occupied by the component, without taking into account the pin leads.

text

north north east

east

south eastsouthsouth west

west

north west

center
X

top left
top

top right

bottom left
bottom

bottom right

left right
center

center up

center down

inset top left

inset top

inset top right

inset bottom left

inset bottom

inset bottom right

inset left
inset right

inset center narrow center

center up

center down

The pins anchors are named lpin, rpin, bpin and tpin for the left, right, bottom and top pin respectively,
and points to the “external” pin. The border pins are named the same, with a b added in front: blpin,
brpin, bbpin and btpin. The following graph will show the numbering and position of the pin anchors.

175

X X

1
2

3
4

1

2

31
2

3

1
2

3

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

1
2

3

1
2

3
4

lpin 1

blpin 1

tpin 1

btpin 1

rpin 1

brpin 1

bpin 2

bbpin 2
bbpin 2

The code that implemented the printing of the numbers (which in muxdemuxes, differently from chips, are
never printed automatically) in the last graph is the following one.

1 \begin{circuitikz}
2 \node [muxdemux, muxdemux def={NL=4, NR=3, NT=3, NB=3, w=2, inset w=0.5,
3 Lh=4, inset Lh=2.0, inset Rh=1.0, square pins=1}](C) at (0,0) {X};
4 \node [muxdemux, muxdemux def={NL=7, NR=8, NT=4, inset w=1.0,
5 inset Lh=4.0, inset Rh=0.0}](D) at (4,0) {X};
6 \foreach \myn/\NL/\NR/\NB/\NT in {C/4/3/3/3,D/7/8/3/4} {
7 \foreach \myp in {1,...,\NL} \node[right, font=\tiny] at (\myn.blpin \myp){\myp};
8 \foreach \myp in {1,...,\NR} \node[left, font=\tiny] at(\myn.brpin \myp) {\myp};
9 \foreach \myp in {1,...,\NB} \node[above, font=\tiny] at (\myn.bbpin \myp){\myp};

10 \foreach \myp in {1,...,\NT} \node[below, font=\tiny] at (\myn.btpin \myp){\myp};
11 }

4.24.4 Adding wedge or circular inversion markers

Although you can add “negation balls” as seen for, for example, flip-flops (see section 4.23.3), sometimes
the European-style notation (also accepted by the IEEE standard) with the small wedge is preferred. The
wedgeinv shape will nicely do. It’ll scale with the muxdemuxes class, and the length and height can be
changed with the keys wedge inversion mark/width (default 0.2) and height (default 0.1), with the
same units that are used for the external pins width and similar keys.
Similarly, there is also a circleinv shape, which is basically the same as the notcirc (see 4.22.2) one, but
that scales with the muxdemuxes class and that has the default anchor at its left, similarly to wedgeinv.
This one will be filled if the class says so, contrary to the wedge-like shapes that are always open.

1 \begin{tikzpicture}[]
2 \path (0,4) node[muxdemux, muxdemux def={NL=2,Lh=2,Rh=2,NB=1},
3 external pins width = 0.5](mdemux){};
4 \draw (mdemux.blpin 1) node[wedgeinv,anchor=apex]{};
5 \draw (mdemux.brpin 1) node[wedgeinv]{};
6 \draw (mdemux.bbpin 1) node[wedgeinv, anchor=apex,
7 rotate=90]{};
8 \ctikzset{wedge inversion mark/.cd, width=0.1}
9 \ctikzset{muxdemuxes/.cd, fill=yellow, thickness=3, scale=0.8}

10 \path (0,2) node[muxdemux, muxdemux def={NL=2,Lh=2,Rh=2,NB=0},
11 external pins width = 0.5](mdemux){};
12 \draw (mdemux.blpin 1) node[wedgeinv,anchor=apex]{};
13 \draw (mdemux.brpin 1) node[wedgeinv]{};
14 \path (0,0) node[muxdemux, muxdemux def={NL=2,Lh=2,Rh=2,NB=0},
15 external pins width = 0.5](mdemux){};
16 \draw (mdemux.blpin 1) node[circleinv,anchor=apex]{};
17 \draw (mdemux.brpin 1) node[circleinv]{};
18 \end{tikzpicture}

176

4.24.5 Mux-Demux special usage

You can use these shapes to draw a lot of symbols that are unavailable; using a bit of LATEX command
trickery you can use them quite naturally too…. Examples with personalized amplifier shapes are listed
in section 4.20.3.
As an additional example, this was used before the introduction of the double tgate symbol in 1.2.4
(see 4.22.6.4):

1 \def\tgate#1{
2 node[simple triangle, anchor=left, no input leads](#1-LR){}
3 (#1-LR.right) node[simple triangle, xscale=-1,
4 anchor=left](#1-RL){}
5 ([yshift=.5ex]#1-RL.btpin 1) node[ocirc]{}}
6 \begin{circuitikz}[
7 simple triangle/.style={muxdemux, muxdemux def={
8 NL=1, NR=1, NB=1, NT=1, w=2, Lh=2, Rh=0,
9 }}]

10 \draw (0,0) \tgate{A} (0,-2) \tgate{B};
11 \draw (A-RL.bpin 1) -- (B-RL.tpin 1);
12 \end{circuitikz}

Finally, you can play with them to create chips that have generic numbers of pins on the four sides, as in
the following example (asked on TeX.Stackexchange):

555
Astable

7 Discharge

2 Trigger

6
Threshold

8 4

5 1

3

1 \begin{tikzpicture}[scale=0.8, transform shape]
2 \tikzset{ic555/.style={muxdemux,
3 muxdemux def={Lh=10, NL=5, Rh=10, NR=5,
4 NB=2, w=6, NT=2, square pins=1},
5 no input leads, external pins width=0.4,
6 circuitikz/muxdemuxes/fill=blue!10}
7 }
8 \node [ic555, font=\small\ttfamily,align=center](A)
9 at (0,0) {555\\Astable};

10 % left pins
11 \foreach \rawpin/\npin/\label in
12 {2/7/Discharge, 4/2/Trigger, 5/6/Threshold} {
13 \draw (A.lpin \rawpin) -- (A.blpin \rawpin)
14 node[midway, blue, font=\small, above]{\npin}
15 node[right, font=\small]{\label};
16 }
17 % top pins
18 \foreach \rawpin/\npin in {1/8, 2/4} {
19 \draw (A.tpin \rawpin) -- (A.btpin \rawpin)
20 node[midway, blue, font=\small, left]{\npin};
21 }
22 % bottom pins
23 \foreach \rawpin/\npin in {1/5, 2/1} {
24 \draw (A.bpin \rawpin) -- (A.bbpin \rawpin)
25 node[midway, blue, font=\small, left]{\npin};
26 }
27 % finally, left
28 \draw (A.rpin 3) -- (A.brpin 3)
29 node[midway, blue, font=\small, above]{3};
30 \end{tikzpicture}

177

https://tex.stackexchange.com/q/596320/38080

4.25 Chips (integrated circuits)

CircuiTikZ supports two types of variable-pin chips: DIP (Dual-in-Line Package) and QFP (Quad-Flat
Package).

4 5

3 6

2 7

1 8

Dual-in-Line Package chip, type: node, fillable
(node[dipchip]{}). Class: chips.

2
4

5

8
1

3

6
7

Quad-Flat Package chip, type: node, fillable
(node[qfpchip]{}). Class: chips.

4.25.1 DIP and QFP chips customization

You can scale chips with the key chips/scale. As ever, that will not scale text size of the labels, when
they are printed.
The line thickness of the main shape is controlled by multipoles/thickness (default 2) and the one of
the external pins/pads with multipoles/external pins thickness (default 1).
You can customize the DIP chip with the key multipoles/dipchip/width (with a default of 1.2) and the
key multipoles/dipchip/pin spacing (default 0.4) that are expressed in fraction of basic lengths (see
section 3.1.4). The height of the chip will be equal to half the numbers of pins multiplied by the spacing,
plus one spacing for the borders.
For the QFP chips, you can only chose the pin spacing with multipoles/qfpchip/pin spacing key.
The number of pins is settable with the key num pins. Please notice that the number of pins must be
even for dipchips and multiple of 4 for qfpchips, otherwise havoc will ensue.
The pins of the chip can be “hidden” (that is, just a spot in the border, optionally marked with a number)
or “stick out” with a thin lead by setting multipoles/external pins width greater than 0 (default value
is 0.2, so you’ll have leads as shown above). Moreover, you can transform the thin lead into a pad by
setting the key multipoles/external pad fraction to something different form 0 (default is 0); the value
expresses the fraction of the pin spacing space that the pad will use on both sides of the pin.
You can, if you want, avoid printing the numbers of the pin with hide numbers (default show numbers)
if you prefer positioning them yourself (see the next section for the anchors you can use).

IC1

RST

1 \begin{circuitikz}
2 \ctikzset{multipoles/thickness=4}
3 \ctikzset{multipoles/external pins thickness=2}
4 \draw (0,0) node[dipchip,
5 num pins=12,
6 hide numbers,
7 external pins width=0.3,
8 external pad fraction=4](C){IC1};
9 \draw (C.pin 1) -- ++(-0.5,0) to[R]

10 ++(0,-3) node[ground]{};
11 \node [right, font=\tiny]
12 at (C.bpin 1) {RST};
13 \end{circuitikz}

178

Also, you can suppress the drawing of the pins, by using the style no inputs leads (that can be reverted
with input leads). The main difference between setting external pins width to 0 or using no inputs
lead is that in the first case the normal pin anchors and the border anchors will coincide, and in the
second case they will not move and stay where they should have been if the leads were drawn.
For special use you can suppress the orientation mark with the key no topmark (default topmark).

4 5

3 6

2 7

1 8

IC1

1 \begin{circuitikz}
2 \draw (0,0) node[dipchip,
3 num pins=8, no topmark,
4 external pins width=0.0](C){IC1};
5 \draw (C.pin 1) -- ++(-0.5,0) to[R]
6 ++(0,-1.5) node[ground]{};
7 \end{circuitikz}

The font used for the pins is adjustable with the key multipoles/font (default \tiny)

4
8

9

16

3

7

10

15

2

6

11

14
1

5

12
13

IC1

1 \begin{circuitikz}
2 \ctikzset{multipoles/font={\color{red}\tiny}}
3 \draw (0,0) node[qfpchip,
4 num pins=16,
5 external pad fraction=6](C){IC1};
6 \draw (C.pin 1) -- ++(-0.5,0) to[R]
7 ++(0,-2) node[ground]{};
8 \end{circuitikz}

You can draw only selected pins and leave out the rest by setting multipoles/draw only pins80. This
key accepts a comma-separated list of pin numbers or ranges of pin numbers (a range is given as ⟨start⟩
- ⟨end⟩, ends are inclusive). The numbers will not be expanded in any way, except those given as ends of
ranges. A special value (and the initial one) is all, in which case all pins are drawn. The anchors will be
adjusted, such that each pin n will be placed at the end of the pins which are drawn, and coincide with
the bpin n anchors for the suppressed pins.

4 5

3 6

2 7

1 8

IC1

3
6

7

12

2

5

8

11
1

4

9
10

1 \begin{circuitikz}
2 \draw (0,3) node[dipchip,
3 num pins=8,
4 draw only pins={1, 3, 5-8}](C){IC1};
5 \draw (C.pin 1) -- ++(-0.5,0) to[R]
6 ++(0,-1.5) node[ground]{};
7 \foreach \x in {1,...,8} {
8 \draw[red] (C.pin \x) circle[radius=2pt];
9 \draw[blue] (C.bpin \x) circle[radius=1pt];

10 }
11 \draw (0, 0) node[qfpchip, draw only pins={1-2, 6, 8, 4},
12 external pad fraction=4, num pins=12](Q){};
13 \foreach \x in {1,...,12} {
14 \draw[red] (Q.pin \x) circle[radius=2pt];
15 \draw[blue] (Q.bpin \x) circle[radius=1pt];
16 }
17 \end{circuitikz}

80Added by Jonathan P. Spratte in v1.3.8

179

https://github.com/circuitikz/circuitikz/pull/550

4.25.2 Chips anchors

Chips have anchors on pins and global anchors for the main shape. The pin anchors to be used to connect
wires to the chip are called pin 1, pin 2 , …, with just one space between pin and the number. Border pin
anchors (bpin 1…) are always on the box border, and can be used to add numbers or whatever markings
are needed. Obviously, in case of multipoles/external pins width equal to zero, border and normal
pin anchors will coincide.
Additionally, you have geometrical anchors on the chip “box”, see the following figure. The nodes are
available with the full name (like north) and with the short abbreviations n, nw, w…. The dot anchor is
useful to add a personalized marker if you use the no topmark key.

4 5

3 6

2 7

1 8

IC1

pin 1

bpin 1
pin 2

bpin 2
pin 3

bpin 3
pin 4

bpin 4

pin 5

bpin 5

pin 6

bpin 6

pin 7

bpin 7

pin 8

bpin 8

4 5

3 6

2 7

1 8

IC2
center

nw ne

sesw

north

south

west east

text

4 5

3 6

2 7

1 8

center

n

w e

s

dot

4.25.3 Chips rotation

You can rotate chips, and normally the pin numbers are kept straight (option straight numbers, which
is the default), but you can rotate them if you like with rotated numbers. Notice that the main label has
to be (counter-) rotated manually in this case.

4

5

3

6

2

7

1

8

IC2

2

4

58

1

3

67

IC
3

1 \begin{circuitikz}
2 \draw (0,0) node[dipchip,
3 rotate=90]{%
4 \rotatebox{-90}{IC2}};
5 \draw (3,0) node[qfpchip,
6 rotated numbers,
7 rotate=45]{IC3};
8 \end{circuitikz}

4.25.4 Chip special usage

You can use chips to have special, personalized blocks. Look at the following example, which is easily put
into a macro.

180

Block

RST

IN1

/IN2

OUT

CLK

1 \begin{circuitikz}
2 \ctikzset{multipoles/thickness=3}
3 \ctikzset{multipoles/dipchip/width=2}
4 \draw (0,0) node[dipchip,
5 num pins=10, hide numbers, no topmark,
6 external pins width=0](C){Block};
7 \node [right, font=\tiny] at (C.bpin 1) {RST};
8 \node [right, font=\tiny] at (C.bpin 2) {IN1};
9 \node [right, font=\tiny] at (C.bpin 4) {/IN2};

10 \node [left, font=\tiny] at (C.bpin 8) {OUT};
11 \draw (C.bpin 2) -- ++(-0.5,0) coordinate(extpin);
12 \node [ocirc, anchor=0](notin2) at (C.bpin 4) {};
13 \draw (notin2.180) -- (C.bpin 4 -| extpin);
14 \draw (C.bpin 8) to[short,-o] ++(0.5,0);
15 \draw (C.bpin 5) ++(0,0.1) -- ++(0.1,-0.1)
16 node[right, font=\tiny]{CLK} -- ++(-0.1,-0.1);
17 \draw (C.n) -- ++(0,1) node[vcc]{};
18 \draw (C.s) -- ++(0,-1) node[ground]{};
19 \end{circuitikz}

4.26 Seven segment displays

Seven segment display, type: node, fillable
(node[bare7seg]{}). Class: displays.

The seven-segment display lets you show values as if they were displayed in a classical seven-segment
display.81

The main “bare” component is the one shown above, but for simplicity a couple of style interfaces are
defined:

1 \begin{circuitikz}
2 \draw (0,0) node[seven segment val=A dot off box on]{};
3 \draw (1,0) node[seven segment val=- dot none box on]{};
4 \draw (0,-2) node[seven segment bits=1001001 dot empty box on]{};
5 \draw (1,-2) node[seven segment bits=0011101 dot none box off]{};
6 \end{circuitikz}

There are two main configuration methods. The first one is seven segment val, which will take an
hexadecimal number or value and display it: the possible values are 0,...,15, plus A, B, C, D, E, F
(or lowercase) and the symbol - (minus).
The other interface is seven segment bits, where you specify seven bits saying which segment must be
on (please never specify a different number of bits, it will throw a very obscure error); you can see in the
anchors the name of each segment.
The option dot specifies if you want a decimal dot or not. The key none will remove the dot and the space
it would take; empty will not show the dot at all but reserve the space, and on or off will show the dot
in the corresponding state.

81This component has been loosely inspired by the package SevenSeg by Germain Gondor, 2009, see
TEXexample.net.

181

http://www.texample.net/tikz/examples/seven-segment-display/

The option box (can be on or off) simply toggles the drawing of the external box. You can separate it
from the display with the key seven seg/box sep (default 1pt), and it will use the thickness specified in
multipoles/thickness (The same as the chips).
You can use these option with the “bare” object bare7seg and the keys seven seg/bits (default 0000000),
seven seg/dot (default none) and seven seg/box (default off); there is no option equivalent to the val
interface.

4.26.1 Seven segments anchors

These are the anchors for the seven-segment displays; notice that when the dot parameter is not none,
the cell is a bit wider at the right side.

north north east

east

south eastsouthsouth west

west

north west

center

north north east

east

south eastsouth

center

a
b

c

d
e

f

g

dot

4.26.2 Seven segments customization

You can scale the seven segment display with the key displays/scale. This will scale the size of the digit,
but not the absolute sizes shown below — if you want them to scale, yo have to do it manually.
You can change several parameters to adjust the displays:

1 \ctikzset{seven seg/width/.initial=0.4}% relative to \pgf@circ@Rlen (scalable)
2 \ctikzset{seven seg/thickness/.initial=4pt}% segment thickness (not scaled)
3 \ctikzset{seven seg/segment sep/.initial=0.2pt}% gap between segments (not scaled)
4 \ctikzset{seven seg/box sep/.initial=1pt}% external box gap (not scaled)
5 \ctikzset{seven seg/color on/.initial=red}% color for segment "on"
6 \ctikzset{seven seg/color off/.initial=gray!20!white} % ...and "off"

A couple of examples are shown below.

1 \begin{circuitikz}[scale=0.5]
2 \ctikzset{seven seg/width=0.2, seven seg/thickness=2pt}
3 \foreach \i in {0,...,15} \path (\i,0)
4 node[seven segment val=\i dot on box off]{};
5 \ctikzset{seven seg/color on=black}
6 \foreach \i in {0,...,15} \path (\i,-1.5)
7 node[seven segment val=\i dot off box off, fill=gray!30!white]{};
8 \ctikzset{seven seg/color on=green, seven seg/color off=yellow!30}
9 \foreach \i in {0,...,15} \path[color=red] (\i,-3)

10 node[seven segment val=\i dot none box on, xslant=0.2]{};
11 \end{circuitikz}

182

5 Labels, voltages and currents

You can add “decorations” to the path-style components; there are basically five types of them: labels,
annotations, voltages, currents, and flows. Let’s see an example of all of them…

R1
i1

1 \begin{circuitikz}
2 \draw (0,0) to[R, l=R_1, f=i_1] (2,0);
3 \end{circuitikz}

R1

1 kΩ

1 \begin{circuitikz}
2 \draw (0,0) to[R=R_1, a=\SI{1}{\kohm}] (2,0);
3 \end{circuitikz}

i1
1 \begin{circuitikz}
2 \draw (0,0) to[R, i=i_1] (2,0);
3 \end{circuitikz}

v1

1 \begin{circuitikz}
2 \draw (0,0) to[R, v=v_1] (2,0);
3 \end{circuitikz}

R1

v1

i1 1 \begin{circuitikz}
2 \draw (0,0) to[R=R_1, i=i_1, v=v_1] (2,0);
3 \end{circuitikz}

R1

v1

i1 1 \begin{circuitikz}
2 \draw (0,0) to[R=R_1, i=i_1, v=v_1] (2,0);
3 \end{circuitikz}

Long names/styles for the bipoles can be used, of course, and there is a special syntax (that works only
in simple cases, and olny with LATEX — use it with caution!) if you load the package with the ‘siunitx‘
options:

1 kΩ 1 \begin{circuitikz}\draw
2 (0,0) to[resistor=1<\kilo\ohm>] (2,0);
3 \end{circuitikz}

5.1 Labels and Annotations

Since Version 0.7, beside the original label (l) option, there is a new option to place a second label, called
annotation (a) at each bipole.

183

5.1.1 Label and annotation position

When drawing a component left-to-right, the label l is by default above the component, and the annotation
a is by default below it. The position of annotations and labels can be adjusted adding the characters _
or ^ to the key.

R1

1 kΩ

1 \begin{circuitikz}
2 \draw (0,0) to[R, l=R_1,a=1<\kilo\ohm>] (2,0);
3 \end{circuitikz}

R1

1 kΩ 1 \begin{circuitikz}
2 \draw (0,0) to[R, l_=R_1,a^=1<\kilo\ohm>] (2,0);
3 \end{circuitikz}

For passive components, you can use component type=text as a shortcut for component type, l=text:

R1

1 kΩ

1 \begin{circuitikz}
2 \draw (0,0) to[R=R_1,a=1<\kilo\ohm>] (2,0);
3 \end{circuitikz}

Notice though that in active component (sources of either voltage or current) the shortcut will set the
voltage (v) or current (i) property.

5.1.1.1 Adjust label and annotation position. Normally the package will guess a good position
for the label or annotation; if you do not like it, you can add82 (or remove, with negative values) distance
using the \ctikzset keys label distance and annotation distance.

R R
1 \begin{circuitikz}
2 \draw (0,0) to[sR, l=R, label distance=-4pt] (2,0)
3 to [sR, l=R] (4,0);
4 \end{circuitikz}

L

L

1 \begin{circuitikz}[american]
2 \ctikzset{bipoles/inductors/core distance=4pt}
3 \draw (0,1) to[L=L, name=myL] ++(2,0);
4 \draw[thick, double] (myL.core west) -- (myL.core east);
5 \draw (0,0) to[L=L, name=myL, label distance=2pt] ++(2,0);
6 \draw[thick, double] (myL.core west) -- (myL.core east);
7 \end{circuitikz}

5.1.2 Special symbols in labels and annotations.

When TikZ processes the options, there will be problems if the label (or annotation, voltage, or current)
contains one of the characters = (equal) or , (comma) — because the parser search for those two characters
to delimit the arguments, giving unexpected errors and wrong output. These two characters can be
protected from the option parser using an extra set of braces.

82Since version 1.3.3

184

R = 3

R = 3 R, 3

R=3
1 \begin{circuitikz}
2 % the following will fail:
3 % \draw (0,0) to[R, l=$R=3$]
4 \draw (0,0) to[R, l={$R=3$}] (3,0);
5 \draw (0,0) to[R={$R=3$}] (0,3);
6 \draw (3,3) to[R={$R,3$}] (3,0);
7 % this works, but it has wrong spacing
8 \draw (0,3) to[R, l=$R{=}3$] (3,3);
9 \end{circuitikz}

Caveat: up to version 1.2.7, due to the way in which CircuiTikZ used to processes the options, even
that was not sufficient, so you must protect that tokens even more, for example using an \mbox command,
or redefining the characters with a TEX \def:

R = 3

R = 3 R, 3

R=3 1 \begin{circuitikz}
2 \def\eq{=}
3 % the following will fail up to 1.2.7:
4 % \draw (0,0) to[R, l={$R=3$}] (3,0);
5 \draw (0,0) to[R, l=\mbox{$R=3$}] (3,0);
6 \draw (0,0) to[R, l=$R\eq3$] (0,3);
7 \draw (3,3) to[R, l=\mbox{$R,3$}] (3,0);
8 % this works, but it has wrong spacing
9 \draw (0,3) to[R, l=$R{=}3$] (3,3);

10 \end{circuitikz}

5.1.3 Labels and annotation orientation.

The default orientation of labels is controlled by the options smartlabels, rotatelabels and straightlabels
(or the corresponding label/align keys). Here are examples to see the differences:

0

4590

135

180

-90

-45

-135

1 \begin{circuitikz}
2 \ctikzset{label/align = straight}
3 \def\DIR{0,45,90,135,180,-90,-45,-135}
4 \foreach \i in \DIR {
5 \draw (0,0) to[R=\i, *-o] (\i:2.5);
6 }
7 \end{circuitikz}

185

0

4590
135

180

-90

-45

-13
5

1 \begin{circuitikz}
2 \ctikzset{label/align = rotate}
3 \def\DIR{0,45,90,135,180,-90,-45,-135}
4 \foreach \i in \DIR {
5 \draw (0,0) to[R=\i, *-o] (\i:2.5);
6 }
7 \end{circuitikz}

0

4590
135

180

-90

-45

-13
5

1 \begin{circuitikz}
2 \ctikzset{label/align = smart}
3 \def\DIR{0,45,90,135,180,-90,-45,-135}
4 \foreach \i in \DIR {
5 \draw (0,0) to[R=\i, *-o] (\i:2.5);
6 }
7 \end{circuitikz}

5.1.4 Stacked (two lines) labels.

When using circuitikz in LaTeX, you can use stacked (two lines) labels. The example should be self-
explanatory: the two lines are specified as l2=line1 and line2. You can use the keys l2 halign to control
horizontal position (left, center, right) and l2 valign to control the vertical one (bottom, center, top).
The default values for alignments are thought for vertical components (where the stacke labels are more
natural), in other positions you have to force them.
Notice that you can’t use the compact <...> notation for siunitx with stacked labels. Before v1.3.6
the label was ignored, but that has been converted into an error.
Since v1.3.6 you have the same possibility with the annotation (just use a2=..., a2_=..., a2 valign
and so on. Notice that the default position for stacked annotation is v2 halign=l.
The l2 and a2 will only work in LaTeX because they use a tabular environment in their implementation.
For plain TeX and ConTEXt you have to use l and a and build the stack of labels externally.

