XEmacs Internals Manual

Version 1.4, March 2001

Ben Wing

Martin Buchholz
Hrvoje Niksic
Matthias Neubauer
Olivier Galibert

Copyright © 1992 - 1996, 2001 Ben Wing.

Copyright © 1996, 1997 Sun Microsystems, Inc.

Copyright © 1994 - 1998 Free Software Foundation.

Copyright © 1994, 1995 Board of Trustees, University of Illinois.

Version 1.4
March 2001.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly as in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the Free
Software Foundation instead of in the original English.

Chapter 1: A History of Emacs 1

1 A History of Emacs

XEmacs is a powerful, customizable text editor and development environment. It began as
Lucid Emacs, which was in turn derived from GNU Emacs, a program written by Richard
Stallman of the Free Software Foundation. GNU Emacs dates back to the 1970’s, and was
modelled after a package called “Emacs”, written in 1976, that was a set of macros on
top of TECO, an old, old text editor written at MIT on the DEC PDP 10 under one of
the earliest time-sharing operating systems, I'TS (Incompatible Timesharing System). (ITS
dates back well before Unix.) ITS, TECO, and Emacs were products of a group of people
at MIT who called themselves “hackers”, who shared an idealistic belief system about the
free exchange of information and were fanatical in their devotion to and time spent with
computers. (The hacker subculture dates back to the late 1950’s at MIT and is described
in detail in Steven Levy’s book Hackers This book also includes a lot of information about
Stallman himself and the development of Lisp, a programming language developed at MIT
that underlies Emacs.)

1.1 Through Version 18

Although the history of the early versions of GNU Emacs is unclear, the history is well-
known from the middle of 1985. A time line is:

¢ GNU Emacs version 15 (15.34) was released sometime in 1984 or 1985 and shared some
code with a version of Emacs written by James Gosling (the same James Gosling who
later created the Java language).

e GNU Emacs version 16 (first released version was 16.56) was released on July 15, 1985.
All Gosling code was removed due to potential copyright problems with the code.

e version 16.57: released on September 16, 1985.
e versions 16.58, 16.59: released on September 17, 1985.

e version 16.60: released on September 19, 1985. These later version 16’s incorporated
patches from the net, esp. for getting Emacs to work under System V.

e version 17.36 (first official v17 release) released on December 20, 1985. Included a
TeX-able user manual. First official unpatched version that worked on vanilla System
V machines.

e version 17.43 (second official v17 release) released on January 25, 1986.
e version 17.45 released on January 30, 1986.
e version 17.46 released on February 4, 1986.
e version 17.48 released on February 10, 1986.
e version 17.49 released on February 12, 1986.
e version 17.55 released on March 18, 1986.

e version 17.57 released on March 27, 1986.

e version 17.58 released on April 4, 1986.

e version 17.61 released on April 12, 1986.

e version 17.63 released on May 7, 1986.

e version 17.64 released on May 12, 1986.

2 XEmacs Internals Manual

e version 18.24 (a beta version) released on October 2, 1986.
released on November 15, 1986.
released on November 23, 1986.
released on December 7, 1986.
released on December 12, 1986.

released on January 5, 1987.

e version 18.30 (a beta version

e version 18.31 (a beta version
e version 18.32 (a beta version

e version 18.33 (a beta version

A~ N N N N/~
— — ~— '~ ~——

e version 18.35 (a beta version
e version 18.36 (a beta version) released on January 21, 1987.

e January 27, 1987: The Great Usenet Renaming. net.emacs is now comp.emacs.
e version 18.37 (a beta version) released on February 12, 1987.

e version 18.38 (a beta version) released on March 3, 1987.

e version 18.39 (a beta version) released on March 14, 1987.

e version 18.40 (a beta version) released on March 18, 1987.

e version 18.41 (the first “official” release) released on March 22, 1987.

e version 18.45 released on June 2, 1987.

e version 18.46 released on June 9, 1987.

e version 18.47 released on June 18, 1987.

e version 18.48 released on September 3, 1987.

e version 18.49 released on September 18, 1987.

e version 18.50 released on February 13, 1988.

e version 18.51 released on May 7, 1988.

e version 18.52 released on September 1, 1988.

e version 18.53 released on February 24, 1989.

e version 18.54 released on April 26, 1989.

e version 18.55 released on August 23, 1989. This is the earliest version that is still
available by FTP.

e version 18.56 released on January 17, 1991.

e version 18.57 released late January, 1991.

e version 18.59 released October 31, 1992.

