The newpax package, v0.53

Reinserting annotations from included pdf file

Ulrike Fischer*
2022-09-15

1 Introduction

Links in a PDF are created with annotation objects. Such an object is not connected to the
content or text, but simply describes an (rectangular) area on the page and defines an action
if the cursor is in the area. The coordinates of the area are given in absolute page coordinates.
The action of such an annotation can be an external URL, but also an internal destination.
Such destination are objects describing a page and some instructions how to display the
page—again using absolute coordinates.

When a PDFisincluded in another PDF—may it be with \includegraphics or with \includepdf
—the annotation coordinates no longer make sense as they don't refer to the receiving page
(and often the action of an annotation doesn’'t make sense either), so all TeX-engines and
backends strip them away when including a PDF: the net effect is that external and internal
links are lost.

The pax package from Heiko Oberdiek offers a solution for this problem: it extracts all the
annotations and destinations of the included PDF in a text file, does some clever recalculations
of their coordinates and reinserts them. The package works basically fine but has a few
drawbacks: To collect the annotation one has to run an external java program which relies
on an now outdated library, and it works only with pdfBTEX.

The newpax tries to address these problems. It offers a lua script to extract the annotations.
The script can be used with lua(la)tex and no external tools are needed. The annotations can
then be reinserted either with the pax. sty or with the new newpax. sty whose code based in
large parts on the pax package: it uses its data structure and the original code to calculate
the coordinates (with a few minor bug corrections), but the pdfBiIX primitives have been
replaced by commands from the new EIgX PDF management in pdfmanagement-testphase
so it should works with all major engines and backends (with the exception of dvips).

*fischer@troubleshooting-tex.de



2 Quick use instructions

2.1 Step 1: extract and collect the annotations

The lua script offers a function which take as argument the name of a PDF (without the
extension). The function can be used in some lua scripts but also in a document which then
must be compiled with lualatex.

Listing 1: doc-extract-newpax.tex

\documentclass{article}
% load the lua code
\directlua{require("newpax")?
% write .newpax files for newpax.sty
\directlua
{
newpax.writenewpax("doc-inputli")
newpax.writenewpax("doc-input2")
}
\begin{document}
\end{document}

Running this document will create the files doc-input1.newpax and doc-input2.newpax.

To find the graphics kpathsea is used. This means that graphics in texmf trees will work and
you can also use paths to directories, but settings in \graphicspath are ignored. The newpax
file is currently written into the current directory, which means that graphics with the same
name in different locations won’t work easily (with lualatex you could create the newpax file
in the document just before it is needed). Later versions of the package will probably add
some options for this case, but for now use at best distinct file names.

2.2 Step 2: Using the .newpax-file with newpax

The package newpax is based on the package pax but extends it in various way. It is still an
experimental package, and it requires the new BEIgX PDF management code in pdfmanagement-
testphase package. This new code is—as the name implies—currently in the testphase and
not compatible with every package!

The following listing shows how to use newpax.

¢ It should work with pdflatex, lualatex and xelatex. The latex/dvips route fails as this
can’'t include PDF anyway.

e Some provision have been added to allow multiple inclusion of the same PDE but if
you insert different sets of pages from a PDF some destinations can still be missing. So
better avoid it.

* You can choose for every file if border color and styles of links are taken from the source
PDF or from the hyperref settings. But you can’t adjust or change colored links.



* You can add additional settings to the annotations, for example an /F flag, with

\ExplSyntaxOn
\pdfannot_dict_put:nnn {link/URI}{F}{4}
\ExplSyntax0ff

Listing 2: doc-use-newpax.tex
% The next command needs LaTeX 2022-06-01, for older formats see documentation
% of pdfmanagement-testphase
\DocumentMetadata{uncompress}
\documentclass{article}

\usepackage{pdfpages,xcolor}

\usepackage{hyperref}
\hypersetup{linkbordercolor=blue}

\usepackage{newpax}

%use the link border color and style of the imported pdf
%and not hyperref colors
\newpaxsetup{usefileattributes=true}

\begin{document}

\includegraphics[scale=0.5,trim=4cm 15cm 8cm 3cm,clip,page=1]{doc-inputi}
\includegraphics[scale=0.5,trim=5cm 15cm 8cm 3cm,clip,page=2]{doc-inputi}