186

RCC

4.7 kΩ

RCC

4.7 kΩRCC

4.7 kΩ

RCC

4.7 kΩ

RCC

4.7 kΩ

RCC

4.7 kΩ

RCC

4.7 kΩ RCC

4.7 kΩ

A=B
X

C=D
Y

1 \begin{circuitikz}[american]
2 %
3 % default for l2 is: l2 halign=l, l2 valign=c. DO NOT USE the <...> notation
4 %
5 \draw (0,0) to[R, l2_=R_{CC} and \SI{4.7}{k\ohm}, , l2 valign=t] ++(2,0);
6 \draw (0,0) to[R, l2_=R_{CC} and \SI{4.7}{k\ohm}, ,] ++(0,2);
7 \draw (0,0) to[R, l2_=R_{CC} and \SI{4.7}{k\ohm}, l2 halign=c, l2 valign=b] ++(-2,0);
8 \draw (0,0) to[R, l2_=R_{CC} and \SI{4.7}{k\ohm}, l2 halign=r, l2 valign=c] ++(0,-2);
9 \draw (5,0) to[R, l2^=R_{CC} and \SI{4.7}{k\ohm}, l2 halign=c, l2 valign=b] ++(2,0);

10 \draw (5,0) to[R, l2^=R_{CC} and \SI{4.7}{k\ohm}, l2 halign=c,] ++(0,2);
11 \draw (5,0) to[R, l2^=R_{CC} and \SI{4.7}{k\ohm}, , l2 valign=t] ++(-2,0);
12 \draw (5,0) to[R, l2^=R_{CC} and \SI{4.7}{k\ohm}, l2 halign=c, l2 valign=t] ++(0,-2);
13 \draw (10,2) to[R, l2={A=B} and X, a2={C=D} and Y] ++(0,-4);
14 \end{circuitikz}

For extra options about labels and annotations, please refer to section 5.6

5.2 Currents and voltages
The default direction/sign for currents and voltages in the components is, unfortunately, not standard,
and can change across country and sometime across different authors. This unfortunate situation created
a bit of confusion in circuitikz across the versions, with several incompatible changes starting from
version 0.5. From version 0.9.0 onward, the maintainers agreed a new policy for the directions of bipoles’
voltages and currents, depending on 4 different possible options:

• oldvoltagedirection, or the key style voltage dir=old: Use old way of voltage direction having
a difference between european and american direction, with wrong default labeling for batteries (it
was the default before version 0.5);

• nooldvoltagedirection, or the key style voltage dir=noold: The standard from version 0.5 on-
ward, utilize the (German?) standard of voltage arrows in the direction of electric fields (without
fixing batteries);

• RPvoltages (meaning Rising Potential voltages), or the key style voltage dir=RP: the arrow is in
direction of rising potential, like in oldvoltagedirection, but batteries and current sources are
fixed so that they follow the passive/active standard: the default direction of v and i are chosen so
that, when both values are positive:

– in passive component, the element is dissipating power;
– in active components (generators), the element is generating power.

• EFvoltages (meaning Electric Field voltages), or the key style voltage dir=EF: the arrow is in the
direction of the electric field, like in nooldvoltagedirection, but batteries are fixed;

Notice that the four styles are designed to be used at the environment level: that is, you should use them
at the start of your environment as in \begin{circuitikz}[voltage dir=old] ... and not as a key for
single components, in which case the behavior is not guaranteed.
The standard direction of currents, flows and voltages are changed by these options; notice that the default
drops in case of passive and active elements is normally different. Take care that in the case of noold and
EFvoltages also the currents can switch directions. It is much easier to understand the several behaviors
by looking at the following examples, that have been generated by the code:

187

1 \foreach\element in {R, C, D, battery2, V, I, sV, cV, cI}{%
2 \noindent\ttfamily
3 \begin{tabular}{p{2cm}}
4 \element \\ american \\[15pt]
5 \element \\ european \\
6 \end{tabular}
7 \foreach\mode in {old, noold, RP, EF} {
8 \begin{tabular}{@{}l@{}}
9 \multicolumn{1}{c}{voltage dir} \\

10 \multicolumn{1}{c}{dir=\mode} \\[4pt]
11 \begin{tikzpicture}[
12 american, voltage dir=\mode,
13]
14 \draw (0,0) to[\element, *-o, v=v_1, i=i_1,] (2.5,0);
15 \end{tikzpicture}\\
16 \begin{tikzpicture}[
17 european, voltage dir=\mode,
18]
19 \draw (0,0) to[\element, *-o, v=v_1, i=i_1,] (2.5,0);
20 \end{tikzpicture}
21 \end{tabular}
22 \medskip
23 }
24 \par
25 }

R
american

R
european

voltage dir
dir=old

+ −
v1

i1

v1

i1

voltage dir
dir=noold

+ −
v1

i1

v1

i1

voltage dir
dir=RP

+ −
v1

i1

v1

i1

voltage dir
dir=EF

+ −
v1

i1

v1

i1

C
american

C
european

voltage dir
dir=old

+ −
v1

i1

v1

i1

voltage dir
dir=noold

+ −
v1

i1

v1

i1

voltage dir
dir=RP

+ −
v1

i1

v1

i1

voltage dir
dir=EF

+ −
v1

i1

v1

i1

188

D
american

D
european

voltage dir
dir=old

+ −
v1

i1

v1

i1

voltage dir
dir=noold

+ −
v1

i1

v1

i1

voltage dir
dir=RP

+ −
v1

i1

v1

i1

voltage dir
dir=EF

+ −
v1

i1

v1

i1

battery2
american

battery2
european

voltage dir
dir=old

+ −
v1

i1

v1

i1

voltage dir
dir=noold

+ −
v1

i1

v1

i1

voltage dir
dir=RP

− +
v1

i1

v1

i1

voltage dir
dir=EF

− +
v1

i1

v1

i1

V
american

V
european

voltage dir
dir=old

+−

v1

i1

v1

i1

voltage dir
dir=noold

−+

v1

i1

v1

i1

voltage dir
dir=RP

+−

v1

i1

v1

i1

voltage dir
dir=EF

−+

v1

i1

v1

i1

I
american

I
european

voltage dir
dir=old

+ −
v1

i1

v1

i1

voltage dir
dir=noold

− +

v1

i1

v1

i1

voltage dir
dir=RP

− +

v1

i1

v1

i1

voltage dir
dir=EF

− +

v1

i1

v1

i1

189

sV
american

sV
european

voltage dir
dir=old

+ −
v1

i1

v1

i1

voltage dir
dir=noold

+ −
v1

i1

v1

i1

voltage dir
dir=RP

− +
v1

i1

v1

i1

voltage dir
dir=EF

− +
v1

i1

v1

i1

cV
american

cV
european

voltage dir
dir=old

+−

v1

i1

v1

i1

voltage dir
dir=noold

−+
v1

i1

v1

i1

voltage dir
dir=RP

+−

v1

i1

v1

i1

voltage dir
dir=EF

−+

v1

i1

v1

i1

cI
american

cI
european

voltage dir
dir=old

+ −

v1

i1

v1

i1

voltage dir
dir=noold

− +

v1

i1

v1

i1

voltage dir
dir=RP

− +

v1

i1

v1

i1

voltage dir
dir=EF

− +

v1

i1

v1

i1

Obviously, you normally use just one between current and flows, but anyway you can change the direction
of the voltages, currents and flows using the complete keys i_>, i^<, i>_, i>^, as shown in the following
examples.
This manual has been typeset with the option RPvoltages.

5.2.1 Common properties of voltages and currents

Currents, voltages and flows (see later) are positioned along, or across, the part of the wires that connect
the inner component to the rest of the circuit. So, changing the length of the connection (the coordinates
that embrace the to[...] command) will change the position of the components.

v

i
f

v

i
f

1 \begin{circuitikz}
2 \draw (-1,1) to[R, v=v, i=i, f>^=f] (1,1);
3 \draw (-2,0) to[R, v=v, i=i, f>^=f] (2,0);
4 \end{circuitikz}

190

However, you can override the properties voltage/distance from node (default 0.5: how distant from
the initial and final points of the path the arrow starts and ends or the plus and minus symbols are
drawn) and voltage/bump b (how high the bump of the arrow is — how curved it is, default 1.5), and
also voltage/european label distance (how distant from the normal position the voltage label will be,
default 1.4) on a per-component basis, in order to fine-tune the voltages:

1V

1V

1 \tikz \draw (0,0) to[R, v=1<\volt>] (2,0); \par
2 \ctikzset{voltage/distance from node=.1}
3 \ctikzset{voltage/bump b=2.5}
4 \tikz \draw (0,0) to[R, v=1<\volt>] (2,0);

You can also use a global ctikzset on the key voltage/distance from node (and similar) that will act
as a default value. Notice however that the specific component value overrides the global one, and
several components have pre-defined overrides, so they will ignore the default value. The components that
have out of the box predefined overrides for distance from node are generic, ageneric, fullgeneric
and memristor (set to 0.4), and the ones that have it for bump b are generic, ageneric, fullgeneric,
memristor, tline, varistor, photoresistor, thermistor, thermistorntc, thermistorptc, ccapacitor,
emptyzzdiode, fullzzdiode, emptythyristor, fullthyristor, emptytriac and fulltriac„ with several
values (you can look at them in the file pgfcirc.defines.tex)
Notice also that normally distance from node is a relative displacement, computed on the node-component
wire. So that this will put the start and stop point 1/4 of the way between node and component:

v1

v1

v1

1 \begin{circuitikz}
2 \ctikzset{voltage/distance from node=0.25}
3 \draw (0, 2) to[D, v=v_1] ++(4,0);
4 \draw (0, 1) to[D, v=v_1] ++(3,0);
5 \draw (0, 0) to[D, v=v_1] ++(2,0);
6 \end{circuitikz}

The value of distance from node can also be an absolute distance; in that case is measured from the
start of the connection toward the component on the left (and symmetrically on the right), so this will
put the start and end point to 0.25 cm from the start of the node:

v1

v1

v1

1 \begin{circuitikz}
2 \ctikzset{voltage/distance from node=0.25cm}
3 \draw (0, 2) to[D, v=v_1] ++(4,0);
4 \draw (0, 1) to[D, v=v_1] ++(3,0);
5 \draw (0, 0) to[D, v=v_1] ++(2,0);
6 \end{circuitikz}

There is currently no way to specify the position at a fixed distance from the component (as opposed as
from the node).
The same concept as distance from node applies to the key current/distance for the position of the
current’s arrow (and to flow/distance for the flow arrow position):

191

ı

ı

1 \tikz \draw (0,0) to[C, i=\imath] (2,0); \par
2 \ctikzset{current/distance = .2}
3 \tikz \draw (0,0) to[C, i=\imath] (2,0);

If you want to change those parameters by defining a component-specific key you have to use the internal
name of the component (in the component list, is the nodename without the terminal “shape” part):

1V
2V

1V
2V

1 \tikz \draw (0,0) to[R, v=1<\volt>] (1.5,0)
2 to[C, v=2<\volt>] (3,0); \par
3 \ctikzset{bipoles/capacitor/voltage/distance from node/.initial

=.7}
4 \tikz \draw (0,0) to[R, v=1<\volt>] (1.5,0)
5 to[C, v=2<\volt>] (3,0); \par

Note the .initial; you have to create such key the first time you use it. These kinds of adjustments are
not guaranteed to work in future upgrades, though; if you have to create a key you are somehow touching
the internal structure of the package; it’s much safer to create a style.
One common request is to change the style of the arrows (both head and line) of these elements. Voltages,
currents and flows are part of the same path of the component, so this is not possible in simple way; you
have to draw your own with TikZ commands using the facilities explained in section 5.8.

5.2.2 Special treatment for generators

The “active” elements (sources and batteries, mainly) are treated differently from passive elements, in the
sense that the default current and voltage direction and position could be different83 following the chosen
global voltage direction strategy (see section 5.2). If they change or not depend on both the element and
the chosen voltage dir option.

Vs VB

VR

1 \begin{tikzpicture}[]
2 \draw (0,0) to[sV, v=V_s] ++(2,0)
3 to[battery, v=V_B] ++(2,0)
4 to[R, v=V_R] ++(2,0);
5 \end{tikzpicture}

The consistency between symbols drawings and the default voltage and current directions are designed to
work well when this default is enabled. If you want, though, you can override this behavior by “switching
off” the source status of the component by setting the property bipole/is voltage to false:

Vs VB

VR

1 \begin{tikzpicture}[]
2 \draw (0,0) to[sV, bipole/is voltage=false,
3 v=V_s] ++(2,0)
4 to[battery, bipole/is voltage=false,
5 v=V_B] ++(2,0)
6 to[R, v=V_R] ++(2,0);
7 \end{tikzpicture}

83This, in hindsight, has been a bad feature — and I’m partly responsible for it. But removing it would create
too small variations in circuits, easily to go unnoticed, so it stays: nobody wants wrong circuits just by recompiling.

192

When you do this, be careful that (as you can see) the direction of the plain v=... option will change
(please notice that this does not mean that it is incorrect, given that the voltage and current direction are
arbitrary; in the case above, if the battery is a 3V one, VB = −3V with the RPvoltages conventions).
Also, notice that there is an ordering problem in the to[...] options: you have to switch the is voltage
property off before setting the voltage, otherwise you will have a mix of the source-type and passive
positioning:

Vs

VB
1 \begin{tikzpicture}[]
2 % correct way
3 \draw (0,0) to[sV, bipole/is voltage=false, v=V_s]

++(2,0)
4 % wrong way, setting voltage before changing type
5 to[sV=V_B , bipole/is voltage=false,] ++(2,0);
6 \end{tikzpicture}

In the first to[] command, the voltage is set before changing the type (assigning a value to the name of
the element is understood as a v=... command for voltage sources).
A similar switch is present for current generators, called bipoles/.is current, acting in a very similar
way.
If you would prefer to switch to the is voltage=false, is current=false behavior by default, you can
(since v1.4.484) by setting the option bipole/override source vif to true. This is highly experimental,
so use with care.

vb sV

vR

vb sV
vR

1 \begin{tikzpicture}[]
2 \draw (0,0) to [battery=vb] ++(2,0)
3 to[sV=sV] ++(2,0) to[R, v=vR] ++(2,0);
4 \ctikzset{bipole/override source vif=true}
5 \draw (0,-2) to [battery=vb] ++(2,0)
6 to[sV=sV] ++(2,0) to[R, v=vR] ++(2,0);
7 \end{tikzpicture}

Notice that the option override source vif is “stronger” than the normal is voltage; so to locally
re-set the behavior for just one source, you need to disable that before using a voltage designator.

+−

+ −
va

+−

+ −
va

+−

va

1 \begin{tikzpicture}[american]
2 % dangerous option ahead: USE WITH CARE
3 \ctikzset{bipole/override source vif=true}
4 % ugly output, you should really use V>=va
5 \draw (0,6) to [V=va] ++(2,0);
6 % not working!
7 \draw (0,4) to [V=va, bipole/override source vif=false] ++(2,0);
8 % ok, this one is working --- you need both settings!
9 \draw (0,2) to [V,

10 bipole/override source vif=false,
11 bipole/is voltage=true,
12 v=va] ++(2,0);
13 \end{tikzpicture}

Clearly, if you find yourself using the last component often, it is better to define a style, which will save
you a lot of typing and help readability:

84Suggested by user @judober on GitHub.

193

https://github.com/circuitikz/circuitikz/issues/590

+−− +
va

+−

vb

1 \tikzset{myV/.style={V, bipole/override source vif=false,
2 bipole/is voltage=true, v={#1}}}%
3 \begin{tikzpicture}[american]
4 % dangerous option ahead: USE WITH CARE
5 \ctikzset{bipole/override source vif=true}
6 \draw (0,0) to [V>=va] ++(2,0);
7 \draw (0,-2) to[myV=vb] ++(2,0);
8 \end{tikzpicture}

On the other way around, you could use styles to set is voltage=false only on the components you use
and without using the global switch — which is the recommended way of doing it.

5.3 Currents

Inline (along the wire) currents are selected with i_>, i^<, i>_, i>^, and various combinations; the default
position and direction is obtained with the simple key i=....
Basically, ^ and _ control if the label is above or below the line (above and below do depend on the
direction of the component path), and < and > the direction of the arrow; swapping them (from for
example from i^> to i>^) will switch the side of the component where the symbol is drawn. See the
following examples:

i1
1 \begin{circuitikz}
2 \draw (0,0) to[R, i^>=i_1] (2,0);
3 \end{circuitikz}

i1

1 \begin{circuitikz}
2 \draw (0,0) to[R, i_>=i_1] (2,0);
3 \end{circuitikz}

i1
1 \begin{circuitikz}
2 \draw (0,0) to[R, i^<=i_1] (2,0);
3 \end{circuitikz}

i1

1 \begin{circuitikz}
2 \draw (0,0) to[R, i_<=i_1] (2,0);
3 \end{circuitikz}

i1
1 \begin{circuitikz}
2 \draw (0,0) to[R, i>^=i_1] (2,0);
3 \end{circuitikz}

i1

1 \begin{circuitikz}
2 \draw (0,0) to[R, i>_=i_1] (2,0);
3 \end{circuitikz}

i1
1 \begin{circuitikz}
2 \draw (0,0) to[R, i<^=i_1] (2,0);
3 \end{circuitikz}

i1

1 \begin{circuitikz}
2 \draw (0,0) to[R, i<_=i_1] (2,0);
3 \end{circuitikz}

Also notice that the direction of the path is important:

194

i1

i1

1 \begin{circuitikz}
2 \draw (2,1) to[R, i<=i_1] (0,1);
3 \draw (0,0) to[R, i<=i_1] (2,0);
4 \end{circuitikz}

Default directions can change if the component is active or passive,85 following the chosen global voltage
direction strategy (see section 5.2).

10V

i1

1 \begin{circuitikz}
2 \draw (0,0) to[V=10V, i_=i_1] (2,0);
3 \end{circuitikz}

10V

i1

1 \begin{circuitikz}[voltage dir=EF]
2 \draw (0,0) to[V=10V, i_=i_1] (2,0);
3 \end{circuitikz}

+−

10V

i1

1 \begin{circuitikz}[american]
2 \draw (0,0) to[V=10V, i_=i_1] (2,0);
3 \end{circuitikz}

+ −

10V

i1

1 \begin{circuitikz}[american]
2 \draw (0,0) to[V=10V,invert, i_=i_1] (2,0);
3 \end{circuitikz}

Current generators with the direct label (the one obtained by, for example, I = something) will treat it
as a current:

a1
1 \begin{circuitikz}
2 \draw (0,0) to[I=a_1] (2,0);
3 \end{circuitikz}

If you use the option americancurrent or using the style [american currents] you can change the style
of current generators.

a1
1 \begin{circuitikz}[american currents]
2 \draw (0,0) to[I=a_1] (2,0);
3 \end{circuitikz}

5.4 Flows

As an alternative for the current arrows, you can also use the following “flows”. They can also be used to
indicate thermal or power flows. The syntax is pretty the same as for currents.

i1
1 \begin{circuitikz}
2 \draw (0,0) to[R, f=i_1] (3,0);
3 \end{circuitikz}

85This is better explained in section 5.2.2

195

i1
1 \begin{circuitikz}
2 \draw (0,0) to[R, f<=i_1] (3,0);
3 \end{circuitikz}

i1

1 \begin{circuitikz}
2 \draw (0,0) to[R, f_=i_1] (3,0);
3 \end{circuitikz}

i1

1 \begin{circuitikz}
2 \draw (0,0) to[R, f_>=i_1] (3,0);
3 \end{circuitikz}

i1
1 \begin{circuitikz}
2 \draw (0,0) to[R, f<^=i_1] (3,0);
3 \end{circuitikz}

i1

1 \begin{circuitikz}
2 \draw (0,0) to[R, f<_=i_1] (3,0);
3 \end{circuitikz}

i1

1 \begin{circuitikz}
2 \draw (0,0) to[R, f>_=i_1] (3,0);
3 \end{circuitikz}

5.5 Voltages
See the introduction at Currents and Voltages (section 5.2, page 187) for the default direction of the
voltage and currents.
Voltages come in four different styles: European (with curved or straight arrows) and American (with
signs that can stay near the wire or raised at the label level).
Direction and position of the symbols are controlled in the same way as for the currents (see section 5.3)
with the _^<> symbols.

5.5.1 European style

The default, with curved arrows. Use option europeanvoltage or style [european voltages], or setting
(even locally) voltage=european.

v1 1 \begin{circuitikz}[european voltages]
2 \draw (0,0) to[R, v^>=v_1] (2,0);
3 \end{circuitikz}

v1 1 \begin{circuitikz}[european voltages]
2 \draw (0,0) to[R, v^<=v_1] (2,0);
3 \end{circuitikz}

v1

1 \begin{circuitikz}[european voltages]
2 \draw (0,0) to[R, v_>=v_1] (2,0);
3 \end{circuitikz}

v1

1 \begin{circuitikz}[european voltages]
2 \draw (0,0) to[R, v_<=v_1] (2,0);
3 \end{circuitikz}

196

The default direction for active elements can change, depending on the global voltage dir setting, so be
careful.

u1

1A
1 \begin{circuitikz}
2 \draw (0,0) to[I=1A, v_=u_1] (2,0);
3 \end{circuitikz}

u1

1A
1 \begin{circuitikz}
2 \draw (0,0) to[I<=1A, v_=u_1] (2,0);
3 \end{circuitikz}

1A

u1

1 \begin{circuitikz}
2 \draw (0,0) to[I=$~$,l=1A, v_=u_1] (2,0);
3 \end{circuitikz}

1A

u1

1 \begin{circuitikz}
2 \draw (0,0) to[I,l=1A, v_=u_1] (2,0);
3 \end{circuitikz}

Moreover, for historical reasons, voltage generators have differently looking arrows (they are straight even
in curved European style).

1V

u1

i1
1 \begin{circuitikz}
2 \draw (0,0) to[battery,l_=1V, v=u_1, i=i_1] (2,0);
3 \end{circuitikz}

10V

i1

1 \begin{circuitikz}
2 \draw (0,0) to[V=10V, i_=i_1] (2,0);
3 \end{circuitikz}

You can change this last thing by forcing “off” the status of “voltage generator” of the component; but
now the normal (passive) rule will apply, so, again, be careful and read section 5.2.2.

u1

1 \begin{circuitikz}
2 \draw (0,0) to[battery, bipole/is voltage=false,
3 v>=u_1,] (2,0);
4 \end{circuitikz}

As for the currents, the direct label of voltage sources is passed as a voltage:

k · a1
1 \begin{circuitikz}
2 \draw (0,0) to[cV=$k\cdot a_1$] (2,0);
3 \end{circuitikz}

197

The following results from using the option americanvoltage or the style [american voltages].
+−

a1 1 \begin{circuitikz}[american voltages]
2 \draw (0,0) to[V=a_1] (2,0);
3 \end{circuitikz}

5.5.2 Straight European style

Using straight arrows. Use option straightvoltages or style [straight voltages], or setting (even
locally) voltage=straight.

v1 1 \begin{circuitikz}[straight voltages]
2 \draw (0,0) to[R, v^>=v_1] (2,0);
3 \end{circuitikz}

v1 1 \begin{circuitikz}[straight voltages]
2 \draw (0,0) to[R, v^<=v_1] (2,0);
3 \end{circuitikz}

v1

1 \begin{circuitikz}[straight voltages]
2 \draw (0,0) to[R, v_>=v_1] (2,0);
3 \end{circuitikz}

v1

1 \begin{circuitikz}[straight voltages]
2 \draw (0,0) to[R, v_<=v_1] (2,0);
3 \end{circuitikz}

Again, voltage generators are treated differently:

10V

i1

1 \begin{circuitikz}[straight voltages]
2 \draw (0,0) to[V=10V, i_=i_1] (3,0);
3 \end{circuitikz}

10V
i1

1 \begin{circuitikz}[straight voltages]
2 \draw (0,0) to[I, v=10V, i_=i_1] (3,0);
3 \end{circuitikz}

And you can override that with bipole/is voltage keeping into account that the default direction will
be the one of passive components (see 5.2.2):

10V
i1

1 \begin{circuitikz}[straight voltages]
2 \draw (0,0) to[V, bipole/is voltage=false,
3 v=10V, i_=i_1] (3,0);
4 \end{circuitikz}

198

5.5.3 American style

Use option americanvoltage or set [american voltages] or use the option voltage=american.