1.2 Lucid Emacs

Lucid Emacs was developed by the (now-defunct) Lucid Inc., a maker of C++ and Lisp
development environments. It began when Lucid decided they wanted to use Emacs as the
editor and cornerstone of their C++ development environment (called “Energize”). They
needed many features that were not available in the existing version of GNU Emacs (version
18.5something), in particular good and integrated support for GUI elements such as mouse
support, multiple fonts, multiple window-system windows, etc. A branch of GNU Emacs
called Epoch, written at the University of Illinois, existed that supplied many of these
features; however, Lucid needed more than what existed in Epoch. At the time, the Free
Software Foundation was working on version 19 of Emacs (this was sometime around 1991),

Chapter 1: A History of Emacs 3

which was planned to have similar features, and so Lucid decided to work with the Free
Software Foundation. Their plan was to add features that they needed, and coordinate with
the FSF so that the features would get included back into Emacs version 19.

Delays in the release of version 19 occurred, however (resulting in it finally being released
more than a year after what was initially planned), and Lucid encountered unexpected
technical resistance in getting their changes merged back into version 19, so they decided
to release their own version of Emacs, which became Lucid Emacs 19.0.

The initial authors of Lucid Emacs were Matthieu Devin, Harlan Sexton, and Eric
Benson, and the work was later taken over by Jamie Zawinski, who became “Mr. Lucid
Emacs” for many releases.

A time line for Lucid Emacs is
e version 19.0 shipped with Energize 1.0, April 1992.
e version 19.1 released June 4, 1992.
e version 19.2 released June 19, 1992.
e version 19.3 released September 9, 1992.
e version 19.4 released January 21, 1993.

e version 19.5 was a repackaging of 19.4 with a few bug fixes and shipped with Energize
2.0. Never released to the net.

e version 19.6 released April 9, 1993.

e version 19.7 was a repackaging of 19.6 with a few bug fixes and shipped with Energize
2.1. Never released to the net.

e version 19.8 released September 6, 1993.
e version 19.9 released January 12, 1994.
e version 19.10 released May 27, 1994.

1.3 GNU Emacs 19

About a year after the initial release of Lucid Emacs, the FSF released a beta of their
version of Emacs 19 (referred to here as “GNU Emacs”). By this time, the current version
of Lucid Emacs was 19.6. (Strangely, the first released beta from the FSF was GNU Emacs
19.7.) A time line for GNU Emacs version 19 is

e version 19.8 (beta) released May 27, 1993.
e version 19.9 (beta) released May 27, 1993.
e version 19.10 (beta) released May 30, 1993.
beta) released June 1, 1993.
beta) released June 2, 1993.
beta) released June 8, 1993.

)

e version 19.11)

)

)
beta) released June 17, 1993.

)

)

)

)

e version 19.12
e version 19.13
e version 19.14
e version 19.15 (beta) released June 19, 1993.
beta) released July 6, 1993.

beta) released late July, 1993.

beta) released August 9, 1993.

e version 19.16

e version 19.17

N N N SN SN S S

e version 19.18

4 XEmacs Internals Manual

e version 19.19 (beta) released August 15, 1993.

e version 19.20 (beta) released November 17, 1993.

e version 19.21 (beta) released November 17, 1993.

e version 19.22 (beta) released November 28, 1993.

e version 19.23 (beta) released May 17, 1994.

e version 19.24 (beta) released May 16, 1994.

e version 19.25 (beta) released June 3, 1994.

e version 19.26 (beta) released September 11, 1994.

e version 19.27 (beta) released September 14, 1994.

e version 19.28 (first “official” release) released November 1, 1994.

e version 19.29 released June 21, 1995.

e version 19.30 released November 24, 1995.

e version 19.31 released May 25, 1996.

e version 19.32 released July 31, 1996.

e version 19.33 released August 11, 1996.

e version 19.34 released August 21, 1996.

e version 19.34b released September 6, 1996.