%set a unique suffix if the pdf is imported twice
\newpaxsetup{destsuffix=B}

\includegraphics[scale=0.5,trim=4cm 15cm 8cm 3cm,clip,page=1]{doc-inputi}
\includegraphics[scale=0.5,trim=5cm 15cm 8cm 3cm,clip,page=2]{doc-inputil}

% suppress the adding of annotations
\newpaxsetup{addannots=false}
\includegraphics[scale=0.5,trim=4cm 15cm 8cm 3cm,clip,page=1]{doc-inputil}

%reactivate, don't use file attributes
\newpaxsetup{addannots=true,usefileattributes=false}
\includepdf [pages=-]1{doc-input2}

\end{document}

2.3 Combining the steps

When using lualatex both step can be simply in the same document. With other engines you
can use ifluatex.



3 Setup options

\newpaxsetup{key-val option list}

This command allows to change the behaviour inclusion. It knows the following keys:

usefileattributes This is a boolean key. If set to true, the reinserted annotations will use
the linkborder settings (color and style) of the included file, if set to false, the settings of
the receiving PDF will take precendence.

destsuffix This allows to add a suffix to the destination names. This is needed if a file with
destinations is included more than once, to avoid to get multiple destinations.

addannots This is a boolean key. It allows to switch on and off the reinserting of the anno-
tations. When set to false it also suppress warnings in the log if the .newpax file is not
found. It is recommended to set it to false for graphics which don’t have links.

4 More Background

Clickable links in a PDF are one example of an annotation. Annotations are areas on a page
which are associated with an action. A typical annotation object could look like this in the
PDF:

15 0 obj

<<

/Type /Annot

/Subtype/Link

/Rect [147.716 654.025 301.887 665.15]

/Border [0 O 1]/BS<</S/U/W 1>>/H/I/C[0 1 1]
/A<</Type/Action/S/URI/URI (https://www.latex-project.org)>>
>>

endobj

This is an object of type Annot and subtype Link. The /Rect value describes the rectangle of
this annotation. The coordinates are absolute coordinates related to the current page. It is
important to understand that an annotation is not connected to some page content but only
to a location! The /Border setting and the other values in this line describe the look and color
of annotation. The /A value contains the action, in this case it is an url to an external website.

To “reactivate” the annotations of an included pdf one has to do a number of tasks.

* One must retrieve and store the annotations of the included pdf. For links to external
url’s this requires to find only one object like the one shown above. But e.g. internal
links point to destination objects and these must be found too.



* One must recalculate the rectangle coordinates to fit to the coordinate system of the
target page: as the included pdf can be placed at various positions, scaled, rotated and
even clipped this is not an easy task. Destinations have rectangles too that must be
recalculated.

* One must reinsert the annotation and related objects. This has to take into account
that a pdfis perhaps not included completely, a link shouldn’t point to a missing page
or a clipped annotation. It also has to take into account that a pdf is perhaps inserted
more than once or in steps.

4.1 Retrieving and storing annotations

Theoretically one can do it manually: Uncompress the PDF (or when using BIgX, create
directly an uncompressed one), open it in an editor and copy and paste all needed objects.
Practically one naturally want some tool.

The pax package from Heiko Oberdiek consists of a perl script and a java-jar file PDFAnnotExtractor
which can extract the necessary objects. It writes the information to a file with the extension

pax. When it has been successfully installed it works quite fine. Problems with this approach

are

e PDFAnnotExtractor requires an external, old version of the java library of PDFbox which
must be installed manually;

* itrequires a java installation and
* itis not extensible.

The newpax package comes with a lua-file. It uses the pdfe library embedded in luatex to
extract the annotations and other needed information. newpax writes the information to
a file with the extension pax or newpax. The content of the files is (nearly) identical to the
content of the pax-file written by PDFAnnotExtractor. The lua code was written by looking at
example outputs from PDFAnnotExtractor and reproducing it in lua. The ordering of some
elements is a bit different and some strings are output in a different way but for the examples
I used the resulting pax-files can be used together with the original pax.sty. But due to the
fact that the code was written without real spec simply by looking at examples, it is quite
probably that the lua code is not yet handling all objects or options that PDFAnnotExtractor
outputs. But the code can rather easily be extended when the needs arises.