− +
v1 1 \begin{circuitikz}[american voltages]

2 \draw (0,0) to[R, v^>=v_1] (2,0);
3 \end{circuitikz}

+ −
v1 1 \begin{circuitikz}[american voltages]

2 \draw (0,0) to[R, v^<=v_1] (2,0);
3 \end{circuitikz}

− +
v1

1 \begin{circuitikz}[american voltages]
2 \draw (0,0) to[R, v_>=v_1] (2,0);
3 \end{circuitikz}

+ −
v1

1 \begin{circuitikz}[american voltages]
2 \draw (0,0) to[R, v_<=v_1] (2,0);
3 \end{circuitikz}

− +

u1

1A 1 \begin{circuitikz}[american]
2 \draw (0,0) to[I=1A, v_=u_1] (2,0);
3 \end{circuitikz}

− +

i1

1A 1 \begin{circuitikz}[american]
2 \draw (0,0) to[I<=1A, v_=i_1] (2,0);
3 \end{circuitikz}

5.5.4 Raised American style

Since version 1.2.1, “raised” American voltages are available; to use them, set the style [raised voltages]
or use the option voltage=raised. This is a version of the American-style voltage where the signs are
raised to the level of the label. The label is centered between the two signs, and the position of the signs
is calculated by supposing that the label itself will be pretty simple; if you have very big labels you will
need to adjust the position with voltage shift and/or the voltage/distance from node properties (see
section 5.2.1).

− +v1 1 \begin{circuitikz}[raised voltages]
2 \draw (0,0) to[R, v^>=v_1] (2,0);
3 \end{circuitikz}

+ −v1 1 \begin{circuitikz}[raised voltages]
2 \draw (0,0) to[R, v^<=v_1] (2,0);
3 \end{circuitikz}

− +v1

1 \begin{circuitikz}[raised voltages]
2 \draw (0,0) to[R, v_>=v_1] (2,0);
3 \end{circuitikz}

+ −v1

1 \begin{circuitikz}[raised voltages]
2 \draw (0,0) to[R, v_<=v_1] (2,0);
3 \end{circuitikz}

199

− +u1

1A 1 \begin{circuitikz}[american]
2 \ctikzset{voltage=raised}
3 \draw (0,0) to[I=1A, v_=u_1] (2,0);
4 \end{circuitikz}

− +i1

1A 1 \begin{circuitikz}[raised voltages]
2 \draw (0,0) to[I<=1A, v_=i_1] (2,0);
3 \end{circuitikz}

5.5.5 Voltage position

It is possible to move the arrows and the plus or minus signs away from the component with the key
voltages shift (default value is 0, which gives the standard position):

v1

i1

v1

i1

v1

i1

1 \begin{circuitikz}[]
2 \draw (0,0) to[R, v=v_1, i=i_1] (2,0);
3 \draw (0,-1) to[R, v=v_1, i=i_1,
4 voltage shift=0.5] (2,-1);
5 \draw (0,-2) to[R, v=v_1, i=i_1,
6 voltage shift=1.0] (2,-2);
7 \end{circuitikz}

+ −
v1

i1 1 \begin{circuitikz}[american voltages, voltage shift=0.5]
2 \draw (0,0) to[R, v=v_1, i=i_1] (2,0);
3 \end{circuitikz}

Negative values do work as expected:

+ −v1
i1

+ −v1

i1

1 \begin{circuitikz}[raised voltages]
2 \draw (0,1.5) to[R, v^=v_1, i=i_1] ++(2,0);
3 \draw (0,0) to[R, v^=v_1, i_=i_1,
4 voltage shift=-1.0] ++(2,0);
5 \end{circuitikz}

You can fine-tune the position of the + and - symbols and the label in independent way using voltage/shift
(default 0.0 for the former and voltage/american label distance (the distance of the label from the
lines of the symbols, default 1.4) for the latter.

+ −
v1

i1

+ −v1

i1

1 \begin{circuitikz}[american voltages]
2 \draw (0,1) to[R, v=v_1, i=i_1] ++(2,0);
3 % normally 1.4, make it tighter
4 \ctikzset{voltage/american label distance=0.5}
5 \draw (0,0) to[R, v=v_1, i=i_1] ++(2,0);
6 \end{circuitikz}

Notes that american voltage also affects batteries.

200

1V

u1

i1
1 \begin{circuitikz}[voltage shift=0.5]
2 \draw (0,0) to[battery,l_=1V, v=u_1, i=i_1] (2,0);
3 \end{circuitikz}

1V

− +
u1

i1
1 \begin{circuitikz}[american voltages, voltage shift=0.5]
2 \draw (0,0) to[battery,l_=1V, v=u_1, i=i_1] (2,0);
3 \end{circuitikz}

Additionally, the open component is treated differently; the voltage is placed in the middle of the open
space86:

+ −vo

vo

1 \begin{circuitikz}[american voltages]
2 \draw (0,1.5) -- ++(0.5,0)
3 to[open, v=v_o, o-o] ++(2,0) -- ++(0.5,0);
4 \draw (0,0) -- ++(0.5,0)
5 to[open, v=v_o, voltage=straight, *-*] ++(2,0)
6 -- ++(0.5,0);
7 \end{circuitikz}

If you want or need to maintain the old behavior for open voltage, you can set the key open voltage
position to legacy (the default is the new behavior, which corresponds to the value center).

5.5.6 American voltages customization

Since 0.9.0, you can change the font87 used by the american voltages style, by setting to something
different from nothing the key voltage/american font (default: nothing, using the current font) style:

+ −

VS

+ −
VS

1 \begin{circuitikz}[american]
2 \begin{scope}
3 \ctikzset{voltage/american font=\tiny\boldmath}
4 \draw (0,0) to[R,v=V_S] ++(2,0);
5 \end{scope}
6 \draw (0,-2) to[R,v=V_S] ++(2,0);
7 \end{circuitikz}

Also, if you want to change the symbols (sometimes just the + sign is drawn, for example, or for high-
lighting something), using the keys voltage/american plus and voltage/american minus (default $+$
and $\vphantom{+}-$).
Notice that the definition of the minus sign is not simply $-$ because in most font (but not Computer
Modern!) the size of the bounding box for the mathematical plus or minus are different. The \vphantom
forces the vertical size of the minus sign to be the same as the plus sign.88

86Since v1.1.2, thank to an issue opened by user rhandley on GitHub.
87There was a bug before, noticed by the user dzereb on tex.stackexchange.com which made the symbols using

different fonts in a basically random way. In the same page, user campa found the problem. Thanks!
88Changed in v1.6.3, you can look at this issue on GitHub for more details.

201

https://github.com/circuitikz/circuitikz/issues/374
https://tex.stackexchange.com/questions/487683/odd-minus-style-when-drawing-american-voltage
https://github.com/circuitikz/circuitikz/issues/721

⊖ ⊕
VS

⊕ ⊖
VS

1 \begin{circuitikz}[american]
2 \ctikzset{voltage/american font=\scriptsize\boldmath}
3 \ctikzset{voltage/american plus=\textcolor{red}{\oplus}}
4 \ctikzset{voltage/american minus=\textcolor{blue}{\ominus}}
5 \draw (0,0) to[R,v_>=V_S] ++(2,0);
6 \draw (0,-2) to[R,v_<=V_S] ++(2,0);
7 \end{circuitikz}

This could be especially useful if you define a style, to use like this:

− +
VS

+ −
VS

1 \tikzset{red plus/.style={
2 circuitikz/voltage/american plus=\textcolor{red}{$+$},
3 }}
4 \begin{circuitikz}[american]
5 \draw (0,0) to[R,v_>=V_S, red plus] ++(2,0);
6 \draw (0,-2) to[R,v_<=V_S] ++(2,0);
7 \end{circuitikz}

5.5.7 Combining different styles

Due to an historical hiccup, you need to be careful if you want to mix styles, like for example having
american styled components and straight voltages (which are basically european style, at least in Cir-
cuiTikZ). The problem is that the order of style parameters can change the output89 as you can see in the
following example, where in the red case the voltage generator shape reverted to the european one.

+
−VP

+

−

VP VP VP

1 \begin{circuitikz}[straight voltages,
american]

2 \draw (0,0) to [V, v=V_P] ++(0,3);
3 \draw (1,0) to [R, v=V_P] ++(0,3);
4 \end{circuitikz}\color{red}%
5 \begin{circuitikz}[american, straight

voltages]
6 \draw (0,0) to [V, v=V_P] ++(0,3);
7 \draw (1,0) to [R, v=V_P] ++(0,3);
8 \end{circuitikz}

This is arguably a bug, but fixing it (separating the voltage generator shapes from the voltage style) would
break havoc with older circuits, so this will not be fixed for now.

5.6 Changing the style of labels, voltages, and other text ornaments

Since version 0.9.5, it is possible to change the style of bipole text ornaments (labels, annotations,
voltages etc) by using the appropriate styles or keys. The basic style applied to the text is defined in the
/tikz/circuitikz key directory and applied to every node that contains the text; you can also change
them locally by using the tikz direct keys in local scopes.
For example, you can make all annotations small by using:

\ctikzset{bipole annotation style/.style={font=\small}}

And/or change (override) the setting in one specific bipole using:

...to[bipole annotation style={color=red}, R, a={Red note}]...

89thanks to Stack Exchange user Mads P Olesen for noticing.

202

https://tex.stackexchange.com/q/665466/38080

where the annotation will be in normal font (it has been reset!) and red, or append to the style:
...to[bipole annotation append style={color=red}, R, a={Red small note}]...

Caveat: you have to put the style changing key at the start of the to arguments to have any effect90.
The available styles and commands are bipole label style, bipole annotation style, bipole voltage
style, bipole current style, and bipole flow style. The following example shows a bit of everything.

L1

A1 L2
2L

A2 R1

+ −
V1

I1
F1

+ −
V2

I2
F2

1 \begin{circuitikz}[american]
2 \ctikzset{bipole annotation style/.style={font=\tiny}}
3 \ctikzset{bipole current style/.style={font=\small\sffamily}}
4 \draw (0,0) to [bipole annotation append style={fill=yellow}, R=L1, a=A1] ++(3,0)
5 to [bipole label style={fill=cyan}, R, l2_=L2 and 2L, a^=A2] ++(3,0);
6 \draw (7,0) to [bipole voltage style={color=blue},
7 bipole flow style={fill=green, outer sep=5pt},
8 R=R1, v=V1, i=I1, f>^=F1] ++(3,0)
9 to [bipole current append style={color=red}, R, v<=V2, i^=I2, f>^=F2] ++(3,0);

10 \end{circuitikz}

5.7 Accessing labels text nodes

Since 0.9.5, you can access all the labels nodes91 using special node names. So, if you use name to give
a name to the bipole node, you can also access the following nodes: namelabel (notice: no space nor
any other symbol between name and label!), nameannotation, namevoltage, namecurrent and nameflow.
Notice that the node names are available only if the bipole has an anchor or an annotation, of course.

L1

A1 L2
2L

A2L1

L1label

L1annotation

L2

L2label

L2annotation

R1

+ −
V1

I1
F1

+ −
V2

I2
F2

R1voltage R2voltage

R1current R2current
R1flow R2flow

1 \newcommand{\marknode}[2][45]{%
2 \node[circle, draw, red, inner sep=1pt,
3 pin={[red, font=\tiny]#1:#2}] at (#2.center) {};
4 }
5 \begin{circuitikz}[american]
6 \draw (0,0) to [R=L1, a=A1, name=L1] ++(3,0)
7 to [R, l2_=L2 and 2L, a^=A2, name=L2] ++(3,0);
8 \marknode{L1} \marknode{L1label} \marknode[0]{L1annotation}
9 \marknode{L2} \marknode[0]{L2label} \marknode{L2annotation}

10 \draw[blue] (L2label.south west) rectangle (L2label.north east);
11 \draw (6.1,0) to [R=R1, v=V1, i=I1, f>^=F1, name=R1] ++(3,0)
12 to [R, v<=V2, i^=I2, f>^=F2, name=R2] ++(3,0);
13 \marknode[0]{R1voltage} \marknode[0]{R2voltage} \marknode[90]{R1current}
14 \marknode[90]{R2current} \marknode{R1flow} \marknode{R2flow}
15 \end{circuitikz}

90No, I do not know why. Hints and fixes are welcome.
91The access to labels and annotations was present before, but not documented.

203

If you want to have more access to the label positioning algorithm, since 1.2.5 you can access the
label rotation using the command \ctikzgetdirection{nodename} (where node name is for example
L1label or L2annotation), and the anchor used for positioning the node as \ctikzgetanchor{component
label}{type}, where component label is, for example, L1 and type is either label or annotation (notice
that the syntax is slightly different, for implementation reasons). Those values are available only if the
dipole declares a l or a keys; if you want them without any label you need to declare a blank one (like
for example l=~). The following example gives an idea of the values of those macros for the three types
of label positioning strategies.

str
aig
ht

Lab

a
L1
L2

A

L1
dir: 0
anchor: -45

L1
dir: 0
anchor: 135

V1
dir: 0
anchor: mid east

V1
dir: 0
anchor: mid west sm

art

Lab

a
L1
L2

A

L1
dir: 45
anchor: mid

L1
dir: 45
anchor: mid

V1
dir: 0
anchor: mid east

V1
dir: 0
anchor: mid west rot

ate

Lab

a

L1L2 A

L1
dir: 45
anchor: mid

L1
dir: 45
anchor: mid

V1
dir: 270
anchor: mid

V1
dir: 270
anchor: mid

1 \newcommand{\marklabann}[3][45]{% [angle] {node label} {type: label or annotation}
2 \node[circle, draw, blue, inner sep=1pt,
3 pin={[draw, blue, font=\tiny, align=left]#1:{#2 \\ dir: \ctikzgetdirection{#2#3} \\
4 anchor: \ctikzgetanchor{#2}{#3}}}] at (#2#3.\ctikzgetanchor{#2}{#3}) {};}
5 \begin{tikzpicture}[scale=0.95, transform shape]
6 \foreach \style/\xdelta in {straight/0, smart/5, rotate/10} {
7 \begin{scope}[xshift=\xdelta cm]
8 \ctikzset{label/align = \style}
9 \draw (0,0) node[above right, rotate=45]{\style}

10 to[L, o-, l=L_{ab}, v, name=L1, a=a] ++(3,3)
11 to[ceV, -*, v, name=V1, l2_=L1 and L2, a^=A] ++(0,-3);
12 \marklabann[135]{L1}{label}
13 \marklabann[-90]{L1}{annotation}
14 \marklabann[90]{V1}{label}
15 \marklabann[-90]{V1}{annotation}
16 \end{scope}}
17 \end{tikzpicture}

5.8 Advanced voltages, currents and flows

Since version 1.2.192, it is possible to access the anchors of the “ornaments” — voltage, current and flows,
together with some additional information that makes it possible to personalize them. Normally, voltages
and flow and currents are drawn into the path of the bipoles, so that it is not possible, for example, to
change the line type or color of the arrows, or the type of arrows93. Access to the anchors allows you to
do all these things, and more.
For example, you can do something like this:

v

v

1 \begin{circuitikz}[]
2 \draw (0,1) to[R, v=v] ++(3,0);
3 \draw (0,0) to[R, v, name=R, voltage/bump b=3] ++(3,0);
4 \draw [thin, red, -{Stealth[width=8pt]},]
5 (R-Vfrom) .. controls (R-Vcont1) and (R-Vcont2).. (R-Vto)
6 node [black, pos=0.5, fill=white]{v};
7 \end{circuitikz}

Or, for example, to have a different voltage style; normally you would define a macro (see 5.5.6 to
understand the \vphantom).

92some options have been added in v1.4.1
93in regular voltages, the arrows are not real TikZ arrows, but the auxiliary arrow shapes of CircuiTikZ

204

R1
i

R2

−+

v1

−

+

v2

1 \begin{circuitikz}[voltage shift=0.5]
2 \def\eurVPM#1#2{% node, label
3 \draw [thin, -{Stealth[width=8pt]}, shorten >=5pt,
4 shorten <=5pt] (#1-Vfrom) node[font=\tiny]{$\vphantom

{+}-$}
5 .. controls (#1-Vcont1) and (#1-Vcont2)..
6 (#1-Vto) node[font=\tiny]{$+$}
7 node[pos=0.5,anchor=\ctikzgetanchor{#1}{Vlab}]{#2};}
8 \draw (0,0) to[R=R1, name=R1, v, i=i] ++(3,0)
9 to[R, l_=R2, v^, name=R2] ++(0,-3);

10 \eurVPM{R1}{v_1} \eurVPM{R2}{v_2}
11 \end{circuitikz}

Since v1.4.1 you can also keep the voltage, current and flow labels and suppress the output of the symbols
(arrows or plus/minus depending on the style) with the keys no v symbols, no i symbols, no f symbols
(there are also the corresponding v symbols, i symbols and f symbols in case you want to switch the
behavior off/on globally). This for example simplify an often requested feature, like having all the current
in one color and the voltages in another one, which is not possible natively because the arrows are part of
the same path. One possible implementation of that is the following one:

vR

iR

L

vL
v2

1 \newcommand{\iarronly}[1]{% name
2 \node [currarrow, color=red, anchor=center,
3 rotate=\ctikzgetdirection{#1-Iarrow}] at (#1-Ipos) {};
4 }
5 \newcommand{\varronly}[1]{% name
6 \draw [color=blue] (#1-Vfrom) .. controls (#1-Vcont1)
7 and (#1-Vcont2).. (#1-Vto) node [currarrow,
8 sloped, anchor=tip, allow upside down,pos=1]{};
9 }

10 \begin{circuitikz}[]
11 \ctikzset{!vi/.style={no v symbols, no i symbols}}
12 \ctikzset{bipole voltage style/.style={color=blue},
13 bipole current style/.style={color=red}}
14 \draw (120:6) to[R, *-, name=R, v^=v_R, !vi]
15 (120:3) to[short, i=i_R, name=SR, !vi] (0,0);
16 \draw (180:4) to[L, o-, l=L, name=L2, v=v_L, !vi]
17 (180:2) to[V, -*, name=V2, v_=v_2, !vi] (0:0);
18 \iarronly{SR}\varronly{R}\varronly{L2}\varronly{V2}
19 \end{circuitikz}

5.8.1 Activating the anchors

You will have access to the anchors for voltages, currents and flows when, in the bipole, you have both a v,
i, f specification (one or more of them) and a name key, to give the bipole a name. Otherwise, the anchors
and the associated functions are not defined. To suppress the normal output of the v, i, f keys, you can
use such keys without any argument, like in the previous example; notice that the _ and ^ modifiers work
as expected.
The following line of resistors has been drawn with the following commands; it is used to show the name
of the available anchors.

1 \draw (0,0) to[R=R1, v=v, name=R1] ++(4,0)
2 to[R, l_=R2, i=i, name=R2] ++(4,0)
3 to[R=R3, f=f, name=R3] ++(4,0);

205

R1

v R2

i
R3 f

R1-Vto R1-Vfrom
R1-Vcont1R1-Vcont2

R1-Vlab

R2-ItoR2-Ifrom

R2-Ipos

R3-FtoR3-Ffrom

R3-Fpos

The meaning of the anchors is the following:

• Vfrom and Vto are the main points where the voltage information is given: start and end point of
the arrow, or position of the + or − sign. This is the same for the Ffrom or Fto anchors for flows;
for inline currents, the corresponding Ifrom and Ito mark the wire segment where the arrowhead
is positioned (at the specified current/distance fraction. The direction of the arrow is available
using the auxiliary macro \ctikzgetdirection (see below).

• Vcont1 and Vcont2 are the control points for the curved arrow (see the examples above); in the case
of straight arrows or american-style voltages, they are set at the midpoint between Vfrom and Vto.

• Vlab is where the text label for the voltage is normally positioned. The anchor used for such label
is available using the auxiliary macro \ctikzgetanchor (see below)

• Ipos and Fpos are the position for the arrowhead or the small flow arrow (which is a currarrow
or flowarrow node normally) is positioned, respectively. The label is then added to the correct
side of it using the anchor available via \ctikzgetanchor (see below, 5.8.2). In this case, the exact
position of the label is not available if you do not position the element, for this there is no Flab or
Ilab coordinate; you have to use the Fpos and Ipos coordinate with the corresponding Ilab and
Flab anchors.

Changing the options of the elements will change the anchors accordingly:

1 \ctikzset{current/distance=0.2}
2 \draw (0,0) to[R=R1, v>=v, name=R1] ++(4,0)
3 to[R, l_=R2, i<_=i, name=R2] ++(4,0)
4 to[R, l_=R3, f<_=f, name=R3] ++(4,0);

R1

v R2
i

R3fR1-VtoR1-Vfrom
R1-Vcont1 R1-Vcont2

R1-Vlab

R2-Ito R2-IfromR2-Ipos R3-Fto R3-Ffrom

R3-Fpos

Obviously, the anchors follow the voltage style you choose:

1 \draw (0,0) to[R=R1, v=v, name=R1, voltage=straight] ++(4,0)
2 to[R=R2, v=v, name=R2, voltage=american] ++(4,0)
3 to[R=R3, v=v, name=R3, voltage=raised] ++(4,0);

R1

v

R2

+ −
v

R3

+ −v

R1-Vto R1-Vfrom

R1-Vcont1 R1-Vcont2

R1-Vlab
R2-Vto R2-Vfrom

R2-Vcont1 R2-Vcont2

R2-Vlab R3-Vto R3-Vfrom

R3-Vcont1 R3-Vcont2

R3-Vlab
Notice the position of the control points, as well as the fact that the anchor available with \ctikzgetanchor
is applied to Vfrom and Vto symbols, too.
Finally, as ever, generators are treated differently, but you have all your anchors too.

1 \ctikzset{american}
2 \draw (0,0) to[V=v, name=G1, voltage=european] ++(4,0)
3 to[V=v, v=v, name=G2, voltage=american] ++(4,0)
4 to[battery2, v=v, name=G3, voltage=raised] ++(4,0);

206

+−

v

+−

v
− +

v

G1-VtoG1-Vfrom

G1-Vlab

G2-VtoG2-Vfrom

G2-Vlab

G3-VtoG3-Vfrom

G3-Vlab

5.8.2 Auxiliary information

When the anchors are activated, there are additional macros that you can use:

• \ctikzgetanchor{<name>}{<anchor>}: name is the name of the bipole, and anchor can be Vlab,
Fpos or Ipos. This macro expands to the normal anchor position (something like north, south
west). Notice that if you have not activated the corresponding anchor, the content of this macro is
not specified. It could be equivalent to \relax (basically, empty) or contains the anchor of a bipole
with the same name from another drawing — it’s a global macro like the coordinates.

• \ctikzgetdirection{<name>}: a number which is the direction of the named bipole.
• \ctikzgetdirection{<name>-Iarrow}: a number which is the direction of the current arrow re-

quested for the named bipole; using <name>-Farrow you get the same information for flow arrows.