In some ways, GNU Emacs 19 was better than Lucid Emacs; in some ways, worse. Lucid

soon began incorporating features from GNU Emacs 19 into Lucid Emacs; the work was

mostly done by Richard Mlynarik, who had been working on and using GNU Emacs for a
long time (back as far as version 16 or 17).

1.4 GNU Emacs 20

On February 2, 1997 work began on GNU Emacs to integrate Mule. The first release was
made in September of that year.

A timeline for Emacs 20 is
e version 20.1 released September 17, 1997.
e version 20.2 released September 20, 1997.
e version 20.3 released August 19, 1998.

1.5 XEmacs

Around the time that Lucid was developing Energize, Sun Microsystems was developing
their own development environment (called “SPARCWorks”) and also decided to use Emacs.
They joined forces with the Epoch team at the University of Illinois and later with Lucid.
The maintainer of the last-released version of Epoch was Marc Andreessen, but he dropped
out and the Epoch project, headed by Simon Kaplan, lured Chuck Thompson away from
a system administration job to become the primary Lucid Emacs author for Epoch and
Sun. Chuck’s area of specialty became the redisplay engine (he replaced the old Lucid
Emacs redisplay engine with a ported version from Epoch and then later rewrote it from
scratch). Sun also hired Ben Wing (the author of Win-Emacs, a port of Lucid Emacs to
Microsoft Windows 3.1) in 1993, for what was initially a one-month contract to fix some

Chapter 1: A History of Emacs 5

event problems but later became a many-year involvement, punctuated by a six-month
contract with Amdahl Corporation.

In 1994, Sun and Lucid agreed to rename Lucid Emacs to XEmacs (a name not favorable
to either company); the first release called XEmacs was version 19.11. In June 1994, Lucid
folded and Jamie quit to work for the newly formed Mosaic Communications Corp., later
Netscape Communications Corp. (co-founded by the same Marc Andreessen, who had quit
his Epoch job to work on a graphical browser for the World Wide Web). Chuck then become
the primary maintainer of XEmacs, and put out versions 19.11 through 19.14 in conjunction
with Ben. For 19.12 and 19.13, Chuck added the new redisplay and many other display
improvements and Ben added MULE support (support for Asian and other languages) and
redesigned most of the internal Lisp subsystems to better support the MULE work and
the various other features being added to XEmacs. After 19.14 Chuck retired as primary
maintainer and Steve Baur stepped in.

Soon after 19.13 was released, work began in earnest on the MULE internationalization
code and the source tree was divided into two development paths. The MULE version
was initially called 19.20, but was soon renamed to 20.0. In 1996 Martin Buchholz of Sun
Microsystems took over the care and feeding of it and worked on it in parallel with the
19.14 development that was occurring at the same time. After much work by Martin, it
was decided to release 20.0 ahead of 19.15 in February 1997. The source tree remained
divided until 20.2 when the version 19 source was finally retired at version 19.16.

In 1997, Sun finally dropped all pretense of support for XEmacs and Martin Buchholz
left the company in November. Since then, and mostly for the previous year, because Steve
Baur was never paid to work on XEmacs, XEmacs has existed solely on the contributions
of volunteers from the Free Software Community. Starting from 1997, Hrvoje Niksic and
Kyle Jones have figured prominently in XEmacs development.

Many attempts have been made to merge XEmacs and GNU Emacs, but they have
consistently failed.

A more detailed history is contained in the XEmacs About page.