The code also doesn’t handle structure elements, neither at the export nor at the import. I
have yet no real idea what would be sensible here (and I'm quite sure that PDFAnnotExtractor
doesn’t handle this either.)

5 Importing annotations

The pax package from Heiko Oberdiek does the hard work to recalculate the annotation
rectangles and to decide which annotation and which destination should be reinserted.
It also patches the \includegraphics command to automate this. newpax reuses the core



commands of pax. It only adds a number of switches and changes primitive to support more
engines and backends.

6 Example input

xlinktext https://wwv.latex-project.org
1 https://www.latex-project.org 1 2 3

"As any dedicated reader can clearly see, the Idea
representation of, as far as I know, the th
elsewhere, the phenomena should only be used as a ca

The paralogisms of practical reason are what first give
of practical reason. As will easily be shown in_the nc
thereby be made to contradict, in view of these conside
tical reason, vet_the manifold depends on_the phenor
on, when thus treated as the practical employment of
in_the series of empirical conditions, time. Human rea

erceptions, by means of analytic unity. There can be

in space and time are what first give rise to human re

pdf
1 abc
2 abc
3 abc
file

Check also the output of the listing above, doc-use-newpax. pdf.

7 Support for the pax package

7.1 Step 1: Extracting the annotations

The lua script is also able to write pax files for the pax package (and so can be used to replace
the java application).

For this extract the annotations like this:

Listing 3: doc-extract-pax.tex

\documentclass{article}
% load the lua code
\directlua{require("newpax")}

% and/or write .pax files for pax.sty
\directlua
{
newpax.writepax("doc-input")
newpax.writepax("doc-input2")
}
\begin{document}
\end{document?}


https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org
https://www.latex-project.org

7.2 Step 2: Using the .pax-file with pax.sty

Ensure that the .pax file created in step 1 can be found by your main document. You can
then insert your PDF files together with their annotations like in the following listing.

¢ This works with pdflatex and lualatex. lualatex needs the extra code demonstrated in
the document.

* It needs two or three compilations until every reference is correct.

* There is a small typo in pax. sty which affects clipping, the patch shown in the listing
correct this.

¢ In some cases the catcode of # and % must be set to letter to avoid errors.

e Don’t include PDFs with destinations twice as this will lead to duplicate destinations
and pdflatex will complain.

¢ If annotations should not be reinserted remove the . pax-file.

e Ifhyperref isloaded you can change the color and style of link borders with hyperref
options.

Listing 4: doc-use-pax.tex
\documentclass{article}
\usepackage{ifluatex,etoolbox}
\usepackage{pdfpages}
%pax needs this to run with lualatex
\ifluatex
\usepackage{pdftexcmds}
\makeatletter
\let\pdfstrcmp\pdf@strcmp
\let\pdfescapename\pdf@escapename
\makeatother
\usepackage{luatex85}
\fi
%load pax
\usepackage{pax}
%correct a bug in pax affecting clipping
\makeatletter
\patchcmd\PAX@pdf@annot{\PAX@pagellx}{\PAXCpage@llx}{}{\fail}
%allow hashes and percent in the pax file
\patchcmd\PAX@AddAnnots{\InputIfFileExists\PAX@file{}{\typeout{* Missing: \PAX@filel}}}
{\begingroup \catcode \#=12 \catcode \’=12
\InputIfFileExists\PAX@file{}{\typeout{* Missing: \PAX@filel}}\endgroup}{}{\fail}
\makeatother
\begin{document}
\includegraphics[scale=0.5,trim=56cm 15cm 8cm 3cm,clip,page=2]{doc-inputil}
\includegraphics[scale=0.5,trim=5cm 15cm 8cm 3cm,clip,page=1]{doc-inputi}

\includepdf [pages=-]{doc-input2}



\end{document}



	Introduction
	Quick use instructions
	Step 1: extract and collect the annotations
	Step 2: Using the .newpax-file with newpax
	Combining the steps

	Setup options
	More Background
	Retrieving and storing annotations

	Importing annotations
	Example input
	Support for the pax package
	Step 1: Extracting the annotations
	Step 2: Using the .pax-file with pax.sty