For example, you could like the voltage label oriented with the bipole:

vA

vB

1 \begin{circuitikz}[]
2 \def\myvv#1#2{%
3 \draw [thin, blue, ->,]
4 (#1-Vfrom) .. controls (#1-Vcont1) and (#1-Vcont2).. (#1-Vto)
5 node [pos=0.5, below,
6 rotate=\ctikzgetdirection{#1}] at (#1-Vlab) {#2}; }
7 \draw (0,0) to[R, v, name=A] ++(3,0);
8 \draw (0,0) to[R, v, name=B] ++(3,3);
9 \myvv{A}{v_A}\myvv{B}{v_B}

10 \end{circuitikz}

Or you could use the anchor to substitute the flow with a fancy one and still position the label automati-
cally; suppose you have the following definition in your preamble (see TikZ manual, “Path decorations”):

1 % requires \usetikzlibrary{decorations, decorations.pathmorphing}
2 \tikzset{%
3 lray/.style={decorate, decoration={
4 snake, amplitude=2pt,pre length=1pt,post length=2pt, segment length=5pt,},
5 -Triangle,
6 }}

You can then define a kind of “power flow” style:

PA

PB

1 \begin{circuitikz}[]
2 \newcommand\myff[3][blue]{% [opt: color] node label
3 \draw [lray, #1,] (#2-Ffrom) -- (#2-Fto)
4 node [anchor=\ctikzgetanchor{#2}{Flab}, inner sep=4pt]
5 at (#2-Fpos) {#3};}
6 \draw (0,1) to[R, f, name=A] ++(3,0);
7 \draw (0,0) to[R, f_<, name=B] ++(3,0);
8 \myff{A}{P_A}\myff[red]{B}{P_B}
9 \end{circuitikz}

207

5.8.3 Fixed voltage arrows: an example of advanced voltage usage

An interesting application of the advanced voltage is to have fixed length straight voltage arrows.94 The
normal voltage arrows length depends not on the component length but on the node distance (this is the
behavior since when the voltages were first introduced, so it can’t be changed).

v1 v2
v3

1 \begin{circuitikz}[european,]
2 \ctikzset{voltage=straight}
3 \draw (0,0) to[R,v=v_1,*-*] ++(2,0) to[R, v<=v_2] ++(4,0) to[C, *-*, v=v_3] ++(1,0);
4 \end{circuitikz}

Using the advanced voltage interface mechanism, you can for example design voltages that are of fixed
lengths; in the example below the new xparse method for defining commands is used, so that we can have
a couple of different optional arguments:
1 \NewDocumentCommand{\fixedvlen}{O{0.5cm} m m O{}}{% [semilength]{node}{label}[extra options]
2 % get the center of the standard arrow
3 \coordinate (#2-Vcenter) at ($(#2-Vfrom)!0.5!(#2-Vto)$);
4 % draw an arrow of a fixed size around that center and on the same line
5 \draw[-Triangle, #4] ($(#2-Vcenter)!#1!(#2-Vfrom)$) -- ($(#2-Vcenter)!#1!(#2-Vto)$);
6 % position the label as in the normal voltages
7 \node[anchor=\ctikzgetanchor{#2}{Vlab}, #4] at (#2-Vlab) {#3};
8 }

v1 v2
v3

V1 V2
V3

1 \begin{circuitikz}[european,]
2 \ctikzset{voltage=straight}
3 \draw (0,2) to[R,v=v_1,*-*] ++(2,0) to[R, v<=v_2] ++(4,0) to[C, *-*, v=v_3] ++(1,0);
4 \draw (0,0) to[R,v=,name=v1,*-*] ++(2,0) to[R, v<=, name=v2] ++(4,0) to[C, *-*, v, name=v3] ++(1,0);
5 \fixedvlen{v1}{V_1}
6 \fixedvlen{v2}{V_2}
7 \fixedvlen{v3}{V_3}[red]
8 \end{circuitikz}

Notice that with a coherent naming you can use a \foreach loop for the last three lines.
You can also notice that the arrow is not exactly the same as other arrows in the circuit; if you want them
to be exactly the same, you can use a trick to get the default CircuiTikZ arrow size — please look at this
answer by Romano on tex.stackexchange.com.
Another possibility is to have the arrow length based on the length of the component; for example you
can use this code:
1 \NewDocumentCommand{\compvlen}{O{1.5} m m O{}}{% [relative length]{node}{label}[extra options]
2 % get the center of the standard arrow
3 \coordinate (#2-Vcenter) at ($(#2-Vfrom)!0.5!(#2-Vto)$);
4 % draw an arrow of a size proportional to the component length
5 % around that center and on the same line
6 % the component length is calculated using the let...in with the left and right anchors
7 % and multiplied by the relative length

94This was suggested by users Franklin and Zarko in a question on tex.stackexchange.com

208

https://tex.stackexchange.com/questions/549347/circuitikz-arrowhead/549354#549354
https://tex.stackexchange.com/questions/549347/circuitikz-arrowhead/549354#549354
https://tex.stackexchange.com/questions/574576/circuitikz-straight-voltage-arrows-with-fixed-length

8 \draw[-Triangle, #4] let \p1=(#2.left), \p2=(#2.right), \n1={0.5*#1*veclen(\x2-\x1,\y2-\y1)}
9 in ($(#2-Vcenter)!\n1!(#2-Vfrom)$) -- ($(#2-Vcenter)!\n1!(#2-Vto)$);

10 % position the label as in the normal voltages
11 \node[anchor=\ctikzgetanchor{#2}{Vlab}, #4] at (#2-Vlab) {#3};
12 }

v1 v2
v3

V1 V2
V3

1 \begin{circuitikz}[european,]
2 \ctikzset{voltage=straight}
3 \draw (0,2) to[R,v=v_1,*-*] ++(2,0) to[R, v<=v_2] ++(4,0) to[C, *-*, v=v_3] ++(1,0);
4 \draw (0,0) to[R,v=,name=v1,*-*] ++(2,0) to[R, v<=, name=v2] ++(4,0) to[C, *-*, v, name=v3] ++(1,0);
5 \compvlen{v1}{V_1}
6 \compvlen{v2}{V_2}
7 \compvlen{v3}{V_3}[red]
8 \end{circuitikz}

5.9 Integration with siunitx

If the option siunitx is active95, then the following are equivalent (this will not work in ConTEXt, it has
been disabled in upstream ConTEXt, in favor of its own units module):

1 kΩ 1 \begin{circuitikz}
2 \draw (0,0) to[R, l=1<\kilo\ohm>] (2,0);
3 \end{circuitikz}

1 kΩ 1 \begin{circuitikz}
2 \draw (0,0) to[R, l=$\SI{1}{\kilo\ohm}$] (2,0);
3 \end{circuitikz}

1mA
1 \begin{circuitikz}
2 \draw (0,0) to[R, i=1<\milli\ampere>] (2,0);
3 \end{circuitikz}

1mA
1 \begin{circuitikz}
2 \draw (0,0) to[R, i=$\SI{1}{\milli\ampere}$] (2,0);
3 \end{circuitikz}

1V

1 \begin{circuitikz}
2 \draw (0,0) to[R, v=1<\volt>] (2,0);
3 \end{circuitikz}

1V

1 \begin{circuitikz}
2 \draw (0,0) to[R, v=$\SI{1}{\volt}$] (2,0);
3 \end{circuitikz}

95This option is still experimental — personally (Romano) I would advise using the normal \SI{}{} syntax, or
the \qty{}{} one for siunitx v3 and newer.

209

https://www.pragma-ade.nl/general/manuals/units-mkiv.pdf

6 Using bipoles in circuits

6.1 Nodes (also called poles)

You can add nodes to the bipoles, positioned at the coordinates surrounding the component. The gen-
eral style to use is bipole nodes={start}{stop}, where start and stop are the nodes — to be chosen
between none, circ, ocirc, squarepole, osquarepole, diamondpole, odiamondpole and rectfill96 (see
section 4.12).

none
circ

ocirc

diamondpole

odiamondpole

squarepole
osquarepole

1 \begin{circuitikz}
2 \ctikzset{bipoles/length=.5cm, nodes width=0.1}%small

components, big nodes
3 \foreach \a/\p [evaluate=\a as \b using (\a+180)] in
4 {-90/none, -60/circ, -30/ocirc, 0/diamondpole, 30/

odiamondpole, 60/squarepole, 90/osquarepole}
5 \draw (0,0) to[R, bipole nodes={none}{\p}] ++(\a:1.5)

node[font=\tiny, anchor=\b]{\p};
6 \end{circuitikz}

These bipole nodes are added after the path is drawn, as every node in TikZ — this is the reason why they
are always filled (with the main color the normal nodes, with white the open ones), in order to “hide” the
wire below. You can override the fill color if you want; but notice that if you draw things in two different
paths, you will have “strange” results; notice that in the second line of resistors the second wire is starting
from the center of the white ocirc of the previous path.

1 \begin{circuitikz}
2 \draw (0,0) to[R, *-o] ++(2,0) to[R, -d] ++(2,0)
3 to[R, bipole nodes={diamondpole}{odiamondpole, fill=red}] ++(2,0);
4 \draw (0,-1) to[R, *-o] ++(2,0) ;
5 \draw (2,-1) to[R, -d] ++(2,0) to[R, bipole nodes={none}{squarepole}] ++(2,0);
6 \end{circuitikz}

You can define shortcuts for the bipole nodes you use most; for example if you want a shortcut for a
bipole with open square node in red in the right side you can:

1 \begin{circuitikz}
2 \ctikzset{-s/.style = {bipole nodes={none}{osquarepole, fill=red}}}
3 \draw (0,0) to[R, -s] ++(2,0);
4 \end{circuitikz}

There are several predefined shorthand as the above; in the following pages you can see all of them.

1 \begin{circuitikz}
2 \draw (0,0) to[R, o-o] (2,0);
3 \end{circuitikz}

96You can use other shapes too, but at your own risk…Moreover, notice that none is not really a node, just a
special word used to say “do not put any node here”.

210

1 \begin{circuitikz}
2 \draw (0,0) to[R, -o] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, o-] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, *-*] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, -*] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, *-] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, d-d] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, -d] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, d-] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, o-*] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, *-o] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, o-d] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, d-o] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, *-d] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[R, d-*] (2,0);
3 \end{circuitikz}

211

6.1.1 Transparent poles

“Open-poles” terminals (ocirc, odiamondpole, and osquarepole) are normally filled with the background
color at full opacity. This is because, for simplicity of operation, the nodes are placed after the wires are
drawn and have to “white-out” the underlying lines.
Anyway, if you know what you are doing, you can change it with the key poles/open fill opacity (with
\ctikzset) or the style open poles opacity. Notice that you will have artifacts if you don’t use the
border anchors of the poles to connect wires, and you need to do that by hand.
Notice that in poles, the opacity is always selected with these keys, and it overrides the opacity of the
draw commands (when not set explicitly is as if it is set to 1.0, i.e., full opaque). This is because you
normally do not want unfilled poles!

1 \begin{circuitikz}[scale=3, transform shape]
2 \fill[cyan] (0,0) rectangle (4.1,-0.6);
3 \ctikzset{open poles fill=red}
4 \tikzset{open poles opacity=0.5}
5 % automatic positioning when opacity is not 1.0 creates artifacts
6 % note that the global fill opacity affects the "generic shape", but not the poles!
7 % the fill color of the poles, instead, goes with the component
8 \draw[fill opacity=0.8] (0,0) to[generic, fill=white, -o] ++(2,0) --++(0,-0.5);
9 % \draw (0,0) to[generic, fill=white, -o] ++(2,0) --++(0,-0.5);

10 % you have to use manual positioning
11 \draw (2.2,0) -- ++(0.5,0) node[ocirc, anchor=180, fill opacity=0.5]{};
12 \draw (3,0) node[ocirc, fill opacity=0.5](B){} (B.0) --++(0.5,0) (B.-90)

--++(0,-0.5);
13 % maybe really useful only for terminals going out of the circuit...
14 % notice that in node commands you can specify the opacity directly
15 \draw (3.6,0) -- ++(0.2,0) node[ocirc, fill=white, fill opacity=0.5, anchor=180]{};
16 \end{circuitikz}

You also have the similar keys for the “full” poles (albeit they are probably not useful at all).

6.2 Mirroring and Inverting
Bipole paths can also be mirrored and inverted (or reverted) to change the drawing direction.

1 \begin{circuitikz}
2 \draw (0,0) to[pD] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[pD, mirror] (2,0);
3 \end{circuitikz}

1 \begin{circuitikz}
2 \draw (0,0) to[pD, invert] (2,0);
3 \end{circuitikz}

212

Placing labels, currents and voltages also works, please note, that mirroring and inverting does not influ-
ence the positioning of labels and voltages. Labels are by default above/right of the bipole and voltages
below/left, respectively.

T

v

i1
1 \begin{circuitikz}
2 \draw (0,0) to[ospst=T, i=i_1, v=v] (2,0);
3 \end{circuitikz}

T

v

i1 1 \begin{circuitikz}
2 \draw (0,0) to[ospst=T, mirror, i=i_1, v=v] (2,0);
3 \end{circuitikz}

T

v

i1
1 \begin{circuitikz}
2 \draw (0,0) to[ospst=T, invert, i=i_1, v=v] (2,0);
3 \end{circuitikz}

T

v

i1 1 \begin{circuitikz}
2 \draw (0,0) to[ospst=T,mirror,invert, i=i_1, v=v] (2,0);
3 \end{circuitikz}

6.3 Putting them together

1 kΩ

1mA

1 \begin{circuitikz}
2 \draw (0,0) to[R=1<\kilo\ohm>,
3 i>_=1<\milli\ampere>, o-*] (3,0);
4 \end{circuitikz}

vD

1mA 1 \begin{circuitikz}
2 \draw (0,0) to[D*, v=v_D,
3 i=1<\milli\ampere>, o-*] (3,0);
4 \end{circuitikz}

6.4 Line joins between Path Components

Line joins should be calculated correctly - if they are on the same path, and the path is not closed. For
example, the following path is not closed correctly (–cycle does not work here!):

1 \begin{tikzpicture}[line width=3pt,european]
2 \draw (0,0) to[R]++(2,0)to[R]++(0,2)
3 --++(-2,0)to[R]++(0,-2);
4 \draw[red,line width=1pt] circle(2mm);
5 \end{tikzpicture}

To correct the line ending, there are support shapes to fill the missing rectangle. They can be used like
the support shapes (*,o,d) using a dot (.) on one or both ends of a component (have a look at the last
resistor in this example:

213

1 \begin{tikzpicture}[line width=3pt,european]
2 \draw (0,0) to[R]++(2,0)to[R]++(0,2)
3 --++(-2,0)to[R,-.]++(0,-2);
4 \draw[red,line width=1pt] circle(2mm);
5 \end{tikzpicture}

214

7 Colors

Color support in CircuiTikZ has been quite limited up to version 1.5.1; from that one onward there has
been an effort to make components’ behavior more intuitive.
Part of the problem is how colors in paths are treated by TikZ itself; you can see part of the discussion
on this issue and in this question on TeX.SX — many thanks to @muzimuzhi for helping there. Basically,
nodes are drawn after the path is completed, and color is applied to the path at the end. Look at this
code (pure TikZ, no CircuiTikZ here):

1 \tikz \draw[thick] (0,0) -- (1,0) {[color=red] -- (2,0) node[draw
]{}} --(3,0); \par

2 \tikz \draw[thick] (0,0) -- (1,0) [color=red] -- (2,0) node[draw
]{} --(3,0);

So the path is drawn with the last “effective” (in current group) color. The deferred behavior of the color
properties is very difficult to track for CircuiTikZ, especially when the shorthand color-name (e.g., red
instead of color=red) is used. CircuiTikZ will try to keep track of the colors specified by color=... and
fill=..., but if you use the implicit way (\draw[red]...) it often fails.
If you’re adventurous, you can try to add

\usepackage{regexpatch}\ctikzPatchImplicitColor

after loading CircuiTikZ, and it will try to patch the default commands to keep track of the “current color”;
if it fails will give a warning like patch failed, use only explicit color=.... This is, unfortunately,
not compatible with package xpatch (and much others, which load xpatch).97.
Before 1.5.0, CircuiTikZ used black as the default color. Now it tries to follow the current color, as TikZ
does normally; but notice that there is a difference with the fill strategy:

Red text x y

Blue text x y

Black text x y

1 \color{red}
2 Red text
3 \tikz \draw (0,0) -- node[draw] {x} (1,0) -- node[draw=cyan] {y} (2,0);
4 \tikz \draw (0,0) to[R] (2,0) to[R,color=cyan] (4,0) to [generic] (6,0) to [fullgeneric

] (8,0);
5

6 \color{blue}
7 Blue text
8 \tikz \draw (0,0) -- node[draw] {x} (1,0) -- node[draw=cyan] {y} (2,0);
9 \tikz \draw (0,0) to[R] (2,0) to[R,color=cyan] (4,0) to [generic] (6,0) to [fullgeneric

] (8,0);
10

11 \color{black}
12 Black text
13 \tikz \draw[fill=yellow] (0,0) -- node[draw, fill] {x} (1,0) -- node[draw=cyan] {y}

(2,0);
14 \tikz \draw[fill=yellow] (0,0) to[R] (2,0) to[R,color=cyan] (4,0) to [generic] (6,0) to

[fullgeneric] (8,0);

97version 1.5.0 loaded it unconditionally for LaTeX; please do not use it

215

https://github.com/circuitikz/circuitikz/issues/605
https://tex.stackexchange.com/questions/634987/pgf-basic-layer-struggling-again-with-colors

CircuiTikZ components that are fillable will inherit the fill property of the path (it is almost impossible
to do otherwise) as if the fill flag was present. “Full”-type elements (for example, full diodes or similar)
are filled with the draw color; elements with intrinsic labels (i.e., labels that are part of the shape, like
signs on amplifiers and pin numbers in chips) are drawn with the “draw” colors.
Basically, you should have no problem if:

1. You stick to use styles (see 3.3.2) for filling your components, or using a direct fill=... option in
the component node or to option;

2. do not try to change the color mid-path; sometimes it works (see the examples below), but it’s
better to avoid it (using different paths is better);

3. when coloring whole circuits, it’s better to use the option color=... in your global picture options
or in the \draw command (not just the color name as a shorthand);

4. forget about transparency.

Nevertheless, if you really need to do strange things with colors you can read on; you can do almost
everything but there are several glitches to take into account.

7.1 Shape colors

The color of the components is stored in the key \circuitikzbasekey/color. CircuiTikZ tries to follow
the color set in TikZ, although sometimes it fails. The following circuit will fail to draw the circuit in red
if the patching of the inner commands of TikZ fails, like for example in ConTEXt.

1

2

3

1 \begin{circuitikz} \draw[red]
2 (0,2) node[and port](myand1){1}
3 (0,0) node[and port](myand2){2}
4 (2,1) node[xnor port](myxnor){3}
5 (myand1.out) -| (myxnor.in 1)
6 (myand2.out) -| (myxnor.in 2)
7 ;\end{circuitikz}

If you see this problem, please do not use just the color name as a style, like [red], but rather assign the
style [color=red].

1

2

3

1 \begin{circuitikz} \draw[color=red]
2 (0,2) node[and port](myand1){1}
3 (0,0) node[and port](myand2){2}
4 (2,1) node[xnor port](myxnor){3}
5 (myand1.out) -| (myxnor.in 1)
6 (myand2.out) -| (myxnor.in 2)
7 ;\end{circuitikz}

One can, of course, change the color directly in the component:

216

q1q2

q3 q4

1 \begin{circuitikz} \draw
2 (0,0) node[pnp, color=blue](pnp2){q1}
3 (pnp2.B) node[pnp, xscale=-1, anchor=B, color=brown](pnp1){\ctikzflipx{q2}}
4 (pnp1.C) node[npn, anchor=C, color=green](npn1){q3}
5 (pnp2.C) node[npn, xscale=-1, anchor=C, color=magenta](npn2){\ctikzflipx{q4}}
6 (pnp1.E) -- (pnp2.E) (npn1.E) -- (npn2.E)
7 (pnp1.B) node[circ]{} |- (pnp2.C) node[circ]{}
8 ;\end{circuitikz}

The all-in-one stream of bipoles poses some challenges, as only the actual body of the bipole, and not the
connecting lines, will be rendered in the specified color (Notice that the following example uses the special
siunitx shorthand; you can use it only in simple cases like here, in general using the full \SI{} or \qty{}
commands).

1V

1Ω

1F

1 \begin{circuitikz} \draw
2 (0,0) to[V=1<\volt>] (0,2)
3 to[R=1<\ohm>, color=red] (2,2)
4 to[C=1<\farad>] (2,0) -- (0,0)
5 ;\end{circuitikz}

The postponed application of colors creates a problem if you want to use arrows for voltages, because the
“arrows” are partially part of the path, partially nodes:

1V

1Ω

1F

1 \begin{circuitikz} \draw
2 (0,0){[red] to[V=1<\volt>] (0,2) }
3 to[R=1<\ohm>] (2,2)
4 to[C=1<\farad>] (2,0) -- (0,0)
5 ;\end{circuitikz}

...and that can become quite frustrating:

1V

1Ω

1F

1 \begin{circuitikz} \draw
2 (0,0) to[V=1<\volt>, color=red] (0,2)
3 to[R=1<\ohm>] (2,2)
4 to[C=1<\farad>] (2,0) -- (0,0)
5 ;\end{circuitikz}

In those cases, the only way out is to specify different paths (and/or using advanced voltages, see 5.8)

217

1V

1Ω

1F

1 \begin{circuitikz} \draw[color=red]
2 (0,0) to[V=1<\volt>, color=red] (0,2);
3 \draw (0,2) to[R=1<\ohm>] (2,2)
4 to[C=1<\farad>] (2,0) -- (0,0)
5 ;\end{circuitikz}

7.2 Fill colors

Since version 0.9.0, you can also fill most shapes with a color (the manual specifies which ones are fillable
or not). The syntax is quite intuitive:

1

2

3

1 \begin{circuitikz} \draw
2 (0,2) node[and port, fill=yellow](myand1){1}
3 (0,0) node[and port, fill=cyan](myand2){2}
4 (2,1) node[xnor port,fill=red!30!white](myxnor){3}
5 (myand1.out) -| (myxnor.in 1)
6 (myand2.out) -| (myxnor.in 2)
7 ;\end{circuitikz}

This fill color will override any color defined by the style (see section 3.3.2). If you want to override a style
fill color with no-fill for a specific component, you need to override the style — it’s a bit unfortunate, but
should be an exceptional thing anyway. Notice that in simple case fill opacity works, but don’t count
too much on it.

1

2

3

1 \begin{circuitikz}
2 \ctikzset{logic ports/fill=cyan!30!white}
3 \draw[red] (-0.5,3) -- (-0.5, -1);
4 \draw[red] (1.5,3) -- (1.5, -1);
5 \draw
6 (0,2) node[and port](myand1){1}
7 (0,0) node[and port, fill=cyan, fill opacity=0.7](myand2)

{2}
8 (2,1) node[xnor port, circuitikz/logic ports/fill=none
9](myxnor){3}

10 (myand1.out) -| (myxnor.in 1)
11 (myand2.out) -| (myxnor.in 2)
12 ;\end{circuitikz}

You can combine shape colors with fill colors, too, but you should use the explicit color option style for
this:

1

2

3

1 \begin{circuitikz} \draw[color=red]
2 (0,2) node[and port, fill=yellow](myand1) {1}
3 (0,0) node[and port, fill=cyan] (myand2){2}
4 (2,1) node[xnor port,fill=red!30!white](myxnor){3}
5 (myand1.out) -| (myxnor.in 1)
6 (myand2.out) -| (myxnor.in 2)
7 ;\end{circuitikz}

218

1

2

3

1 \begin{circuitikz} \draw
2 (0,2) node[and port, color=black](myand1){1}
3 (0,0) node[and port, color=blue, fill=cyan](myand2){2}
4 (2,1) node[xnor port, color=red, fill=cyan](myxnor){3}
5 (myand1.out) -| (myxnor.in 1)
6 (myand2.out) -| (myxnor.in 2)
7 ;\end{circuitikz}

7.2.1 Background colors different from white

Notice also that the connection point is always filled, and the color tries to follow the color of the filling
of the component (but look at section 6.1.1). Moreover, if you want to pass fill transparency down to
path-style components, you have to put it into the options of the \draw command.