A time line for XEmacs is
version 19.11 (first XEmacs) released September 13, 1994.
version 19.12 released June 23, 1995.

e version 19.13 released September 1, 1995.

e version 19.14 released June 23, 1996.

e version 20.0 released February 9, 1997.

e version 19.15 released March 28, 1997.

e version 20.1 (not released to the net) April 15, 1997.

e version 20.2 released May 16, 1997.

e version 19.16 released October 31, 1997.

e version 20.3 (the first stable version of XEmacs 20.x) released November 30, 1997.

e version 20.4 released February 28, 1998.

e version 21.0.60 released December 10, 1998. (The version naming scheme was changed
at this point: [a] the second version number is odd for stable versions, even for beta
versions; [b] a third version number is added, replacing the "beta xxx" ending for beta

XEmacs Internals Manual

versions and allowing for periodic maintenance releases for stable versions. Therefore,
21.0 was never "officially" released; similarly for 21.2, etc.)

version 21.0.61 released January 4, 1999.
version 21.0.63 released February 3, 1999.
version 21.0.64 released March 1, 1999.
version 21.0.65 released March 5, 1999.
version 21.0.66 released March 12, 1999.
version 21.0.67 released March 25, 1999.

version 21.1.2 released May 14, 1999. (This is the followup to 21.0.67. The second
version number was bumped to indicate the beginning of the "stable" series.)

version 21.1.3 released June 26, 1999.
version 21.1.4 released July 8, 1999.

version 21.1.6 released August 14, 1999. (There was no 21.1.5.)
version 21.1.7 released September 26, 1999.
version 21.1.8 released November 2, 1999.
version 21.1.9 released February 13, 2000.
version 21.1.10 released May 7, 2000.
version 21.1.10a released June 24, 2000.
version 21.1.11 released July 18, 2000.
version 21.1.12 released August 5, 2000.
version 21.1.13 released January 7, 2001.
version 21.1.14 released January 27, 2001.
version 21.2.9 released February 3, 1999.
version 21.2.10 released February 5, 1999.
version 21.2.11 released March 1, 1999.
version 21.2.12 released March 5, 1999.
version 21.2.13 released March 12, 1999.
version 21.2.14 released May 14, 1999.
version 21.2.15 released June 4, 1999.
version 21.2.16 released June 11, 1999.
version 21.2.17 released June 22, 1999.
version 21.2.18 released July 14, 1999.
version 21.2.19 released July 30, 1999.
version 21.2.20 released November 10, 1999.
version 21.2.21 released November 28, 1999.
version 21.2.22 released November 29, 1999.
version 21.2.23 released December 7, 1999.
version 21.2.24 released December 14, 1999.
version 21.2.25 released December 24, 1999.

Chapter 1: A History of Emacs

e version 21.2.26 released December 31, 1999.
e version 21.2.27 released January 18, 2000.
e version 21.2.28 released February 7, 2000.

e version 21.2.29 released February 16, 2000.
e version 21.2.30 released February 21, 2000.
e version 21.2.31 released February 23, 2000.
e version 21.2.32 released March 20, 2000.

e version 21.2.33 released May 1, 2000.

e version 21.2.34 released May 28, 2000.

e version 21.2.35 released July 19, 2000.

e version 21.2.36 released October 4, 2000.

e version 21.2.37 released November 14, 2000.
e version 21.2.38 released December 5, 2000.
e version 21.2.39 released December 31, 2000.
e version 21.2.40 released January 8, 2001.

e version 21.2.41 released January 17, 2001.
e version 21.2.42 released January 20, 2001.

e version 21.2.43 released January 26, 2001.

e version 21.2.44 released February 8, 2001.

e version 21.2.45 released February 23, 2001.
e version 21.2.46 released March 21, 2001.

XEmacs Internals Manual

Chapter 2: XEmacs From the Outside 9

2 XEmacs From the Outside

XEmacs appears to the outside world as an editor, but it is really a Lisp environment. At its
heart is a Lisp interpreter; it also “happens” to contain many specialized object types (e.g.
buffers, windows, frames, events) that are useful for implementing an editor. Some of these
objects (in particular windows and frames) have displayable representations, and XEmacs
provides a function redisplay() that ensures that the display of all such objects matches
their internal state. Most of the time, a standard Lisp environment is in a read-eval-print
loop—i.e. “read some Lisp code, execute it, and print the results”. XEmacs has a similar
loop:

e read an event

e dispatch the event (i.e. “do it”)

e redisplay

Reading an event is done using the Lisp function next-event, which waits for something
to happen (typically, the user presses a key or moves the mouse) and returns an event object
describing this. Dispatching an event is done using the Lisp function dispatch-event,
which looks up the event in a keymap object (a particular kind of object that associates
an event with a Lisp function) and calls that function. The function “does” what the user
has requested by changing the state of particular frame objects, buffer objects, etc. Finally,
redisplay() is called, which updates the display to reflect those changes just made. Thus
is an “editor” born.