1 \begin{circuitikz}
2 \fill[cyan] (0,3.0) rectangle (7,7);
3 \draw [fill opacity=0.5] (1,6.5) to[generic, fill=white,o-o] ++(2,0);
4 \draw (1,5.5) to[short, fill=red, o-o] ++(1,0) to[short, -o] ++(1,0);
5 \draw[fill=yellow] (1,5) to[short, o-o] ++(1,0) to[short, -o] ++(1,0);
6 \draw (1,4.5) to[short, o-o] ++(1,0) to[short, -o] ++(1,0);
7 \draw (1,4) node[ocirc]{} -- ++(1,0) node[ocirc]{};
8 \draw [thick, color=green!50!black] (4,4) to [D,o-o,fill=yellow] ++(0,2) to[D*, fill

=yellow]
9 ++(2,0) to[D*,fill=yellow] ++(0,-2) to[D, fill=red, o-o] ++(-2,0);

10 \end{circuitikz}

As you can see, the “black” components (as D*) follow the color of the line, not the fill.
Note, however, that if you choose a colored background, for example with the \pagecolor{} command or
with other tricks, the nodes will be by default still filled with white.

1 \begin{circuitikz}[european]
2 \fill[color=blue] (-1,-1) rectangle (4,1);
3 \draw[color=white] (0,0) to[R, o-o] ++(3,0);
4 \end{circuitikz}

You have two solutions for this. You can redefine the o-o (and the similar commands -o, o-, *-o and so
on) with a blue filled “open” pole:

219

1 \tikzset{bcirc/.style={shape=ocirc, fill=blue}}
2 \ctikzset{o-o/.style ={
3 \circuitikzbasekey/bipole/nodes/left=bcirc,
4 \circuitikzbasekey/bipole/nodes/right=bcirc}}
5 \begin{circuitikz}[european]
6 \fill[color=blue] (-1,-1) rectangle (4,1);
7 \draw[color=white] (0,0) to[R, o-o] ++(3,0);
8 \end{circuitikz}

Also, since v1.2.3, you can set the key open poles fill (default: white which works for ocirc, odiamondpole
and osquarepole):

1 \begin{circuitikz}[european]
2 \ctikzset{open poles fill=blue}
3 \fill[color=blue] (-1,-1) rectangle (4,1);
4 \draw[color=white] (0,0) to[R, o-o] ++(3,0);
5 \end{circuitikz}

220

8 FAQ: Frequently asked questions

8.1 Using named nodes in circuits

Q: When I use a node to name a connection in the circuit, I have gaps in the wires! I am sure it used to
work!
A: This is explained in 1.9. The fast answer is that in a hurry, use the 1.1.2 fallback point with:
\usepackage{circuitikz-1.1.2}
in your preamble.
But really, your circuit definition is buggy, so the best thing to do is fix that; if you want to name a point
in your circuit, you should use a coordinate, not a node.98 Here is a small tutorial on why you should
change your circuit.
Nodes, in TikZ, normally have a non-zero size even when they are empty; moreover, connections are
supposed to join the border of nodes. Please study the following (pure TikZ, not CircuiTikZ):

1 \begin{tikzpicture}
2 \path (1,1) node (A){}; % empty node at (1,1)
3 \draw (1,0) -- (A) -- (2,1); % surprise!
4 \end{tikzpicture}

The gap is there because the node has a non-zero size (more in detail, its inner sep is by default different
from zero). You can see it easily if you draw the node shape:

1 \begin{tikzpicture}
2 \path (1,1) node [draw=red](A){};
3 \draw (1,0) -- (A) -- (2,1);
4 \end{tikzpicture}

The problem is that when you want to name a coordinate, in the sense of a dimensionless point, you
should use a coordinate, not a node!

1 \begin{tikzpicture}
2 \path (1,1) coordinate (A); % give a name to (1,1)
3 \draw (1,0) -- (A) -- (2,1);% now it's ok!
4 \end{tikzpicture}

Now, before version 1.2.1 (and since around 0.6), CircuiTikZ was detecting when a connection was
between nodes and sort-of added a node.center movement to the path. That in turn generated the need
of hacks to draw the correct joining of lines, because that kind of movement broke the continuity of the
path, like in this example:

1 \begin{tikzpicture}[line width=4pt]
2 \path (1,1) node (A){};
3 \draw (1,0) -- (A.center) (A) (A.center) -- (2,1);
4 \end{tikzpicture}

You can see more examples and more reasonings on GitHub; start from the issue detecting the join problem,
then look at the merged fix; you can follow several issues and discussions from there, but for example
there are circuits that can’t be drawn with the “hack” in, like this one.
So finally it was decided99 to remove the change, to simplify the code and to make the package more
maintainable.

98Yes, I understand from where the confusion arise — in circuit theory they are called nodes.
99well, Romano decided, so you can blame him. I do not think that workarounds to correct malformed circuits

are really maintainable; just see the bunch of code removed by the patch! — Romano.

221

https://github.com/circuitikz/circuitikz/issues/417
https://github.com/circuitikz/circuitikz/pull/418
https://github.com/circuitikz/circuitikz/issues/76#issuecomment-652980687

8.2 Using dashed (or colored) wires in circuits

Q: How can I make part of the wires dashed (or colored)? This does not work:

1 \begin{circuitikz}
2 \draw (0,0) to[R] ++(2,0)
3 to[short, dashed, red] ++(1,0)
4 to [R] ++(2,0); % surprise!
5 \end{circuitikz}

Nor this one, which is even stranger:

1 \begin{circuitikz}
2 \draw (0,0) to[R] ++(2,0)
3 [dashed, red] -- ++(1,0)
4 to [R] ++(2,0); % surprise!
5 \end{circuitikz}

A: This is an effect on how TikZ builds and draws path. As explained in the TikZ manual,100 most path
options are globally valid for the whole path; color and dash/dot is one of this. You have two options in
this case. The first one is to use two paths.

1 \begin{circuitikz}
2 \draw (0,0) to[R] ++(2,0) coordinate(a);
3 \draw [dashed, red] (a) -- ++(1,0) coordinate(b);
4 \draw (b) to [R] ++(2,0);
5 \end{circuitikz}

The other one is to use edge operations101; be sure to read about it on the TikZ manual102 — but basically
this is similar to the to operation but it builds another path (added at the end of the current path, like
nodes are). This means that it can use different options, and that it does not move the path coordinates.
So, for example:

1 \begin{circuitikz}
2 \draw (0,0) to[R] ++(2,0)
3 edge[dashed, red] ++(1,0)
4 % we have to move the path position here!
5 ++(1,0) to [R] ++(2,0);
6 \end{circuitikz}

The only problem with this approach is that the edges are added after the nodes, so it can create problems
with nodes (look carefully!):

1 \begin{circuitikz}
2 \draw (0,0) to[R,-o] ++(2,0)
3 edge[dashed, red] ++(1,0)
4 ++(1,0) to [R] ++(2,0);
5 \end{circuitikz}

So it’s better, in this case, to add the nodes manually after the path (there is no perfect solution!):
100in 3.1.5b, section 14, “syntax for path specification”
101I took the idea form this answer by @LaTeXdraw-com user on TeX.SE, thanks!
102in 3.1.5b, section 17.12, “connecting nodes: use the edge operation”

222

https://tex.stackexchange.com/a/554905/38080

1 \begin{circuitikz}
2 \draw (0,0) to[R] ++(2,0) coordinate(a)
3 edge[dashed, red] ++(1,0)
4 ++(1,0) to [R] ++(2,0);
5 \node [ocirc] at (a){};
6 \end{circuitikz}

A more complex example can be seen (look at the comments!) in the following circuit.

+ −
v1

here

1 \begin{circuitikz}[american]
2 \draw (0,0) to[R, v=v_1] ++(2,0)
3 edge[dashed] ++(1,0)
4 ++(1,0) to[R]
5 ++(2,0) to [R] ++(0,2) coordinate(a)
6 edge[red, dashed] ++(0,1)
7 % several edges start from the same position
8 edge[dashed, ->] node[above]{here} ++(-1,0)
9 % notice that the path here is still

10 % at coordinate (a)!
11 ++(0,1) to[R] ++(0,2)
12 (a) ++(-1,0) to[sV] ++(-2,0);
13 \end{circuitikz}

8.3 Errors when externalizing pictures

Q: When using \tikzexternalize I get the following error:

! Emergency stop.

A: The TikZ manual states:

Furthermore, the library assumes that all LATEX pictures are ended with
\end{tikzpicture}.

Just substitute every occurrence of the environment circuitikz with tikzpicture. They are actually
pretty much the same.

8.4 Labels, voltages and currents woes

Q: How do I draw the voltage between two nodes?
A: Between any two nodes there is an open circuit!

v

1 \begin{circuitikz} \draw
2 node[ocirc] (A) at (0,0) {}
3 node[ocirc] (B) at (2,1) {}
4 (A) to[open, v=v] (B)
5 ;\end{circuitikz}

Q: I cannot write to[R = $R_1=12V$] nor to[ospst = open, 3s]: I get errors.
A: It is a limitation of the parser, joined with a suboptimal processing by CircuiTikZ (up to 1.2.7) of
the passing of the argument of keys.
You should protect commas and equal signs like in to[R = {$R_1=12V$}] or to[ospst = {open, 3s}].
In versions up to 1.2.7, use for example \mbox{} or define \def{\eq}{=} and use to[R = $R_1\eq 12V$],
or try to protect commas and equal signs like to[ospst = open{,} 3s] or ospst=\mbox{open, 3s} in-
stead; see caveat in section 5.1.

223

8.5 Global scaling and rotating

Q: I tried to change the direction of the y-axis with yscale=-1, but the circuit is completely messed up.
A: Yes, it’s a known bug (or misfeature, or limitation). See section 1.7. Don’t do that.

Q: I tried to put a diode in a pic, but it’s coming out badly rotated.
A: Yes, it’s a known bug (or misfeature, or limitation, or a fact of life). See section 1.7. CircuiTikZ is not
compatible with pics at this point.

8.6 Tunable components

Q: The direction of the arrows in variable resistors or capacitors changed!
A: Yes, it changed in v1.3.3.
Version 1.3.3 fixes the direction of the arrows in tunable elements; before this version, they were more or
less random, now the arrow goes from bottom left to top right. You have the option to go back to the
old behavior with \ctikzset{bipoles/fix tunable direction=false}. As a compensation for the fuss,
now the arrows are configurable.

new default old default new!

variable american resistor

variable european resistor

variable cute inductor

variable american inductor

tfullgeneric

variable capacitor

1 \begin{circuitikz}[european]
2 \draw (1,0) node{new default} (4,0) node{old default} (7,0) node{new!};
3 \foreach [count=\i] \comp in
4 {variable american resistor, variable european resistor,
5 variable cute inductor, variable american inductor, tfullgeneric,
6 variable capacitor} {
7 \draw (0,-\i) node[left]{\texttt{\comp}} to[\comp, name=E] ++(2,0);
8 \ctikzset{bipoles/fix tunable direction=false}
9 \draw (3,-\i) to[\comp, name=E] ++(2,0);

10 \ctikzset{bipoles/fix tunable direction=true, tunable end arrow={Bar}}
11 \draw (6,-\i) to[\comp, name=E] ++(2,0);
12 }
13 \end{circuitikz}

224

9 Defining new components

Per me si va ne la città dolente,
per me si va ne l’etterno dolore,
per me si va tra la perduta gente.
…
Lasciate ogne speranza, voi ch’intrate.103

Big fat warning: this material is reserved for TEX-hackers; do not delve into this if you have no familiarity
with (at least) a bit of core TEX programming and to the basic TikZ layer. You have been warned.

9.1 Suggested setup

Notice: the source code has been reorganized after release 1.2.7; if you are bound to use an older version
check the corresponding manual.
The suggested way to start working on a new component is to use the utilities of the CircuiTikZ manual
for checking and testing your device. Basically, find (or download) the source code of the last version of
CircuiTikZ and find the file ctikzmanutils.sty; copy it in your directory and prepare a file like this:

1 \documentclass[a4paper, titlepage]{article}
2 \usepackage{a4wide} %smaller borders
3 \usepackage[utf8]{inputenc} %not needed since LaTeX 2019
4 \usepackage[T1]{fontenc}
5 \parindent=0pt
6 \parskip=4pt plus 6pt minus 2pt
7 \usepackage[siunitx, RPvoltages]{circuitikzgit}
8 \usepackage{ctikzmanutils}
9 \makeatletter

10 %% Test things here
11 % defines
12

13 % components
14

15 % paths
16 \makeatother
17

18 \begin{document}
19

20 \circuitdescbip*{damper}{Mechanical damping}{}(left/135/0.2, right/45/0.2, center
/-90/0.3)

21

22 \geolrcoord{dampershape, fill=yellow}
23

24 \begin{LTXexample}[varwidth]
25 \begin{circuitikz}
26 \draw (0,0) to[R] ++(2,0)
27 to[damper] ++(2,0);
28 \end{circuitikz}
29 \end{LTXexample}
30 \end{document}

This will compile to something like this (in this case, we are using a couple of existing components to
check everything is OK):

103https://classicsincontext.wordpress.com/2010/02/28/canto-iii-per-me-si-va-ne-la-citta-dolente/

225

https://classicsincontext.wordpress.com/2010/02/28/canto-iii-per-me-si-va-ne-la-citta-dolente/

left right

center

damper: Mechanical damping, type: path-style, fillable,
nodename: dampershape. Class: mechanicals.

text

north north east

east

south eastsouthsouth west

west

north west
left right

center

1 \begin{circuitikz}
2 \draw (0,0) to[R] ++(2,0)
3 to[damper] ++(2,0);
4 \end{circuitikz}

The command circuitdescbip* is used to show the component description (you can check the definition
and the usage looking at ctikzmanutils.sty file, and the \geolrcoord is used to show the main anchors
(geographical plus left and right) of the component.
From now on, you can add the new commands for the component between the \makeatletter and
\makeatother commands and, modifying the example, check the results.

9.2 Path-style component
Let’s define for example a path style component, like the one suggested by the user @alex on TEX stack-
exchange site. The component will be a mix of the damper and the spring components already present.
The definitions of the components are in the files pgfcircsomething.tex; they are more or less distributed
by the number of terminals, but there are exceptions (for example, switches are in bipoles, even if several
of them are tripoles or more…grep is your friend here.
To define the new component we will look into (in this case) pgfcircbipoles.tex; at the start of the block
where the components are defined, you can find the relevant definitions (sometime some of the definitions
are in pgfcirc.defines.tex, for historical or dependencies reasons). The first step is to check if we can
use the definition already existing for similar elements (for coherence of size) or if we need to define new
ones; for this you have to check into the we find

1 \ctikzset{bipoles/spring/height/.initial=.5}
2 \ctikzset{bipoles/spring/width/.initial=.5}
3 \ctikzset{bipoles/damper/height/.initial=.35}
4 \ctikzset{bipoles/damper/length/.initial=.3}
5 \ctikzset{bipoles/damper/width/.initial=.4}

We will use them; at this stage you can decide to add other parameters if you need them. (Notice, however,
than although flexibility is good, these parameters should be described in the manual, otherwise they’re
as good as a fixed number in the code).
After that we will copy, for example, the definition of the damper into our code, just changing the name:

1 %% mechanical resistor - damper
2 \pgfcircdeclarebipolescaled{mechanicals}
3 {} % extra anchors
4 {\ctikzvalof{bipoles/damper/height}} % depth (under the path line)
5 {viscoe} % name
6 {\ctikzvalof{bipoles/damper/height}} % height (above the path line)
7 {\ctikzvalof{bipoles/damper/width}} % width
8 {
9 \pgfpathrectanglecorners{\pgfpoint{\ctikzvalof{bipoles/damper/length}\

pgf@circ@res@right}{\pgf@circ@res@down}}{\pgfpoint{\pgf@circ@res@right}{\
pgf@circ@res@up}}

226

https://tex.stackexchange.com/questions/484268/combined-spring-damper-in-circuitikz
https://tex.stackexchange.com/questions/484268/combined-spring-damper-in-circuitikz

10 \pgf@circ@maybefill
11

12 % line into the damper
13 \pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@zero}}
14 \pgfpathlineto{\pgfpoint{\ctikzvalof{bipoles/damper/length}\pgf@circ@res@right}
15 {\pgf@circ@res@zero}}
16 \pgfusepath{stroke}
17

18 % damper box
19 \pgf@circ@setlinewidth{bipoles}{\pgfstartlinewidth}
20 \pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@down}}
21 \pgfpathlineto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@down}}
22 \pgfpathlineto{\pgfpoint{\pgf@circ@res@right}{\pgf@circ@res@up}}
23 \pgfpathlineto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@up}}
24

25 \pgfsetrectcap
26 \pgfsetmiterjoin
27 \pgfusepath{stroke}
28

29 % damper vertical element
30 \pgfpathmoveto{\pgfpoint{\ctikzvalof{bipoles/damper/length}\pgf@circ@res@right}
31 {.8\pgf@circ@res@down}}
32 \pgfpathlineto{\pgfpoint{\ctikzvalof{bipoles/damper/length}\pgf@circ@res@right}
33 {.8\pgf@circ@res@up}}
34 \pgfsetbuttcap
35 \pgfusepath{stroke}
36

37 }

This \pgfcircdeclarebipolescaled command will define a shape that is named viscoeshape, with all
the correct geographical anchors based on the depth, height and width defined in the parameters: in
this case we are reusing the ones of the damper shape. Moreover, the element is assigned to the class
mechanicals for styling.
To be coherent with the styling, you should use (when needed) the length \pgf@circ@scaled@Rlen
as the “basic” length for drawing, using the fill functions (they are defined at the start of the file
pgfcirc.defines.tex) to fill and stroke — so that the operation will follow the style parameters and,
finally, use the macro \pgf@circ@setlinewidth to set the line thickness: the first argument is the “legacy”
class, if you do not want to assign one you can use the pseudo-legacy class none.
The anchors for the bipole (which then set the lengths \pgf@circ@res@left) are already scaled for your
use. You can use these lengths (which defines, normally, the geographical anchors of the element) to draw
your shapes.
This is not sufficient for using the element in a to[] path command; you need to “activate” it (the
definition of the commands are normally in pgfcircpath.tex). In this case the component is simple —
look at the definitions if you need to do more complex things.

1 \pgfcirc@activate@bipole@simple{l}{viscoe}

In the definition above, the {l} parameter means that using the component like to[viscoe=A] will be
equivalent to to[viscoe, l=A]; you can also use v or i or f if your component needs it. Now you can
show it with:

1 \circuitdescbip*{viscoe}{Mechanical viscoelastic element}{}(left/135/0.2, right/45/0.2,
center/-90/0.3)

2

3 \geolrcoord{viscoeshape, fill=yellow}
4

5 \begin{LTXexample}[varwidth]
6 \begin{circuitikz}
7 \draw (0,0) to[spring] ++(2,0)

227

8 to[viscoe] ++(2,0);
9 \end{circuitikz}

10 \end{LTXexample}

Obviously, at first you just have a component that is the same as the one you copied with another name.
It is now just a matter of modifying it so that it has the desired shape; in the example above you can
already see the new symbol after the changes.
When doing the drawing in the main argument of the \pgfcircdeclarebipole, things will be set up so
that the lengths \pgf@circ@res@right and \pgf@circ@res@up are the x-y coordinates of the upper right
corner, and \pgf@circ@res@left and \pgf@circ@res@down are the x-y coordinates of the lower left corner
of your shape. The center coordinate is usually at (0pt, 0pt).
Looking at the implementation of the spring element, one possibility is changing the lines between lines 12
and 16 with:

1 % spring into the damper
2 \pgfscope
3 \pgfpathmoveto{\pgfpoint{\pgf@circ@res@left}{\pgf@circ@res@zero}}
4 \pgf@circ@setlinewidth{bipoles}{\pgfstartlinewidth}
5 \pgfsetcornersarced{\pgfpoint{.25\pgf@circ@res@up}{.25\pgf@circ@res@up}}
6 \pgfpathlineto{\pgfpoint{.75\pgf@circ@res@left}{.75\pgf@circ@res@up}}
7 \pgfpathlineto{\pgfpoint{.5\pgf@circ@res@left}{-.75\pgf@circ@res@up}}
8 \pgfpathlineto{\pgfpoint{.25\pgf@circ@res@left}{.75\pgf@circ@res@up}}
9 \pgfpathlineto{\pgfpoint{0pt}{-.75\pgf@circ@res@up}}

10 \pgfpathlineto{\pgfpoint{\ctikzvalof{bipoles/damper/length}\pgf@circ@res@right
}{.75\pgf@circ@res@up}}

11 \pgfusepath{stroke}
12 \endpgfscope

which leads to:

left right

center

viscoe: Mechanical viscoelastic element, type: path-style,
fillable, nodename: viscoeshape. Class: mechanicals.

text

north north east

east

south eastsouthsouth west

west

north west
left right

center

1 \begin{circuitikz}
2 \draw (0,0) to[spring] ++(2,0)
3 to[viscoe] ++(2,0);
4 \end{circuitikz}

Now you can check if the voltage labels are correct for your new component:

V

1 \begin{circuitikz}[]
2 \draw (0,0) to[spring] ++(2,0)
3 to[viscoe, v=V] ++(2,0);
4 \end{circuitikz}

If you think they are too tight or too loose, you can use a (developer-only) key to adjust the distance:

228

V

1 \begin{circuitikz}
2 \ctikzset{bipoles/viscoe/voltage/additional shift/.

initial=1}
3 \draw (0,0) to[spring] ++(2,0)
4 to[viscoe, v=V] ++(2,0);
5 \end{circuitikz}

Notice that by default the key bipoles/mybipole/voltage/additional shift is not defined, so if you
want to use it you must create it before (this is the meaning of the .initial here).
Now you can save all the code between the \makeatletter and \makeatother in a file and \input{} it
for using your special component, or submit the component to the project (see below).
As a final note, notice that the viscoe element is already added to the standard package.

9.3 Node-style component

Adding a node-style component is much more straightforward. Just define it by following examples in, for
example, pgfcirctripoles.tex or the other files; be careful that you should define all the geographical
anchors of the shape if you want that the TikZ positioning options (like left, above, etc.) behave correctly
with your component.
To have a scalable component, for example in the transistors class, you should use something like

1 \savedmacro{\ctikzclass}{\edef\ctikzclass{transistors}}
2 \saveddimen{\scaledRlen}{\pgfmathsetlength{\pgf@x}{\ctikzvalof{\ctikzclass/scale

}\pgf@circ@Rlen}}

at the start of anchors and macros definition, and use (for example, the exact code will change greatly
depending on your component):

1 \savedanchor\northeast{% upper right
2 \pgfmathsetlength{\pgf@circ@scaled@Rlen}{\ctikzvalof{\ctikzclass/scale}\

pgf@circ@Rlen}
3 \pgf@y=\pgf@circ@scaled@Rlen
4 \pgf@y=0.5\pgf@y
5 \pgf@x=0.3\pgf@y
6 }

in all the savedanchors.
Then, to draw your component, you should start with104:

1 \pgf@circ@draw@component{%
2 \pgf@circ@scaled@Rlen=\scaledRlen
3 ...
4 }

and then use \pgf@circ@scaled@Rlen (or the anchors) as the default length while you draw it.
The special command \pgf@circ@draw@component will issue a \behindforegroundpath command, and
take care of calling the start and end hooks for the component. Notice that, given the use of \behindforegroundpath,
you must take care to use the path you define here! The path itself is protected bu a pgfscope (and so
also by a TEX group), so local definitions will be reset after exiting.
104Since v1.5.0; component defined with this mechanism will not be compatible with older CircuiTikZ.

229

9.3.1 The internal hook system

Since version v1.5.0, before starting the drawing of any component, CircuiTikZ will check for the existence
of three different hooks, in the following order (suppose that the shape name is myname, and it has a class
myclass:

• \ctikz@hook@start@draw@component@myname
• \ctikz@hook@start@draw@class@myclass
• \ctikz@hook@start@draw@default

The first one that is defined in the current (or outer) scope is used, and the following ones are not used.
These hooks can be used to set drawing parameters, or to reset them to a known state: TikZ normally
inherit most of the drawing option, but that can lead to surprises (like unexpected arrows, etc.).
In the same way, before leaving \pgf@circ@draw@component, a set of similar hooks (with end instead of
start) is tried, with the same logic.
The only predefined hook is \ctikz@hook@start@draw@default, which is set to the equivalent of:

1 \pgfsetshortenstart{+0pt}\pgfsetshortenend{+0pt}\pgfsetarrows{-}%
2 \def\pgf@circ@reset@rounded{\pgfsetcornersarced{\pgfpointorigin}}%

which means that, by default, arrows parameters are reset to the default (no shorten, no arrows) and
that corners are not rounded. If you want to override them, just define the appropriate hook for your
component/class and the generic one will not be called.
No ...@end@draw@... hook is defined by default.

9.3.2 Finishing your work

Once you have a satisfactory element, you should

• Clean up your code;
• write a piece of documentation explaining its use, with an example;
• Propose the element for inclusion in the GitHub page of the project (you will have to license this

as explained in that page, of course).

The best way of contributing is forking the project, adding your component in the correct files, modifying
the manual and creating a pull request for the developers to merge. Anyway, if this is a problem, just
open an issue and someone (when they have time…) will answer.

230

10 Examples

Here a series of examples, contributed by several people, is shown with their code.

10.1 A red diode

10 µF

2.2 kΩ

12mHb

i1

1 kΩ

0.3 kΩ i1

1

1mA

1 \begin{circuitikz}[scale=1.4]\draw
2 (0,0) to[C, l=10<\micro\farad>] (0,2) -- (0,3)
3 to[R, l=2.2<\kilo\ohm>] (4,3) -- (4,2)
4 to[L, l=12<\milli\henry>, i=i_1,v=b] (4,0) -- (0,0)
5 (4,2) to[D*, color=red] (2,0)
6 (0,2) to[R, l=1<\kilo\ohm>, *-] (2,2)
7 to[cV, i=1, -*, v=$\SI{.3}{\kilo\ohm}\, i_1$] (4,2)
8 (2,0) to[I, i=1<\milli\ampere>, *-*] (2,2)
9 ;\end{circuitikz}

231

10.2 Using the (experimental) siunitx syntax

e(t)

4 nF

0.25 kΩ

1 kΩ

2 nF

a(t)

2mH

1 2 3

1 \begin{circuitikz}[scale=1.2]\draw
2 (0,0) node[ground] {}
3 to[V=$e(t)$, *-*] (0,2) to[C=4<\nano\farad>] (2,2)
4 to[R, l_=.25<\kilo\ohm>, *-*] (2,0)
5 (2,2) to[R=1<\kilo\ohm>] (4,2)
6 to[C, l_=2<\nano\farad>, *-*] (4,0)
7 (5,0) to[I, i_=$a(t)$, -*] (5,2) -- (4,2)
8 (0,0) -- (5,0)
9 (0,2) -- (0,3) to[L, l=2<\milli\henry>] (5,3) -- (5,2)

10

11 {[anchor=south east] (0,2) node {1} (2,2) node {2} (4,2) node {3}}
12 ;
13 \end{circuitikz}

B

20Ω

10Ω

vx

S
5
vx

5Ω

A

1 \begin{circuitikz}[scale=1.2]\draw
2 (0,0) node[anchor=east] {B}
3 to[short, o-*] (1,0)
4 to[R=20<\ohm>, *-*] (1,2)
5 to[R=10<\ohm>, v=v_x] (3,2) -- (4,2)
6 to[cI=$\frac{\si{\siemens}}{5} v_x$, *-*] (4,0) -- (3,0)
7 to[R=5<\ohm>, *-*] (3,2)
8 (3,0) -- (1,0)
9 (1,2) to[short, -o] (0,2) node[anchor=east]{A}

10 ;\end{circuitikz}

232

10.3 Photodiodes

1 \begin{circuitikz}[scale=1]\draw
2 (0,0) node[transformer] (T) {}
3 (T.B2) to[pD] ($(T.B2)+(2,0)$) -| (3.5, -1)
4 (T.B1) to[pD] ($(T.B1)+(2,0)$) -| (3.5, -1)
5 ;\end{circuitikz}

10.4 A Sallen-Key cell

−

+Uwe

Rd Rd

Cd2

Cd1

Uwy

1 \begin{circuitikz}[scale=1]\draw
2 (5,.5) node [op amp] (opamp) {}
3 (0,0) node [left] {U_{we}} to [R, l=R_d, o-*] (2,0)
4 to [R, l=R_d, *-*] (opamp.+)
5 to [C, l_=C_{d2}, *-] ($(opamp.+)+(0,-2)$) node [ground] {}
6 (opamp.out) |- (3.5,2) to [C, l_=C_{d1}, *-] (2,2) to [short] (2,0)
7 (opamp.-) -| (3.5,2)
8 (opamp.out) to [short, *-o] (7,.5) node [right] {U_{wy}}
9 ;\end{circuitikz}

233

10.5 Mixing circuits and graphs

1mA

2 k
Ω

2 kΩ

+
− 2V

t0

+

−

v1

i1

+−

4V

1 kΩ

v1/V

i1/mA

-2
2

4

-4

4
-3

1 \begin{circuitikz}[scale=1.2, american]\draw
2 (0,2) to[I=1<\milli\ampere>] (2,2)
3 to[R, l_=2<\kilo\ohm>, *-*] (0,0)
4 to[R, l_=2<\kilo\ohm>] (2,0)
5 to[V, v_=2<\volt>] (2,2)
6 to[cspst, l=t_0] (4,2) -- (4,1.5)
7 to [generic, i=i_1, v=v_1] (4,-.5) -- (4,-1.5)
8 (0,2) -- (0,-1.5) to[V, v_=4<\volt>] (2,-1.5)
9 to [R, l=1<\kilo\ohm>] (4,-1.5);

10

11 \begin{scope}[xshift=6.5cm, yshift=.5cm]
12 \draw [->] (-2,0) -- (2.5,0) node[anchor=west] {$v_1/\si{\volt}$};
13 \draw [->] (0,-2) -- (0,2) node[anchor=west] {$i_1/\si{\milli\ampere}$} ;
14 \draw (-1,0) node[anchor=north] {-2} (1,0) node[anchor=south] {2}
15 (0,1) node[anchor=west] {4} (0,-1) node[anchor=east] {-4}
16 (2,0) node[anchor=north west] {4}
17 (-1.5,0) node[anchor=south east] {-3};
18 \draw [thick] (-2,-1) -- (-1,1) -- (1,-1) -- (2,0) -- (2.5,.5);
19 \draw [dotted] (-1,1) -- (-1,0) (1,-1) -- (1,0)
20 (-1,1) -- (0,1) (1,-1) -- (0,-1);
21 \end{scope}
22 \end{circuitikz}

234

10.6 RF circuit

LO
RF

1 \begin{circuitikz}[scale=1]
2 \ctikzset{bipoles/detector/width=.35}
3 \ctikzset{quadpoles/coupler/width=1}
4 \ctikzset{quadpoles/coupler/height=1}
5 \ctikzset{tripoles/wilkinson/width=1}
6 \ctikzset{tripoles/wilkinson/height=1}
7 %\draw[help lines,red,thin,dotted] (0,-5) grid (5,5);
8 \draw
9 (-2,0) node[wilkinson](w1){}

10 (2,0) node[coupler] (c1) {}
11 (0,2) node[coupler,rotate=90] (c2) {}
12 (0,-2) node[coupler,rotate=90] (c3) {}
13 (w1.out1) .. controls ++(0.8,0) and ++(0,0.8) .. (c3.port3)
14 (w1.out2) .. controls ++(0.8,0) and ++(0,-0.8) .. (c2.port4)
15 (c1.port1) .. controls ++(-0.8,0) and ++(0,0.8) .. (c3.port2)
16 (c1.port4) .. controls ++(-0.8,0) and ++(0,-0.8) .. (c2.port1)
17 (w1.in) to[short,-o] ++(-1,0)
18 (w1.in) node[left=30] {LO}
19 (c1.port2) node[match,yscale=1] {}
20 (c1.port3) to[short,-o] ++(1,0)
21 (c1.port3) node[right=30] {RF}
22 (c2.port3) to[detector,-o] ++(0,1.5)
23 (c2.port2) to[detector,-o] ++(0,1.5)
24 (c3.port1) to[detector,-o] ++(0,-1.5)
25 (c3.port4) to[detector,-o] ++(0,-1.5)
26 ;
27 \end{circuitikz}

235

10.7 A styled low noise input stage

vcm

Rc

v+

E+
R+

+

−

LNA

v−
E−

R−

Egnd
Rgnd

1 2

R

3

R

4

Body

electrodes

ground
electrode

ADC µC

digitally
controlled
switches

ADG1414

AD8429

1 \ctikzloadstyle{romano}
2 \scalebox{0.707}{%
3 \begin{circuitikz}[american, romano circuit style]
4 \ctikzset{bipoles/cuteswitch/thickness=0.5}
5 \draw (0,0) node[ground](GND0){} to[sV, l=v_{cm}] ++(0,1)
6 to [R, l=R_c, -*] ++(0,1.5) coordinate(vcm) --++(0,0.5) coordinate(diffc);
7 \draw (diffc) -| ++(-0.5, 0.5) to[sV,l=v_+, name=vplus] ++(0,1) --++(0,2)
8 -- ++(2.5,0) coordinate(skin+ a) to[battery2, l=E_+, name=eplus] ++(1,0)
9 to[R=R_+, name=rplus] ++(2,0) coordinate(skin+ b) -- ++(0.5,0)

10 -- ++(4,0) coordinate(hpin+) to[highpass] ++(2,0)
11 node[inst amp, anchor=+, noinv input up,
12 circuitikz/amplifiers/scale=1.6,
13 circuitikz/tripoles/inst amp/width=1](LNA){LNA}
14 (LNA.out);
15 \coordinate (skin- a) at (LNA.- -| skin+ a);
16 \draw (diffc) -| ++(0.5,0.5) to[sV,l_=v_-, name=vminus] ++(0, 1) |- (skin- a);
17 \draw (skin- a) to[battery2, l_=E_-, name=eminus] ++(1,0)
18 to[R, l_=R_-, name=rminus] ++(2,0) coordinate(skin- b) -- ++(2.5,0)
19 -- (skin- b -| hpin+) to[highpass] (LNA.-);
20 \coordinate (gnd a) at (vcm -| skin+ a);
21 \draw (vcm) -- (gnd a) to[battery2, l_=E_gnd, name=egnd] ++(1,0)
22 to[R, l_=R_gnd, name=rgnd] ++(2,0) coordinate(gnd b);
23 % switch set
24 \def\swdown{-3.2}
25 \draw (skin- b) ++(1,0) coordinate(sw1) to[cosw, invert, mirror, l=1, *-, name=s1]

++(0,\swdown) to[short, -*] ++(0, -1.5);
26 \draw (sw1) ++(1,0) coordinate(sw2) to[cosw, invert, mirror, l=2, *-] ++(0,\swdown)

to[R=R, -*] ++(0, -1.5);
27 \draw (sw2|-skin+ b) ++(1,0) coordinate(sw3) to[short, *-] (sw3|-sw2) to[cosw,

invert, mirror, l=3,] ++(0,\swdown) to[R=R, -*] ++(0, -1.5);
28 \draw (sw3) ++(1,0) coordinate(sw4) to[short, *-] (sw4|-sw2) to[cosw, invert, mirror,

l=4, name=s4] ++(0,\swdown) to[short] ++(0, -1.5) coordinate(endsw);
29 \draw (gnd b) |- (endsw) node[rectjoinfill]{};
30 % boxes
31 \node [rectangle, draw, dashed, fit=(GND0) (vplus) (vpluslabel) (vminuslabel)](body)

{};
32 \node [anchor=south east, align=center] at (body.south east) {Body} ;
33 \node [rectangle, draw, dashed, fit=(rplus) (eplus) (epluslabel) (rpluslabel)](top)

{};
34 \node [rectangle, draw, dashed, fit=(eminus) (rminus) (eminuslabel) (rminuslabel)](

bot){};

236

35 \node [anchor=center, align=center] at ($(top.south)!0.5!(bot.north)$) {electrodes}
;

36 \node [rectangle, draw, dashed, fit=(egnd) (rgnd) (egndlabel) (rgndlabel)](gnd){};
37 \node [below, align=center] at (gnd.south) {ground\\ electrode} ;
38 \node [rectangle, draw, dashed, fit=(s1) (s4label), inner ysep=8pt](switches){};
39 % ADC and micro
40 \draw (LNA.out) -- ++(0.5,0) node[msport,circuitikz/RF/scale=2](ADC){ADC};
41 \draw (ADC.right) -- ++(0.5,0) node[twoportshape, anchor=left, t=\upmuC](uC){};
42 \draw (uC.south) -- (uC.south |- switches.east) -- ++(-4,0)
43 node[align=left, anchor=east](DCS){\small digitally\\ controlled\\ switches};
44 \draw[-Stealth] (DCS.west) -- (switches.east);
45 % components
46 \node [anchor=north west] at ([xshift=-10pt, yshift=-5pt]switches.south east) {ADG

1414};
47 \node [anchor=north west] at ([yshift=-5pt]LNA.refv down) {AD8429};
48 \end{circuitikz}
49 } % scalebox

10.8 An example with the compatibility option

R1

1 \documentclass{standalone}
2

3 \usepackage{tikz}
4 \usetikzlibrary{circuits.ee.IEC}
5 \usetikzlibrary{positioning}
6

7 \usepackage[compatibility]{circuitikzgit}
8 \ctikzset{bipoles/length=.9cm}
9

10 \begin{document}
11 \begin{tikzpicture}[circuit ee IEC]
12 \draw (0,0) to [resistor={name=R}] (0,2)
13 to[diode={name=D}] (3,2);
14 \draw (0,0) to[*R=R_1] (1.5,0) to[*Tnpn] (3,0)
15 to[*D](3,2);
16 \end{tikzpicture}
17 \end{document}

237

10.9 3-phases block schematic

transformer

fault
HVDC line

1 \begin{circuitikz}[smallR/.style={european resistor, resistors/scale=0.5}]
2 \draw (0,0) node[tacdcshape, anchor=ac mid in](acdc){} to[smallR] ++(-2,0)
3 -- coordinate(point) node[circ](){} ++(-.5,0);
4 \draw (acdc.ac up in)
5 to[nos, invert, mirror, name=switch,color=red] ++(-2,0)
6 -- (point);
7 \draw (acdc.ac down in) to[smallR] ++(-2,0)
8 -- (point)
9 to[oosourcetrans,prim=wye,sec=delta,l=transformer] ++(-1.5,0)

10 to[tmultiwire] ++(-.5,0)
11 node[gridnode, anchor=right]{};
12 \node[above=.3cm,color=red] at (switch) {fault};
13 \draw (acdc.dc up out) to[smallR,l=HVDC line] ++(2,0)
14 node[tdcacshape, anchor=dc up in](dcac){};
15 \draw (acdc.dc down out) -- (dcac.dc down in);
16 \draw (dcac.right)
17 to[ooosource,prim=delta,sec=delta,tert=wye,invert] ++(1.5,0)
18 to[tmultiwire] ++(.5,0) node[gridnode,anchor=left]{};
19 \end{circuitikz}

238

11 Changelog and Release Notes

The major changes among the different CircuiTikZ versions are listed here. See https://github.com/
circuitikz/circuitikz/commits for a full list of changes.

• Version 1.6.3 (2023-06-23)
The main change is that the definition of the “plus” and “minus” symbols used in several parts of
the library has changed in order to achieve better alignment of voltages and amplifier symbols when
using fonts different from Computer Modern. Additionally, internal connection dots in transistors
are configurable and have a new default, and documentation has got several fixes and enhancements.

– Change the definition of the “minus” symbol (see this issue) for details
– Add documentation on how to contact the border of the source symbols (suggested by user

@Tipounk on GitHub)
– in transistors, solder dots and connection dots for body diodes are now configurable
– Add anchors for the symbols on the oo-type sources, suggested by user @lapreindl on GitHub;

the symbols have been slightly changed and repositioned in the process
– several documentation fixes

• Version 1.6.2 (2023-05-13)
Several more styling options for elements (body diodes, transformers, crossing), a clock wedge
shape for logical circuits, and documentation updates for ConTeXt, mainly noticing the (upstream)
elimination of the thin siunitx layer compatibility macros.

– There is no siunitx support for ConTeXt, point to the units package
– context compatibility can have glitches: please see this issue
– Add styling of transform core lines (suggested by user @myzinsky on GitHub)
– Add scale to the bodydiode options (suggested by user @sputeanus on GitHub)
– Add styling of crossing vertical line (suggested by user @lkjell on GitHub)
– Add clockwedge shape (suggested by user @Mario1159 on GitHub)

• Version 1.6.1 (2023-02-11)
New components: solder jumpers; a couple of small but very useful inversion markers for logical
circuits, especially targeted at the mux-demux family; a new inline microphone; a much more
versatile hemt; a better legacy tline. More tweaks to converters blocks, and a lot of typo/grammar
fixes in the manual.

– Add configurable dashes to the dc symbols in converter blocks (suggested by user @dbstf on
GitHub)

– Add solder jumpers (by Romano)
– Add a shape to mark european-style inversion (suggested by user yashpalgoyal1304 on

GitHub), adjust European-style logic port triangle inversion symbols to match
– Add a tail-less mic (suggested by Dr. Mathhias Jung) and an option to change the thickness

of the microphone’s bar
– Enhance the hemt shape with a GaN-hemt as example (suggested by user @epsilon-phi on

GitHub)
– Add anchors and a “bare” option to tline (suggested by Dr. Mathhias Jung)
– subcircuits are no more experimental
– Correction of several typo/grammar errors in the documentation by quark67

• Version 1.6.0 (2022-12-10)
The big change is the refactoring (and enhancement) of the block’s code. In addition, double gate
MOSes, several fixes all over the map, and quite a lot of anchors were added into the mix.

239

https://github.com/circuitikz/circuitikz/commits
https://github.com/circuitikz/circuitikz/commits
https://github.com/circuitikz/circuitikz/issues/721
https://github.com/circuitikz/circuitikz/issues/722
https://github.com/circuitikz/circuitikz/issues/722
https://github.com/circuitikz/circuitikz/issues/720
https://github.com/circuitikz/circuitikz/issues/725
https://github.com/circuitikz/circuitikz/issues/706
https://github.com/circuitikz/circuitikz/issues/702
https://github.com/circuitikz/circuitikz/issues/703
https://github.com/circuitikz/circuitikz/issues/704
https://github.com/circuitikz/circuitikz/issues/705
https://github.com/circuitikz/circuitikz/issues/680
https://github.com/circuitikz/circuitikz/issues/680
https://github.com/circuitikz/circuitikz/issues/679
https://github.com/circuitikz/circuitikz/issues/679
https://github.com/circuitikz/circuitikz/issues/689
https://github.com/circuitikz/circuitikz/issues/691
https://github.com/circuitikz/circuitikz/issues/691
https://github.com/circuitikz/circuitikz/issues/694
https://github.com/circuitikz/circuitikz/pull/686

– Big change (mostly backward compatible, minus a couple of bug fixes) to the block’s code.
∗ Now vco can be boxed
∗ enabled more short-name geographical anchors
∗ generic blocks can be made rectangular
∗ mid-way lateral anchors for all blocks, as well as up/down
∗ renamed converters anchors (old ones retained for backward compatibility)
∗ new ac/ac blocks, both single- and three-phase

– Added double gate MOS transistors (by Romano Giannetti)
– Fix deformed shape for legacy TL component (issue on GitHub)
– Added several anchors on variable components, suggested by Dr Matthias Jung
– Added genericsplitter component (by frankplow)
– Fix - reshape splitter using /tripoles/splitter/width and /tripoles/splitter/height

rather than /tripoles/wilkinson/width and /tripoles/wilkinson/height.

• Version 1.5.5 (2022-11-12)
New features for optoelectronic devices: a new component, arrow styling, and anchors.

– Added styling of arrows on opto devices, thanks to a suggestion by Dr Matthias Jung
– Added Light-Dependent resistor shape (by Romano)
– Added arrows anchors to the opto-components
– Documentation updates (rotating and flipping for path components)

• Version 1.5.4 (2022-09-09)
New components and enhancement for old ones in this version.

– Added jumpers, inspired by a question on TeX.stackexchange
– Added generic double bipoles, inspired by user @erwinderboer on GitHub
– Added styling for the transistor bodydiode, suggested by user Alex Ghilas on

TeX.stackexchange
– Additions to the manual (how to remove pins on amplifiers)

• Version 1.5.3 (2022-07-02)
Minor release: fixes to the manual, and a new component (Shockley diodes).

– Merging changes to fix the language in the manual (thanks to Charles B. Cameron, user
@cameroncb1 on GitHub)

– Added Shockley diode (suggested by @dauph)

• Version 1.5.2 (2022-05-08)
Adding a couple of new component and a nice feature to transistors and tubes.

– Added TVS diodes (transorb), suggested by Anisio Rogerio Braga
– Added proximity switches, suggested by Anisio Rogerio Braga
– Added partially drawn tube and transistor borders, suggested by Jether Fernandes Reis

• Version 1.5.1 (2022-04-26)
Bug fix release.

– Do not load package regexpatch by default, thanks to GitHub user alceu-git

• Version 1.5.0 (2022-04-22)
In this version, several internal changes have been included in order to streamline and organize
better the components and to change the management of color. The changes are pretty deep and
subtle, so a bug or unexpected behaviour is always possible. You can use the 1.4.6 rollback point
in case of trouble, but be sure to report any bug.

240

https://github.com/circuitikz/circuitikz/issues/664
https://github.com/circuitikz/circuitikz/issues/663
https://github.com/circuitikz/circuitikz/issues/655
https://tex.stackexchange.com/questions/652494/drawing-jumper-pinhead-bridge-with-circuitikz
https://github.com/circuitikz/circuitikz/issues/641
https://tex.stackexchange.com/questions/653348/drawing-mosfet-bodydiode-dashed
https://tex.stackexchange.com/questions/653348/drawing-mosfet-bodydiode-dashed
https://tex.stackexchange.com/questions/646039/creating-a-shockley-diode-in-circuitikz
https://tex.stackexchange.com/q/642219/38080
https://github.com/circuitikz/circuitikz/issues/631
https://github.com/circuitikz/circuitikz/issues/602
https://github.com/circuitikz/circuitikz/issues/628

– Added connectors shapes, and included the BNC into that class; thanks to Alexander Sauter
for suggesting them and helping in the design

– Added nullator and norator shapes, suggested by user atticus-sullivan on GitHub
– Added buzzer and reversed buzzer bipoles, suggested by user Michael.H
– Added “dot” anchors to inductances
– Added “boxed only” option for some circular blocks, suggested by user myzinsky
– Added DIN antenna shape, suggested by user myzinsky
– Fixed block/input arrow connection, thanks to Laurenz Preindl for reporting
– Fixed a problem with generic tunable arrows, noticed thanks to this question on TeX.SX

Internal changes:

– Added a generic drawing function for shapes, which are now drawn always in background
– Added a hook system to be able to change component drawing settings per-shape, per-class

or globally
– All the 250+ shapes are now “protected” by possible external arrow and arced corners param-

eters
– Completely changed the management of the shapes’ color, thanks to GitHub user muzimuzhi

• Version 1.4.6 (2022-02-04)
A nasty bug fix and some hack to avoid that some global TikZ option spill into the shapes. To
better solve that problem, some risky changes are due, so this release will be also a rollback point
for compatibility reasons.

– Fix bug with legacy transmission lines in overlays (noticed by Benedikt Wilde)
– Robustify some shapes: do not let arrows option pass to the inner drawing (see here and here)
– Add warning about global draw options in the manual
– Fixes in documentation: hyperlink the index again, cite new recovery point, remove some

legacy construct
– Added 1.4.6 rollback point

• Version 1.4.5 (2021-12-06)
Important fix for ConTeXt users, thanks to @TeXnician for reporting.

– Fixed an incompatibility introduced with subcircuits that made compilation in ConTeXt fail
– Added \ctikzflip[x][y] utility macros for ConTeXt too
– Fixed stray characters in some TikZ environment

• Version 1.4.4 (2021-10-31)
Normal maintenance release; minor bugs fixed, a new component and a new option. No Halloween
component, sorry…

– Added a laser diode component (contributed by André Alves)
– Add the override source vif option and better describe source’s voltage positioning in the

manual
– fix nobase option with IGBT family (noticed by user hinata exc on Stack Eschange)
– fix a problem with legacy open voltage label position

• Version 1.4.3 (2021-09-06)
Minor release, mainly a single bugfix.