Note that you do not have to use XEmacs as an editor; you could just as well make it
do your taxes, compute pi, play bridge, etc. You'd just have to write functions to do those
operations in Lisp.

10

XEmacs Internals Manual

Chapter 3: The Lisp Language 11

3 The Lisp Language

Lisp is a general-purpose language that is higher-level than C and in many ways more pow-
erful than C. Powerful dialects of Lisp such as Common Lisp are probably much better lan-
guages for writing very large applications than is C. (Unfortunately, for many non-technical
reasons C and its successor C++ have become the dominant languages for application de-
velopment. These languages are both inadequate for extremely large applications, which is
evidenced by the fact that newer, larger programs are becoming ever harder to write and are
requiring ever more programmers despite great increases in C development environments;
and by the fact that, although hardware speeds and reliability have been growing at an
exponential rate, most software is still generally considered to be slow and buggy.)

The new Java language holds promise as a better general-purpose development language
than C. Java has many features in common with Lisp that are not shared by C (this is not
a coincidence, since Java was designed by James Gosling, a former Lisp hacker). This will
be discussed more later.

For those used to C, here is a summary of the basic differences between C and Lisp:

1. Lisp has an extremely regular syntax. Every function, expression, and control state-
ment is written in the form

(func argl arg2 ...)
This is as opposed to C, which writes functions as
func(argl, arg2, ...)
but writes expressions involving operators as (e.g.)
argl + arg2
and writes control statements as (e.g.)
while (expr) { statementl ; statement2 ; ... }
Lisp equivalents of the latter two would be
(+ argl arg2 ...)
and
(while expr statementl statement2 ...)

2. Lisp is a safe language. Assuming there are no bugs in the Lisp interpreter/compiler,
it is impossible to write a program that “core dumps” or otherwise causes the machine
to execute an illegal instruction. This is very different from C, where perhaps the most
common outcome of a bug is exactly such a crash. A corollary of this is that the C
operation of casting a pointer is impossible (and unnecessary) in Lisp, and that it is
impossible to access memory outside the bounds of an array.

3. Programs and data are written in the same form. The parenthesis-enclosing form
described above for statements is the same form used for the most common data type
in Lisp, the list. Thus, it is possible to represent any Lisp program using Lisp data
types, and for one program to construct Lisp statements and then dynamically evaluate
them, or cause them to execute.

4. All objects are dynamically typed. This means that part of every object is an indication
of what type it is. A Lisp program can manipulate an object without knowing what type
it is, and can query an object to determine its type. This means that, correspondingly,

12

XEmacs Internals Manual

variables and function parameters can hold objects of any type and are not normally
declared as being of any particular type. This is opposed to the static typing of C,
where variables can hold exactly one type of object and must be declared as such, and
objects do not contain an indication of their type because it’s implicit in the variables
they are stored in. It is possible in C to have a variable hold different types of objects
(e.g. through the use of void * pointers or variable-argument functions), but the type
information must then be passed explicitly in some other fashion, leading to additional
program complexity.

Allocated memory is automatically reclaimed when it is no longer in use. This opera-
tion is called garbage collectionand involves looking through all variables to see what
memory is being pointed to, and reclaiming any memory that is not pointed to and is
thus “inaccessible” and out of use. This is as opposed to C, in which allocated memory
must be explicitly reclaimed using free (). If you simply drop all pointers to memory
without freeing it, it becomes “leaked” memory that still takes up space. Over a long
period of time, this can cause your program to grow and grow until it runs out of
memory.

Lisp has built-in facilities for handling errors and exceptions. In C, when an error
occurs, usually either the program exits entirely or the routine in which the error
occurs returns a value indicating this. If an error occurs in a deeply-nested routine,
then every routine currently called must unwind itself normally and return an error
value back up to the next routine. This means that every routine must explicitly check
for an error in all the routines it calls; if it does not do so, unexpected and often
random behavior results. This is an extremely common source of bugs in C programs.
An alternative would be to do a non-local exit using longjmp(), but that is often very
dangerous because the routines that were exited past had no opportunity to clean up
after themselves and may leave things in an inconsistent state, causing a crash shortly
afterwards.