– added hidden anchors of ooosource to the manual
– fix a bug in anchors of ooosource (they did not respect class scaling)
– faster use fpu reciprocal (thanks to Henri Menke)

241

https://github.com/circuitikz/circuitikz/issues/611
https://github.com/circuitikz/circuitikz/issues/611
https://github.com/circuitikz/circuitikz/issues/615
https://tex.stackexchange.com/q/640501/38080
https://github.com/circuitikz/circuitikz/issues/621
https://github.com/circuitikz/circuitikz/issues/620
https://github.com/circuitikz/circuitikz/issues/613
https://tex.stackexchange.com/q/637182/38080
https://github.com/circuitikz/circuitikz/issues/605
https://github.com/circuitikz/circuitikz/issues/604
https://tex.stackexchange.com/a/632084/38080
https://matrix.to/#/!NuxCISwYQJuyWwNsEI:matrix.org/$vQO6luq1F66LJ79dERmaqKI46qMBcjStqYCPi725uZE?via=matrix.org&via=2krueger.de&via=im.f3l.de
https://github.com/circuitikz/circuitikz/issues/591
https://tex.stackexchange.com/q/619334/38080
https://github.com/circuitikz/circuitikz/issues/584

• Version 1.4.2 (2021-07-26)
This is a minor release, containing just a new component and a small set of fixes (mainly in the
documentation).

– add the cpe (constant phase element)
– correct minor errors in the manual (capacitor’s fill, spaces) and the code.

• Version 1.4.1 (2021-07-14)
This version has an important bug fix for label positioning when once-relative style coordinates are
used (the ones with a single +, like +(1,1). Moreover, the possibility to have voltage, current and
flow labels without the symbols (arrows, etc) has been added, which greatly simplify some kind of
personalization of these elements.

– Added the generic tunable macro
– Added no v symbols (and also for i and f), thanks to a head-up by user judober on GitHub,

see also issue 448
– Fixed label position for +() style coordinates

• Version 1.4.0 (2021-07-06)
The main news is that package rollback for circuitikz has been implemented (LaTeX-only, of
course). Additionally, a small but important change in the path (to) construction that should fix
some warning from TikZ and give better line joins in wire corners.

– bump version to 1.4.0
– implement the version rollback: time travel to 0.4!
– remove a wrong movement in the path construction (potentially dangerous)

• Version 1.3.9 (2021-06-27)
Bugfix release: open poles opacity was not working in most of the cases.

– minor fixes to the manual
– fix bug with open poles opacity; see this question by Florian H. for details.

• Version 1.3.8 (2021-06-15)
The big news of this release is the ability to selectively draw the pins of the integrated circuit and
mux-demuxes symbols.

– Add draw only pins feature to dipchip and qfpchip, thanks to Jonathan P. Spratte, and a
similar option to control the pins of muxdemux

– Make dipchip and qfpchip respect no input leads option
– Several corrections to the manual

• version 1.3.7 (2021-06-01)
Minor release, mainly documentation upgrades.

– New options for the line thickness, rotation and size of symbols drawn in sources
– New tutorial: drawing a circuit around an operational amplifier
– Documentation fixes and small enhancements

• version 1.3.6 (2021-05-09)
Mainly a bugfix release; fixing a bug in the l2 stacked labels means that old constructs that were
failing silently can give an error now. Sorry. To compensate, I added stacked annotation (for
symmetry).

– Added stacked annotations for symmetry with stacked labels.
– Fixed a bug in the plotting of inst amp ra terminals.

242

https://github.com/circuitikz/circuitikz/issues/567
https://github.com/circuitikz/circuitikz/issues/448
https://github.com/circuitikz/circuitikz/issues/569
https://tex.stackexchange.com/questions/602251/circuitikz-redefine-open-nodes-fill-key-to-fill-none-so-that-open-circuit
https://github.com/circuitikz/circuitikz/pull/550

– Fixed a bug in managing stacked labels (l2=...); possibly it will be mildly backward-
incompatible (please see the manual about incompatible changes)

• Version 1.3.5 (2021-05-02)
Power electronics devices are the main characters in this release: PUT, GTOs, a new style for
thyristors, and a photovoltaic module. Additionally, an experimental support for subcircuits
has been added; it could change in the future. Fixed a nasty bug in rotary switches “in” anchor
positioning in some cases.

– Added support for creating and using sub-circuits
– Added UJT transistors and GTO devices (suggested by JetherReis)
– Added (as an option) a different, more compact style for thyristor-type devices.
– Added a photovoltaic module (suggested by André Alves)
– Added a DC/DC converter block for symmetry (suggested by Pratched)
– Added the possibility to change the waveforms shown in the oscilloscope (suggested by Mario

Tafur)
– In the manual, separate the component usage chapter from the big component list
– Fix wrong rotary switch “in” anchors for switches with more than 180 degrees coverage (see

bug)

• Version 1.3.4 (2021-04-20)
New things, like configurable modifier thickness, ferroelectric devices, and several transistor tweaks.
Importantly, a bug that hindered compatibility with the internal TikZ circuits library (introduced
in 1.3.3) has been fixed.

– Added separate configuration for the line thickness of resistors, capacitors, and inductors
modifiers

– Added ferroelectric capacitors and ferroelectric gate MOS/FETs (suggested by Mayeul Cantan)
– Added an option to fill the gate gap in MOSes, FETs and IGBTs with a color
– Added a “centergap” anchor for transistors
– Added the option “nogate” to the hemt symbol
– Fixed a bug in thermistors not respecting their class line thickness
– Fixes in the manual (copy and paste of snippets without numbers, correct old usage of siunitx,

factor out repetitions in the preamble; thanks to Ulrike Fischer.
– Fixed a bug introduced in 1.3.3 that would reduce compatibility with the circuits internal

library; reported by JetherReis)

• Version 1.3.3 (2021-04-04)
Several usability additions in this version, and one small fix that could change the look of your
circuit (without affecting correctness). Some of the arrow shapes are now configurable.
Do not use this version, there is a bug with the new “label distance” key.

– Added options to fine-tune the position of labels and annotations
– Added options to change arrow tips on variable resistors, inductors and capacitors as well as

in potentiometers
– Added options to change arrow tips on switches
– Added anchors to inductance to add core lines
– Fixed the default direction of tunable arrows (with an option to go back to the old ones)

• Version 1.3.2 (2021-03-14)

– Added the simplified (2-waves) highpass and lowpass blocks
– Added graphene FETs (suggested by Cees Keyer)
– Added left/right anchors to transistors

243

https://github.com/circuitikz/circuitikz/issues/522
https://github.com/circuitikz/circuitikz/issues/524
https://github.com/circuitikz/circuitikz/issues/529
https://tex.stackexchange.com/q/595062/38080
https://tex.stackexchange.com/q/595062/38080
https://github.com/circuitikz/circuitikz/issues/532
https://github.com/circuitikz/circuitikz/issues/532
https://github.com/circuitikz/circuitikz/issues/515
https://tex.stackexchange.com/a/57160/38080
https://github.com/circuitikz/circuitikz/issues/519

– Fixed a bug in flip-flops

• Version 1.3.1 (2021-02-20)

– Fixed a bug in “fuse” and “afuse” fill
– Remove the voltage direction warning. Nobody really ever cared
– Minor fixes and enhancements to the manual

• Version 1.3.0 (2021-01-19)

– Fixed a long-standing problem with labels and similar decoration with equal signs and commas
– Fixed a typo in the manual (thanks to @muzimuzhi on GitHub)
– The Mother of All Code Refactoring: no real changes (modulo errors)
– Added a rollback point to 1.2.7

• Version 1.2.7 (2020-12-27)
Bugfix release.

– The recent temporary changes to TikZ to v3.1.8a revealed a problem in corner cases with
circuitikz that should be fixed (thanks to Henri Menke)

• Version 1.2.6 (2020-12-16)
The highlight of this release is the option to draw circles around transistors; moreover, a handful of
new component and several bug fixes.

– added option to have transistors with circles, suggested by user @myzinsky
– added closed position for normally open button and the other way around (suggested by user

@septatrix)
– added a tip anchor for push buttons
– added text anchor for legacy linestub component
– added an option for a different style of european logic xnor port (suggested by user

@Schlepptop)
– added dynode tubes electrodes (suggested by user @ferdymercury)
– fixed a bug in style-files (thanks to user @Alex on tex.stackexchange.com)
– added a comment about relative coords (thanks to user @septatrix)
– several fixes to the manual

• Version 1.2.5 (2020-10-14)
Mainly a bugfix release for raised voltage style.

– added macro to access labels and annotations anchors and direction
– fixed a bug in “raised” voltages’ positions with invert and/or mirror

• Version 1.2.4 (2020-10-04)

– several documentation enhancment
– added a couple of block elements: allpass filter, generic two-sides block (suggested by user

@myzinsky)
– added transmission gate (only IEEE style version) suggested by several users (@SJulianS on

github, Philipp Birkl on TeX.SX)
– added a resistive splitter block symbol by @matthuszagh
– added depletion-type nmosd and pmosd MOSFET simplified symbols
– added depletion-type nfetd and pfetd for plain full-symbol MOSFET

244

https://tex.stackexchange.com/q/587213/38080

• Version 1.2.3 (2020-08-07)
Several fixes and small enhancement all over the map, changes in the documentation to better
explain the reasons and effect of the path-building changes of 1.2.0 and 1.2.1.

– added a Mach-Zehnder-Modulator block symbol as node mzm by user @dl1chb
– add an open poles fill option to simplify circuits where the background is different from

white
– restyled the FAQ and added the explanation of “gaps with nodes” that happens again after

1.2.1
– Fixed size of “not circle” in flip-flops to match european style not circle when used without

the IEEE style
– Block anchors: add border anchors for round elements and deprecate old 1, 2, 3, 4 anchors
– Fixed some bipole border size to avoid overlapping labels; document it

• Version 1.2.2 (2020-07-15)
Bug-fix release: coordinate name leakage. The node and coordinate names are global; the internal
coordinate names have been made stronger.

• Version 1.2.1 (2020-07-06)
Several changes, both internal and user-visible. These are quite risky, although they should be
backward-compatible (if the circuit code is correct).
From the user point of view:

– there is now a new style of voltages (“raised American”)
– a powerful mechanism for customize voltages, current and flows has been added.

The internal changes are basically the re-implementation of the macros that draw the path elements
(to[...]), which have been completely rewritten. Please be sure to read the possible incompatibil-
ities in the manual (section 1.9).

– Added access to voltages, currents and flows anchors
– Added “raised american” voltage style
– Rewrite of the path generation macros
– Several small bugs fixed (no one ever used some “f^>” options…)

• Version 1.2.0 (2020-06-21)
In this release, the big change is the rewriting of the voltages output routine. Now all voltage options
(american, european, and straight) take into account the shape (square border) of the component.
The adjusting parameters are now (at least for passive elements) acting in similar way for all the
options, too.

– Bumped version number to 1.2 (potentially incompatible changes!)
– Added 1.1.2 checkpoint
– New path-style not, buffer, and Schmitt logic ports
– New tutorial (using the “inline not” component)
– Voltage output routine rewrite; now it takes into account the shape of the component also for
“american” and “straight” voltages

– Several fixes in the logic ports: fixed IEEE invschmitt name, added symmetry to the three-
style shorthands for the ports, and so on

– Fixed a gross bug in square poles anchor borders
– Fixed size of not circles in flip-flops (based on logic ports style)
– Fixed the order of initial options, to avoid “european” overwriting single options

• Version 1.1.2 (2020-05-17)

245

– Blocks and component for three-phase networks (3-lines wire, AC/DC and DC/AC converters
blocks and grid node block) added by user @olfline on GitHub

– added transformer sources with optional vector groups for three-phase networks by @olfline
on Github

– added subsections to the examples
– fixed position of american voltages on open circuits (suggested by user @rhandley on GitHub)

• Version 1.1.1 (2020-04-24)
One-line bugfix release for the IEEE ports “not” circle thickness

• Version 1.1.0 (2020-04-19)
Version bumped to 1.1 because the new logic ports are quite a big addition: now there is a new
style for logic ports, conforming to IEEE recommendations.
Several minor additions all over the map too.

– added IEEE standard logic ports suggested by user Jason-s on GitHub
– added configurability to european logic port “not” output symbol, suggested by j-hap on

GitHub
– added inerter component by user Tadashi on GitHub
– added variable outer base height for IGBT, suggested by user RA-EE on GitHub
– added configurable “+” and “-” signs on american-style voltage generators
– text on amplifiers can be positioned to the left or centered

• Version 1.0.2 (2020-03-22)

– added Schottky transistors (thanks to a suggestion by Jérôme Monclard on GitHub)
– fixed formatting of CHANGELOG.md

• Version 1.0.1 (2020-02-22)
Minor fixes and addition to 1.0, in time to catch the freeze for TL2020.

– add v1.0 version snapshots
– added crossed generic impedance (suggested by Radványi Patrik Tamás)
– added open barrier bipole (suggested by Radványi Patrik Tamás)
– added two flags to flip the direction of light’s arrows on LED and photodiode (suggested by

karlkappe on GitHub)
– added a special key to help with precision loss in case of fractional scaling (thanks to An-

dreaDiPietro92 on GitHub for noticing and reporting, and to Schrödinger’s cat for finding a
fix)

– fixed a nasty bug for the flat file generation for ConTeXt

• Version 1.0 (2020-02-04)
And finally… version 1.0 (2020-02-04) of circuitikz is released.
The main updates since version 0.8.3, which was the last release before Romano started co-
maintaining the project, are the following — part coded by Romano, part by several collaborators
around the internet:

– The manual has been reorganized and extended, with the addition of a tutorial part; tens of
examples have been added all over the map.

– Around 74 new shapes where added. Notably, now there are chips, mux-demuxes, multi-
terminal transistors, several types of switches, flip-flops, vacuum tubes, 7-segment displays,
more amplifiers, and so on.

– Several existing shapes have been enhanced; for example, logic gates have a variable number
of inputs, transistors are more configurable, resistors can be shaped more, and more.

246

– You can style your circuit, changing relative sizes, default thickness and fill color, and more
details of how you like your circuit to look; the same you can do with labels (voltages, currents,
names of components and so on).

– A lot of bugs have been squashed; especially the (very complex) voltage direction conundrum
has been clarified and you can choose your preferred style here too.

A detailed list of changes can be seen below.

• Version 1.0.0-pre3 (not released)

– Added a Reed switch
– Put the copyright and license notices on all files and update them
– Fixed the loading of style; we should not guard against reload

• Version 1.0.0-pre2 (2020-01-23)
Really last additions toward the 1.0.0 version. The most important change is the addition of
multiplexer and de-multiplexers; also added the multi-wires (bus) markers.

– Added mux-demux shapes
– Added the possibility to suppress the input leads in logic gates
– Added multiple wires markers
– Added a style to switch off the automatic rotation of instruments
– Changed the shape of the or-type american logic ports (reversible with a flag)

• Version 1.0.0-pre1 (2019-12-22)
Last additions before the long promised 1.0! In this pre-release we feature a flip-flop library, a
revamped configurability of amplifiers (and a new amplifier as a bonus) and some bug fix around
the clock.

– Added a flip-flop library
– Added a single-input generic amplifier with the same dimension as “plain amp”
– Added border anchors to amplifiers
– Added the possibility (expert only!) to add transparency to poles (after a suggestion from user

@matthuszagh on GitHub)
– Make plus and minus symbol on amplifiers configurable
– Adjusted the position of text in triangular amplifiers
– Fixed “plain amp” not respecting “noinv input up”
– Fixed minor incompatibility with ConTeXt and Plain TeX

• Version 0.9.7 (2019-12-01)
The important thing in this release is the new position of transistor’s labels; see the manual for
details.

– Fix the position of transistor’s text. There is an option to revert to the old behavior.
– Added anchors for adding circuits (like snubbers) to the flyback diodes in transistors (after a

suggestion from @EdAlvesSilva on GitHub).

• Version 0.9.6 (2019-11-09)
The highlights of this release are the new multiple terminals BJTs and several stylistic addition
and fixes; if you like to pixel-peep, you will like the fixed transistors arrows. Additionally, the
transformers are much more configurable now, the “pmos” and “nmos” elements have grown an
optional bulk connection, and you can use the “flow” arrows outside of a path.
Several small and less small bugs have been fixed.

– Added multi-collectors and multi-emitter bipolar transistors

247

– Added the possibility to style each one of the two coils in a transformer independently
– Added bulk connection to normal MOSFETs and the respective anchors
– Added “text” anchor to the flow arrows, to use them alone in a consistent way
– Fixed flow, voltage, and current arrow positioning when “auto” is active on the path
– Fixed transistors arrows overshooting the connection point, added a couple of anchors
– Fixed a spelling error on op-amp key “noinv input down”
– Fixed a problem with “quadpoles style=inner” and “transformer core” having the core lines

running too near

• Version 0.9.5 (2019-10-12)
This release basically add features to better control labels, voltages and similar text “ornaments”
on bipoles, plus some other minor things.
On the bug fixes side, a big incompatibility with ConTeXt has been fixed, thanks to help from
@TheTeXnician and @hmenke on github.com.

– Added a “midtap” anchor for coils and exposed the inner coils shapes in the transformers
– Added a “curved capacitor” with polarity coherent with “ecapacitor”
– Added the possibility to apply style and access the nodes of bipole’s text ornaments (labels,

annotations, voltages, currents and flows)
– Added the possibility to move the wiper in resistive potentiometers
– Added a command to load and set a style in one go
– Fixed internal font changing commands for compatibility with ConTeXt
– Fixed hardcoded black color in “elko” and “elmech”

• Version 0.9.4 (2019-08-30)
This release introduces two changes: a big one, which is the styling of the components (please look
at the manual for details) and a change to how voltage labels and arrows are positioned. This
one should be backward compatible unless you used voltage shift introduced in 0.9.0, which was
broken when using the global scale parameter.
The styling additions are quite big, and, although in principle they are backward compatible,
you can find corner cases where they are not, especially if you used to change parameters for
pgfcirc.defines.tex; so a snapshot for the 0.9.3 version is available.

– Fixed a bug with “inline” gyrators, now the circle will not overlap
– Fixed a bug in input anchors of european not ports
– Fixed “tlinestub” so that it has the same default size than “tline” (TL)
– Fixed the “transistor arrows at end” feature, added to styling
– Changed the behavior of “voltage shift” and voltage label positioning to be more robust
– Added several new anchors for “elmech” element
– Several minor fixes in some component drawings to allow fill and thickness styles
– Add 0.9.3 version snapshots.
– Added styling of relative size of components (at a global or local level)
– Added styling for fill color and thickeness
– Added style files

• Version 0.9.3 (2019-07-13)

– Added the option to have “dotless” P-MOS (to use with arrowmos option)
– Fixed a (puzzling) problem with coupler2
– Fixed a compatibility problem with newer PGF (>3.0.1a)

• Version 0.9.2 (2019-06-21)

248

– (hopefully) fixed ConTeXt compatibility. Most new functionality is not tested; testers and
developers for the ConTeXt side are needed.

– Added old ConTeXt version for 0.8.3
– Added tailless ground

• Version 0.9.1 (2019-06-16)

– Added old LaTeX versions for 0.8.3, 0.7, 0.6 and 0.4
– Added the option to have inline transformers and gyrators
– Added rotary switches
– Added more configurable bipole nodes (connectors) and more shapes
– Added 7-segment displays
– Added vacuum tubes by J. op den Brouw
– Made the open shape of dcisources configurable
– Made the arrows on vcc and vee configurable
– Fixed anchors of diamondpole nodes
– Fixed a bug (#205) about unstable anchors in the chip components
– Fixed a regression in label placement for some values of scaling
– Fixed problems with cute switches anchors

• Version 0.9.0 (2019-05-10)

– Added Romano Giannetti as contributor
– Added a CONTRIBUTING file
– Added options for solving the voltage direction problems.
– Adjusted ground symbols to better match ISO standard, added new symbols
– Added new sources (cute european versions, noise sources)
– Added new types of amplifiers, and option to flip inputs and outputs
– Added bidirectional diodes (diac) thanks to Andre Lucas Chinazzo
– Added L,R,C sensors (with european, american and cute variants)
– Added stacked labels (thanks to the original work by Claudio Fiandrino)
– Make the position of voltage symbols adjustable
– Make the position of arrows in FETs and BJTs adjustable
– Added chips (DIP, QFP) with a generic number of pins
– Added special anchors for transformers (and fixed the wrong center anchor)
– Changed the logical port implementation to multiple inputs (thanks to John Kormylo) with

border anchors.
– Added several symbols: bulb, new switches, new antennas, loudspeaker, microphone, coaxial

connector, viscoelastic element
– Make most components fillable
– Added the oscilloscope component and several new instruments
– Added viscoelastic element
– Added a manual section on how to define new components
– Fixed american voltage symbols and allow to customize them
– Fixed placement of straightlabels in several cases
– Fixed a bug about straightlabels (thanks to @fotesan)
– Fixed labels spacing so that they are independent on scale factor
– Fixed the position of text labels in amplifiers

249

• Version 0.8.3 (2017-05-28)

– Removed unwanted lines at to-paths if the starting point is a node without a explicit anchor.
– Fixed scaling option, now all parts are scaled by bipoles/length
– Surge arrester appears no more if a to path is used without []-options
– Fixed current placement now possible with paths at an angle of around 280°
– Fixed voltage placement now possible with paths at an angle of around 280°
– Fixed label and annotation placement (at some angles position not changable)
– Adjustable default distance for straight-voltages: ‘bipoles/voltage/straight label distance’
– Added Symbol for bandstop filter
– New annotation type to show flows using f=… like currents, can be used for thermal, power or

current flows

• Version 0.8.2 (2017-05-01)

– Fixes pgfkeys error using alternatively specified mixed colors(see pgfplots manual section “4.7.5
Colors”)

– Added new switches “ncs” and “nos”
– Reworked arrows at spst-switches
– Fixed direction of controlled american voltage source
– “v<=” and “i<=” do not rotate the sources anymore(see them as “counting direction indica-

tion”, this can be different then the shape orientation); Use the option “invert” to change the
direction of the source/apperance of the shape.

– current label “i=” can now be used independent of the regular label “l=” at current sources
– rewrite of current arrow placement. Current arrows can now also be rotated on zero-length

paths
– New DIN/EN compliant operational amplifier symbol “en amp”

• Version 0.8.1 (2017-03-25)

– Fixed unwanted line through components if target coordinate is a name of a node
– Fixed position of labels with subscript letters.
– Absolute distance calculation in terms of ex at rotated labels
– Fixed label for transistor paths (no label drawn)

• Version 0.8 (2017-03-08)

– Allow use of voltage label at a [short]
– Correct line joins between path components (to[…])
– New Pole-shape .-. to fill perpendicular joins
– Fixed direction of controlled american current source
– Fixed incorrect scaling of magnetron
– Fixed: Number of american inductor coils not adjustable
– Fixed Battery Symbols and added new battery2 symbol
– Added non-inverting Schmitttrigger

• Version 0.7 (2016-09-08)

– Added second annotation label, showing, e.g., the value of an component
– Added new symbol: magnetron
– Fixed name conflict of diamond shape with tikz.shapes package
– Fixed varcap symbol at small scalings

250

– New packet-option “straightvoltages, to draw straight(no curved) voltage arrows
– New option “invert” to revert the node direction at paths
– Fixed american voltage label at special sources and battery
– Fixed/rotated battery symbol(longer lines by default positive voltage)
– New symbol Schmitttrigger

• Version 0.6 (2016-06-06)

– Added Mechanical Symbols (damper,mass,spring)
– Added new connection style diamond, use (d-d)
– Added new sources voosource and ioosource (double zero-style)
– All diode can now drawn in a stroked way, just use globel option “strokediode” or stroke

instead of full/empty, or D-. Use this option for compliance with DIN standard EN-60617
– Improved Shape of Diodes:tunnel diode, Zener diode, schottky diode (bit longer lines at cath-

ode)
– Reworked igbt: New anchors G,gate and new L-shaped form Lnigbt, Lpigbt
– Improved shape of all fet-transistors and mirrored p-chan fets as default, as pnp, pmos, pfet

are already. This means a backward-incompatibility, but smaller code, because p-channels
mosfet are by default in the correct direction(source at top). Just remove the ‘yscale=-1’ from
your p-chan fets at old pictures.