Lisp provides mechanisms to make such non-local exits safe. When an error occurs, a
routine simply signals that an error of a particular class has occurred, and a non-local
exit takes place. Any routine can trap errors occurring in routines it calls by registering
an error handler for some or all classes of errors. (If no handler is registered, a default
handler, generally installed by the top-level event loop, is executed; this prints out the
error and continues.) Routines can also specify cleanup code (called an unwind-protect)
that will be called when control exits from a block of code, no matter how that exit
occurs—i.e. even if a function deeply nested below it causes a non-local exit back to
the top level.

Note that this facility has appeared in some recent vintages of C, in particular Visual
C++ and other PC compilers written for the Microsoft Win32 API.

In Emacs Lisp, local variables are dynamically scoped This means that if you declare a
local variable in a particular function, and then call another function, that subfunction
can “see” the local variable you declared. This is actually considered a bug in Emacs
Lisp and in all other early dialects of Lisp, and was corrected in Common Lisp. (In
Common Lisp, you can still declare dynamically scoped variables if you want to—they
are sometimes useful—but variables by default are lexically scopedas in C.)

Chapter 3: The Lisp Language 13

For those familiar with Lisp, Emacs Lisp is modelled after MacLisp, an early dialect of
Lisp developed at MIT (no relation to the Macintosh computer). There is a Common Lisp
compatibility package available for Emacs that provides many of the features of Common
Lisp.

The Java language is derived in many ways from C, and shares a similar syntax, but has
the following features in common with Lisp (and different from C):

1. Java is a safe language, like Lisp.

2. Java provides garbage collection, like Lisp.

3. Java has built-in facilities for handling errors and exceptions, like Lisp.
4

. Java has a type system that combines the best advantages of both static and dynamic
typing. Objects (except very simple types) are explicitly marked with their type, as in
dynamic typing; but there is a hierarchy of types and functions are declared to accept
only certain types, thus providing the increased compile-time error-checking of static

typing.
The Java language also has some negative attributes:

1. Java uses the edit/compile/run model of software development. This makes it hard to
use interactively. For example, to use Java like bc it is necessary to write a special
purpose, albeit tiny, application. In Emacs Lisp, a calculator comes built-in without
any effort - one can always just type an expression in the *scratch* buffer.

2. Java tries too hard to enforce, not merely enable, portability, making ordinary access
to standard OS facilities painful. Java has an agenda I think this is why chdir is not
part of standard Java, which is inexcusable.

Unfortunately, there is no perfect language. Static typing allows a compiler to catch
programmer errors and produce more efficient code, but makes programming more tedious
and less fun. For the foreseeable future, an Ideal Editing and Programming Environment
(and that is what XEmacs aspires to) will be programmable in multiple languages: high level
ones like Lisp for user customization and prototyping, and lower level ones for infrastructure
and industrial strength applications. If I had my way, XEmacs would be friendly towards the
Python, Scheme, C++, ML, etc... communities. But there are serious technical difficulties
to achieving that goal.

The word application in the previous paragraph was used intentionally. XEmacs imple-
ments an API for programs written in Lisp that makes it a full-fledged application platform,
very much like an OS inside the real OS.

14

XEmacs Internals Manual

Chapter 4: XEmacs From the Perspective of Building 15

4 XEmacs From the Perspective of Building

The heart of XEmacs is the Lisp environment, which is written in C. This is contained in the
‘src/’ subdirectory. Underneath ‘src/’ are two subdirectories of header files: ‘s/’ (header
files for particular operating systems) and ‘m/’ (header files for particular machine types).
In practice the distinction between the two types of header files is blurred. These header
files define or undefine certain preprocessor constants and macros to indicate particular
characteristics of the associated machine or operating system. As part of the configure
process, one ‘s/’ file and one ‘m/’ file is identified for the particular environment in which
XEmacs is being built.

XEmacs also contains a great deal of Lisp code. This implements the operations that
make XEmacs useful as an editor as well as just a Lisp environment, and also contains many
add-on packages that allow XEmacs to browse directories, act as a mail and Usenet news
reader, compile Lisp code, etc. There is actually more Lisp code than C code associated
with XEmacs, but much of the Lisp code is peripheral to the actual operation of the editor.
The Lisp code all lies in subdirectories underneath the ‘1lisp/’ directory.

The ‘lwlib/’ directory contains C code that implements a generalized interface onto
different X widget toolkits and also implements some widgets of its own that behave like
Motif widgets but are faster, free, and in some cases more powerful. The code in this
directory compiles into a library and is mostly independent from XEmacs.

The ‘etc/’ directory contains various data files associated with XEmacs. Some of them
are actually read by XEmacs at startup; others merely contain useful information of various
sorts.

The ‘1ib-src/’ directory contains C code for various auxiliary programs that are used in
connection with XEmacs. Some of them are used during the build process; others are used
to perform certain functions that cannot conveniently be placed in the XEmacs executable
(e.g. the ‘movemail’ program for fetching mail out of ‘/var/spool/mail’, which must be
setgid to ‘mail’ on many systems; and the ‘gnuclient’ program, which allows an external
script to communicate with a running XEmacs process).

The ‘man/’ directory contains the sources for the XEmacs documentation. It is mostly
in a form called Texinfo, which can be converted into either a printed document (by passing
it through TEX) or into on-line documentation called info les.

The ‘info/’ directory contains the results of formatting the XEmacs documentation as
info les, for on-line use. These files are used when you enter the Info system using C-h i
or through the Help menu.

The ‘dynodump/’ directory contains auxiliary code used to build XEmacs on Solaris
platforms.

The other directories contain various miscellaneous code and information that is not
normally used or needed.

The first step of building involves running the ‘configure’ program and passing it various
parameters to specify any optional features you want and compiler arguments and such, as
described in the ‘INSTALL’ file. This determines what the build environment is, chooses the
appropriate ‘s/’ and ‘m/’ file, and runs a series of tests to determine many details about
your environment, such as which library functions are available and exactly how they work.
The reason for running these tests is that it allows XEmacs to be compiled on a much wider

16 XEmacs Internals Manual

variety of platforms than those that the XEmacs developers happen to be familiar with,
including various sorts of hybrid platforms. This is especially important now that many
operating systems give you a great deal of control over exactly what features you want
installed, and allow for easy upgrading of parts of a system without upgrading the rest.
It would be impossible to pre-determine and pre-specify the information for all possible
configurations.

In fact, the ‘s/’ and ‘m/’ files are basically ewil, since they contain unmaintainable
platform-specific hard-coded information. XEmacs has been moving in the direction of
having all system-specific information be determined dynamically by ‘configure’. Perhaps
someday we can rm -rf src/s src/m.

When configure is done running, it generates ‘Makefile’s and ‘GNUmakefile’s and the file
‘src/config.h’ (which describes the features of your system) from template files. You then
run ‘make’, which compiles the auxiliary code and programs in ‘lib-src/’ and ‘lwlib/’ and
the main XEmacs executable in ‘src/’. The result of compiling and linking is an executable
called ‘temacs’, which is not the final XEmacs executable. ‘temacs’ by itself is not intended
to function as an editor or even display any windows on the screen, and if you simply run
it, it will exit immediately. The ‘Makefile’ runs ‘temacs’ with certain options that cause
it to initialize itself, read in a number of basic Lisp files, and then dump itself out into a
new executable called ‘xemacs’. This new executable has been pre-initialized and contains
pre-digested Lisp code that is necessary for the editor to function (this includes most basic
editing functions, e.g. kill-line, that can be defined in terms of other Lisp primitives;
some initialization code that is called when certain objects, such as frames, are created; and
all of the standard keybindings and code for the actions they result in). This executable,
‘xemacs’, is the executable that you run to use the XEmacs editor.