• Version 0.5 (2016-04-24)

– new option boxed and dashed for hf-symbols
– new option solderdot to enable/disable solderdot at source port of some fets
– new parts: photovoltaic source, piezo crystal, electrolytic capacitor, electromechanical de-

vice(motor, generator)
– corrected voltage and current direction(option to use old behaviour)
– option to show body diode at fet transistors

• Version 0.4

– minor improvements to documentation
– comply with TDS
– merge high frequency symbols by Stefan Erhardt
– added switch (not opening nor closing)
– added solder dot in some transistors
– improved ConTeXt compatibility

• Version 0.3.1

– different management of color…
– fixed typo in documentation
– fixed an error in the angle computation in voltage and current routines
– fixed problem with label size when scaling a tikz picture
– added gas filled surge arrester
– added compatibility option to work with Tikz’s own circuit library
– fixed infinite in arctan computation

• Version 0.3.0

– fixed gate node for a few transistors
– added mixer

251

– added fully differential op amp (by Kristofer M. Monisit)
– now general settings for the drawing of voltage can be overridden for specific components
– made arrows more homogeneous (either the current one, or latex’ bt pgf)
– added the single battery cell
– added fuse and asymmetric fuse
– added toggle switch
– added varistor, photoresistor, thermocouple, push button
– added thermistor, thermistor ptc, thermistor ptc
– fixed misalignment of voltage label in vertical bipoles with names
– added isfet
– added noiseless, protective, chassis, signal and reference grounds (Luigi «Liverpool»)

• Version 0.2.4

– added square voltage source (contributed by Alistair Kwan)
– added buffer and plain amplifier (contributed by Danilo Piazzalunga)
– added squid and barrier (contributed by Cor Molenaar)
– added antenna and transmission line symbols contributed by Leonardo Azzinnari
– added the changeover switch spdt (suggestion of Fabio Maria Antoniali)
– rename of context.tex and context.pdf (thanks to Karl Berry)
– updated the email address
– in documentation, fixed wrong (non-standard) labelling of the axis in an example (thanks to

prof. Claudio Beccaria)
– fixed scaling inconsistencies in quadrupoles
– fixed division by zero error on certain vertical paths
– introduced options straighlabels, rotatelabels, smartlabels

• Version 0.2.3

– fixed compatibility problem with label option from tikz
– Fixed resizing problem for shape ground
– Variable capacitor
– polarized capacitor
– ConTeXt support (read the manual!)
– nfet, nigfete, nigfetd, pfet, pigfete, pigfetd (contribution of Clemens Helfmeier and Theodor

Borsche)
– njfet, pjfet (contribution of Danilo Piazzalunga)
– pigbt, nigbt
– backward incompatibility potentiometer is now the standard resistor-with-arrow-in-the-middle;

the old potentiometer is now known as variable resistor (or vR), similarly to variable inductor
and variable capacitor

– triac, thyristor, memristor
– new property “name” for bipoles
– fixed voltage problem for batteries in american voltage mode
– european logic gates
– backward incompatibility new american standard inductor. Old american inductor now called
“cute inductor”

252

– backward incompatibility transformer now linked with the chosen type of inductor, and version
with core, too. Similarly for variable inductor

– backward incompatibility styles for selecting shape variants now end are in the plural to avoid
conflict with paths

– new placing option for some tripoles (mostly transistors)
– mirror path style

• Version 0.2.2 - 20090520

– Added the shape for lamps.
– Added options europeanresistor, europeaninductor, americanresistor and

americaninductor, with corresponding styles.
– FIXED: error in transistor arrow positioning and direction under negative xscale and yscale.

• Version 0.2.1 - 20090503

– Op-amps added
– added options arrowmos and noarrowmos, to add arrows to pmos and nmos

• Version 0.2 - 20090417 First public release on CTAN

– Backward incompatibility: labels ending with :angle are not parsed for positioning anymore.
– Full use of TikZ keyval features.
– White background is not filled anymore: now the network can be drawn on a background

picture as well.
– Several new components added (logical ports, transistors, double bipoles, …).
– Color support.
– Integration with {siunitx}.
– Voltage, american style.
– Better code, perhaps. General cleanup at the very least.

• Version 0.1 - 2007-10-29 First public release

253

Index of the components

adc, 93
adder, 91
afuse, 82
ageneric, 50
aGTOb, see agtobar
aGTOb*, see full agtobar
aGTOb-, see stroke agtobar
agtobar, 63, 64
aGTObo, see empty agtobar
allpass, 93
ALU, 174
american and port, 155
american buffer port, 155
american controlled current source, 69
american controlled voltage source, 69
american current source, 68
american gas filled surge arrester, 82
american inductive sensor, see sL
american inductor, see L
american light dependent resistor, see ldR
american nand port, 155
american nor port, 155
american not port, 155
american or port, 155
american potentiometer, see pR, see pR
american resistive sensor, see sR
american resistor, see resistor, see R
american voltage source, 68
american xnor port, 155
american xor port, 155
ammeter, 37, 75
amp, 93
antenna, 128
asymmetric fuse, see afuse

bandpass, 92
bandstop, 92
bare jumper, 152
bare7seg, 181
bareantenna, 127
bareRXantenna, 128
bareTXantenna, 128
barrier, 82
battery, 67
battery1, 67
battery2, 67
biD*, see full bidirectionaldiode
biDo, see empty bidirectionaldiode
bjtnpn, collectors=1, emitters=2, 101
bjtnpn, collectors=2, emitters=2, bjt pins

width=0, bjt multi height=0.8, 114
bjtpnp, collectors=3, emitters=2, 101
bmultiwire, see bmultiwire, 84
bnc, 89
buffer, 139

bulb, 83
buzzer, 83

C, see capacitor
capacitive sensor, 54
capacitor, 54
cC, see curved capacitor
cceI, see cute european controlled current source
cceV, see cute european controlled voltage

source
ccgsw, see cute closing switch
ccsw, see cute closed switch
ceI, see cute european current source
ceV, see cute european voltage source
cground, 48
circ, 88
circleinv, scale=2, 173
circulator, 91
cisource, see european controlled current source
cisourceAM, see american controlled current

source
cisourceC, see cute european controlled current

source
cisourcesin, see controlled sinusoidal current

source
clockwedge, 169
closed double solder jumper, 154
closed jumper, 152
closed solder jumper, 154
closing switch, 144
cogsw, see cute opening switch
controlled isourcesin, see controlled sinusoidal

current source
controlled sinusoidal current source, 70
controlled sinusoidal voltage source, 69
controlled vsourcesin, see controlled sinusoidal

voltage source
cosw, see cute open switch
coupler, 95
coupler2, 95
cpe, see cpe, 55
crossing, 85
csI, see controlled sinusoidal current source
cspst, see closing switch
csV, see controlled sinusoidal voltage source
currarrow, 86
curved capacitor, 54
cute choke, 57
cute closed switch, 146
cute closing switch, 146
cute european controlled current source, 69
cute european controlled voltage source, 69
cute european current source, 68
cute european voltage source, 67
cute inductive sensor, see sL

254

cute inductor, see L
cute open switch, 146
cute opening switch, 146
cute spdt down, 146
cute spdt down arrow, 39, 146
cute spdt mid, 146
cute spdt mid arrow, 146
cute spdt up, 146
cute spdt up arrow, 146
cvsource, see european controlled voltage source
cvsourceAM, see american controlled voltage

source
cvsourceC, see cute european controlled voltage

source
cvsourcesin, see controlled sinusoidal voltage

source

D*, see full diode, see full diode
D-, see stroke diode
dac, 93
damper, 81, 225
dcisource, 73
dcvsource, 73
demux, 173
detector, 94
diamondpole, 88
dinantenna, 127
diodetube, 122
diodetube,filament, 123
diodetube,filament,nocathode, 123
diodetube,fullcathode, 123
dipchip, 178
Do, see empty diode
double bipole, 132
dsp, 93
dynode, 126

eC, see ecapacitor
ecapacitor, 54
ecsource, see empty controlled source
eground, 48
eground2, 48
elko, see ecapacitor
elmech, 130
empty agtobar, 64
empty bidirectionaldiode, 60
empty controlled source, 69
empty diode, 59
empty gto, 63
empty gtobar, 63
empty laser diode, 60
empty led, 60
empty photodiode, 60
empty put, 63
empty Schottky diode, 59
empty Shockley diode, 60
empty thyristor, 62
empty triac, 62
empty tunnel diode, 59

empty TVS diode, 60
empty varcap, 60
empty Zener diode, 59
empty ZZener diode, 59
en amp, 138
esource, 71
european and port, 157
european buffer port, 157
european controlled current source, 69
european controlled voltage source, 69
european current source, 68
european gas filled surge arrester, 82
european inductive sensor, see sL
european inductor, see L
european light dependent resistor, see ldR
european nand port, 157
european nor port, 157
european not port, 158
european or port, 157
european potentiometer, see pR
european resistive sensor, see sR
european resistor, see R
european voltage source, 67
european xnor port, 157
european xor port, 157

fd inst amp, 138
fd op amp, 138
feC, 55
ferrocap, see feC
fft, 93
flipflop, 168
flipflop AB, 168
flipflop D, 169
flipflop JK, 169
flipflop JK, add async SR, 170
flipflop JK, add async SR, external pins

width=0, 171
flipflop JK, dot on notQ, 169
flipflop myJK, 170
flipflop SR, 169
flipflop T, 169
flowarrow, 86
fourport, 94
full agtobar, 64
full bidirectionaldiode, 61
full diode, 60, 62
full gto, 63
full gtobar, 63
full laser diode, 61
full led, 60
full photodiode, 60
full put, 63
full Schottky diode, 60
full Shockley diode, 61
full thyristor, 62
full triac, 62
full tunnel diode, 60
full TVS diode, 61

255

full varcap, 61
full Zener diode, 60
full ZZener diode, 60
fuse, 82

GaN hemt, 102
generic, 50
genericsplitter, 92
gm amp, 138
gridnode, 92
ground, 48
GTO, see gto
gto, 63, 64
GTO*, see full gto
GTO-, see stroke gto
GTOb, see gtobar
GTOb*, see full gtobar
GTOb-, see stroke gtobar
gtobar, 63, 64
GTObo, see empty gtobar
GTOo, see empty gto
gyrator, 131

hemt, 101
hemt, nobase, 102
highpass, 92
highpass2, 93

iec connector, 89
iecconn, see iec connector
iecconnshape, 89
iecplugL, 90
iecplugR, 90
iecsocketL, 89
iecsocketR, 90
ieee double tgate, 157
ieee tgate, 157
ieeestd and port, 156
ieeestd buffer port, 156
ieeestd invschmitt port, 157
ieeestd nand port, 156
ieeestd nor port, 156
ieeestd not port, 156
ieeestd or port, 156
ieeestd schmitt port, 156
ieeestd xnor port, 156
ieeestd xor port, 156
iloop, 76
iloop2, 76
inerter, 81
inline buffer, 158
inline double tgate, 158
inline invschmitt, 158
inline not, 158
inline proximeter, 148
inline schmitt, 158
inline tgate, 158
inputarrow, 86
inst amp, 138

inst amp ra, 138
invschmitt, 155
ioosource, 71
isfet, 105
isource, see european current source
isourceAM, see american current source
isourceC, see cute european current source
isourceN, see noise current source
isourcesin, see sinusoidal current source

jump crossing, 85

L, 56
lamp, 83
lasD, see empty laser diode
lasD*, see full laser diode
lasD-, see stroke laser diode
latch, 169
ldR, 51
leD*, see full led
leD-, see stroke led
leDo, see empty led
left double solder jumper, 154
Lnigbt, 100
loudspeaker, 83
lowpass, 93
lowpass2, 93
Lpigbt, 100
Lpigbt, bodydiode, 100

magnetron, 126
mass, 81
match, 129
memristor, 51
mic, 83
mixer, 91
mixer, boxed, 91
Mr, see memristor
mslstub, 128
msport, 128
msrstub, 128
mstline, 128
multiwire, see multiwire, 84
muxdemux, 173
mzm, 92

ncpb, see normally closed push button
ncpbo, see normally closed push button open
ncs, see normal closed switch
nfet, 102
nfetd, 102
ngfet, 105
nground, 48
nI, see noise current source
nigbt, 100, 112
nigfetd, 102
nigfetd, doublegate, 103
nigfete, 102
nigfete, doublegate, 103

256

nigfete,solderdot, 102
nigfete,solderdot, doublegate, 103
nigfetebulk, 102
nigfetebulk, doublegate, 103
njfet, 104
nmos, 101, 106
nmos, bulk, 112
nmosd, 101, 106
nmosd, bulk, 112
noise current source, 70
noise voltage source, 70
nopb, see push button
nopbc, see normally open push button closed
norator, 72
normal closed switch, 144
normal open switch, 144
normally closed push button, 145
normally closed push button open, 145
normally open push button, see push button
normally open push button closed, 145
nos, see normal open switch
notcirc, 157
npn, 39, 99
npn, bodydiode, 100
npn, schottky base, 99
npn, tr circle, 114
npn, tr circle, bodydiode, 114
npn,photo, 100
nujt, 104
nujt, nobase, 105
nullator, 72
nV, see noise voltage source

ocirc, 88
odiamondpole, 88
ohmmeter, 75
one bit adder, 173
ooosource, 71
oosourcetrans, 71
op amp, 21, 137
open, 50
open double solder jumper, 154
open jumper, 152
open solder jumper, 154
openbarrier, 82
opening switch, 144
oscillator, 91
oscope, 76
ospst, see opening switch
osquarepole, 88

pD*, see full photodiode
pD-, see stroke photodiode
pDo, see empty photodiode
pentode, 122
pentode suppressor to cathode, 122
pfet, 102
pfetd, 103
pgfet, 105

pground, 48
phaseshifter, 93
photoresistor, see phR
phR, 52
piattenuator, 93
piezoelectric, 54
pigbt, 100
pigbt, nobase, 112
pigfetd, 103
pigfetd, doublegate, 104
pigfete, 103
pigfete, doublegate, 103
pigfetebulk, 103
pigfetebulk, doublegate, 103
pjfet, 104
plain amp, 39, 138
plain crossing, 85
plain mono amp, 138
pmos, 101, 106
pmos, bulk, 112
pmos,emptycircle, 107
pmos,nocircle,arrowmos, 107
pmosd, 101, 106
pmosd, bulk, 112
pnp, 99
pnp, schottky base, 100
pnp,photo, 100
pR, see pR, 37, 51
proximeter, 148
pujt, 104
push button, 145
PUT, see put, see put
put, 62, 64
PUT*, see full put
PUT-, see stroke put
PUTo, see empty put
pvmodule, 71
pvsource, 71
PZ, see piezoelectric

qfpchip, 178
qiprobe, 76
qpprobe, 76
qvprobe, 76

R, see resistor, 51
rbuzzer, 83
reed, 145
resistor, 37
rground, 48
right double solder jumper, 154
rmeter, 76
rmeterwa, 76
rotaryswitch, 39, 149
rxantenna, 128

sacac, 94
sacdc, 94
sC, see capacitive sensor

257

schmitt, 155
schmitt symbol, 157
sD*, see full Schottky diode
sD-, see stroke Schottky diode
sdcac, 94
sdcdc, 94
sDo, see empty Schottky diode
sground, 48
shD*, see full Shockley diode
shDo, see empty Shockley diode
short, 50
sI, see sinusoidal current source
sinusoidal current source, 68
sinusoidal voltage source, 68
sL, 56, 57
smeter, 76
spdt, 145
splitter, 92
spring, 81
spst, see switch
square voltage source, 71
squarepole, 88
squid, 82
sqV, see square voltage source
sR, 51
stroke agtobar, 64
stroke diode, 61, 62
stroke gto, 63
stroke gtobar, 63
stroke laser diode, 61
stroke led, 61
stroke photodiode, 61
stroke put, 63
stroke Schottky diode, 61
stroke thyristor, 62
stroke tunnel diode, 61
stroke varcap, 62
stroke Zener diode, 61
stroke ZZener diode, 61
sV, see sinusoidal voltage source
switch, 144

tacac, 94
tacdc, 94
tattenuator, 93
tD*, see full tunnel diode
tD-, see stroke tunnel diode
tdcac, 94
tDo, see empty tunnel diode
tetrode, 122
tgeneric, 50
tground, 48
thermistor, see thR
thermistor ntc, see thRn
thermistor ptc, see thRp
thermocouple, 82
thR, 52
three-pins jumper, 153
thRn, 52

thRp, 52
thyristor, 62, 64
TL, 129
TL, bipoles/tline/bare=true, 129
tlground, 48
tline, see TL, bipoles/tline/bare=true, see TL
tlinestub, 129
tlmic, 83
tmultiwire, see tmultiwire, 84
toggle switch, 145
Tr, see triac, see triac
Tr*, see full triac
transformer, 131
transformer core, 132
transmission line, see TL,

bipoles/tline/bare=true, see TL
trarrow, 86
triac, 62, 64
triode, 122
Tro, see empty triac
tV, see vsourcetri
tvsD*, see full TVS diode
tvsDo, see empty TVS diode
twoport, 92
twoportsplit, 92
txantenna, 128
Ty, see thyristor, see thyristor
Ty*, see full thyristor
Ty-, see stroke thyristor
Tyo, see empty thyristor

vamp, 93
variable american inductor, see vL
variable american resistor, see vR
variable capacitor, 54
variable cute inductor, see vL
variable european inductor, see vL
variable european resistor, see vR
varistor, 52
vC, see variable capacitor
VC*, see full varcap
VC-, see stroke varcap
vcc, 49
VCo, see empty varcap
vco, 92
vco,box, 92
vee, 49
viscoe, 81, 228
vL, 56
voltmeter, 75
voosource, 71
vphaseshifter, 94
vpiattenuator, 93
vR, 51
vsource, see european voltage source
vsourceAM, see american voltage source
vsourceC, see cute european voltage source
vsourceN, see noise voltage source
vsourcesin, see sinusoidal voltage source

258

vsourcesquare, see square voltage source
vsourcetri, 71
vtattenuator, 93

waves, 128
wedgeinv, scale=2, 173
wilkinson, 91

xgeneric, 50

xing, see crossing

zD*, see full Zener diode
zD-, see stroke Zener diode
zDo, see empty Zener diode
zzD*, see full ZZener diode
zzD-, see stroke ZZener diode
zzDo, see empty ZZener diode

259

	Introduction
	About
	License
	Loading the package
	Installing a new version of the package.
	Requirements
	Incompatible packages
	Known bugs and limitation
	Scale factor inaccuracies
	Incompabilities between versions
	Feedback
	Package options

	Tutorials
	Getting started with CircuiTikZ: a current shunt
	A non-inverting op-amp amplifier
	Reusing the circuit: the easy way

	A transistor-based amplifier
	A logic circuit

	The components: usage
	Path-style components
	Anchors
	Border anchors
	Relative coordinates
	Customization
	Components size
	Mirroring and flipping path-style components
	Thickness of the lines
	Shape of the components

	Descriptions

	Node-style components
	Mirroring and flipping
	Anchors
	Descriptions

	Styling circuits and components
	Relative size
	Fill color
	Line thickness
	Style files
	Style files: how to write them

	Subcircuits
	Subcircuit definition
	Using the subcircuit
	Scaling, flipping and rotating subcircuits

	Parameters in subcircuits

	The components: list
	Grounds and supply voltages
	Grounds
	Grounds anchors
	Grounds customization

	Power supplies
	Power supply anchors
	Power supplies customization

	Resistive bipoles
	Potentiometers: wiper position
	Generic sensors anchors
	Resistive components customization
	Geometry.
	Thickness.
	Arrows.

	Capacitors and inductors: dynamical bipoles
	Capacitors
	Capacitive sensors anchors
	Capacitors customizations
	Inductors
	Inductors customizations
	Chokes

	Inductors anchors
	Taps.
	Core anchors.
	Dot anchors.

	Diodes and such
	Tripole-like diodes
	Thyristors anchors and customization
	Diode customizations
	Optical devices arrows

	Sources and generators
	Batteries
	Stationary sources
	Sinusoidal sources
	Controlled sources
	Noise sources
	Special sources
	Nullator and norator
	DC sources
	Sources customizations
	Size.
	Waveform symbols.
	Polarity symbols.
	Three-phase symbols.

	Source borders

	Instruments
	Instruments customizations
	Oscilloscope waveform.

	Rotation-invariant elements
	Instruments as node elements
	Measuring voltage and currents, multiple ways

	Mechanical Analogy
	Mechanical elements customizations

	Miscellaneous bipoles
	Miscellaneous element customization

	Multiple wires (buses)
	Crossings
	Crossing customization

	Arrows
	Arrows size
	Generic Tunable Arrows

	Terminal shapes
	Connectors
	BNC connector/terminal
	IEC 60617 socket-plug connectors

	Block diagram components
	Blocks anchors
	Blocks customization
	Multi ports
	Labels and custom two-port boxes
	Box option
	Dash optional parts
	Dashing the DC symbol in blocks.

	Transistors
	Standard bipolar transistors
	Multi-terminal bipolar transistors
	Field-effect transistors
	Transistor texts (labels)
	Transistors customization
	Size.
	Arrows.
	Circles.
	Body diodes and similar things.
	HEMT customization.
	Schottky transistors.
	Ferroelectric transistors
	IGBT outer base.
	UJT transistors.
	Base/Gate terminal.
	Bulk terminals.
	Solder dots.
	Simplified symbols for depletion-mode MOSFETs
	Gate/Base gap coloring.

	Multiple terminal transistors customization
	Transistor circle customization
	Position and size.
	Line and color.
	Partially drawn circle borders

	Transistor bodydiode customization
	Transistors anchors
	Transistor paths

	Electronic Tubes
	Tubes customization
	Tubes anchors
	Partially drawn tube borders
	Other tubes-like components
	Dynode customization.

	RF components
	RF elements customization
	Microstrip customization

	Electro-Mechanical Devices
	Electro-Mechanical Devices anchors

	Double bipoles (transformers)
	Transformer anchors
	Transformers customization
	Styling transformer's coils independently
	Generic double bipoles

	Amplifiers
	Amplifiers anchors
	Amplifiers customization
	Input polarity.
	Input and output pins symbols.
	Input and output pins length.
	Main amplifier label.
	European-style amplifier customization.

	Designing your own amplifier

	Switches, buttons and jumpers
	Traditional switches
	Cute switches
	Cute switches anchors
	Cute switches customization

	Proximity switches
	Rotary switches
	Rotary switch anchors
	Rotary switch customization

	Switch arrows
	Rotary switch arrows.

	Jumpers
	Simple jumpers.
	Two-ways (three-pins) jumpers.

	Solder jumpers.

	Logic gates
	American Logic gates
	IEEE logic gates
	European Logic gates
	Path-style logic ports
	American ports usage
	American logic port customization
	American logic port anchors

	IEEE logic gates usage.
	Stacking and aligning IEEE standard gates.
	IEEE standard ports customization
	IEEE standard ports anchors
	Transmission gate symbols.

	European logic port usage
	European logic port customization
	European logic port anchors

	Flip-flops
	Custom flip-flops
	Flip-flops anchors
	Flip-flops customization

	Multiplexer and de-multiplexer
	Mux-Demux: design your own shape
	Mux-Demux customization
	Mux-Demux anchors
	Adding wedge or circular inversion markers
	Mux-Demux special usage

	Chips (integrated circuits)
	DIP and QFP chips customization
	Chips anchors
	Chips rotation
	Chip special usage

	Seven segment displays
	Seven segments anchors
	Seven segments customization

	Labels, voltages and currents
	Labels and Annotations
	Label and annotation position
	Adjust label and annotation position.

	Special symbols in labels and annotations.
	Labels and annotation orientation.
	Stacked (two lines) labels.

	Currents and voltages
	Common properties of voltages and currents
	Special treatment for generators

	Currents
	Flows
	Voltages
	European style
	Straight European style
	American style
	Raised American style
	Voltage position
	American voltages customization
	Combining different styles

	Changing the style of labels, voltages, and other text ornaments
	Accessing labels text nodes
	Advanced voltages, currents and flows
	Activating the anchors
	Auxiliary information
	Fixed voltage arrows: an example of advanced voltage usage

	Integration with siunitx

	Using bipoles in circuits
	Nodes (also called poles)
	Transparent poles

	Mirroring and Inverting
	Putting them together
	Line joins between Path Components

	Colors
	Shape colors
	Fill colors
	Background colors different from white

	FAQ: Frequently asked questions
	Using named nodes in circuits
	Using dashed (or colored) wires in circuits
	Errors when externalizing pictures
	Labels, voltages and currents woes
	Global scaling and rotating
	Tunable components

	Defining new components
	Suggested setup
	Path-style component
	Node-style component
	The internal hook system
	Finishing your work

	Examples
	A red diode
	Using the (experimental) siunitx syntax
	Photodiodes
	A Sallen-Key cell
	Mixing circuits and graphs
	RF circuit
	A styled low noise input stage
	An example with the compatibility option
	3-phases block schematic

	Changelog and Release Notes
	Index of the components