Although ‘temacs’ is not intended to be run as an editor, it can, by using the incantation
temacs -batch -1 loadup.el run-temacs. This is useful when the dumping procedure
described above is broken, or when using certain program debugging tools such as Purify.
These tools get mighty confused by the tricks played by the XEmacs build process, such as
allocating memory in one process, and freeing it in the next.

Chapter 5: Build-Time Dependencies 17

5 Build-Time Dependencies

This is a collection of random notes on build-time dependencies as of about XEmacs 21.5.11.
Of course we use ‘make’ to manage most dependencies, especially for the C code. The main
thing here is for the Release Engineer to run the ‘src/make-src-depend’ script every so
often, at least at every release.

However, since most of XEmacs is written in Lisp, and we compile and preload the Lisp
for efficiency, managing Lisp compilation using ‘make’ would imply running XEmacs hun-
dreds of times. This would make the build process unbearably long. Thus those processes
that require running the same Lisp programs on many files are managed using Lisp driver
functions rather than ‘make’. The situation is further complicated by the fact that docu-
mentation strings are kept in an external database, and referenced in the dumped XEmacs
by file offset. Finally, the Lisp files are processed to collect autoloaded function information
and customize dependencies, which are then written into generated Lisp files.

About this, Ben sez:

1. Redumping depends on up-to-date dumped ‘.elc’ files and ‘DOC’ but not
directly on auto-autoloads.

2. Rebuilding dumped ‘.elc’ files depends on auto-autoloads being up-to-
date.

3. Building the ‘DOC’ file depends on up-to-date dumped ‘.elc’ files but not
directly on auto-autoloads.

4. Recompiling anything depends on ‘bytecomp.elc’ and
‘byte-optimize.elc’ being up-to-date.

Put these together and you'll see it’s perfectly acceptable to build
auto-autoloads *after® dumping if no ‘.elc’ files are out-of-date.

These Lisp driver programs typically run from temacs, not a dumped XEmacs. The
simplest (but time-consuming) way to achieve a sane environment for running Lisp is to
load ‘loadup.el’ or ‘loadup-el.el’. (The latter is used to avoid loading possibly out-of-
date compiled Lisp files.) If this is not done, you have to construct the environment yourself.
See ‘dumped-lisp.el’ to see how it is done in the dumped XEmacs.

One potential gotcha is that very early customizations are now handled by adding the
definitions to the special variable custom-declare-variable-list, defined in ‘subr.el’.
If you use any higher-level functionality that might load ‘custom.el’, but you do not
need ‘subr.el’, you should ‘defvar’ custom-declare-variable-list to prevent the
‘void-variable’ error. (Currently this is only needed for ‘make-docfile.el’.)

18

XEmacs Internals Manual

Chapter 6: XEmacs From the Inside 19

6 XEmacs From the Inside

Internally, XEmacs is quite complex, and can be very confusing. To simplify things, it can
be useful to think of XEmacs as containing an event loop that “drives” everything, and a
number of other subsystems, such as a Lisp engine and a redisplay mechanism. FEach of
these other subsystems exists simultaneously in XEmacs, and each has a certain state. The
flow of control continually passes in and out of these different subsystems in the course of
normal operation of the editor.

It is important to keep in mind that, most of the time, the editor is “driven” by the event
loop. Except during initialization and batch mode, all subsystems are entered directly or
indirectly through the event loop, and ultimately, control exits out of all subsystems back
up to the event loop. This cycle of entering a subsystem, exiting back out to the event loop,
and starting another iteration of the event loop occurs once each keystroke, mouse motion,
etc.

If you're trying to understand a particular subsystem (other than the event loop), think
of it as a “daemon” process or “servant” that is responsible for one particular aspect of a
larger system, and periodically receives commands or environment changes that cause it to
do something. Ultimately, these commands and environment changes are always triggered
by the event loop. For example:

e The window and frame mechanism is responsible for keeping track of what windows and
frames exist, what buffers are in them, etc. Tt is periodically given commands (usually
from the user) to make a change to the current window/frame state: i.e. create a new
frame, delete a window, etc.

e The buffer mechanism is responsible for keeping track of what buffers exist and what
text is in them. Tt is periodically given commands (usually from the user) to insert or
delete text, create a buffer, etc. When it receives a text-change command, it notifies
the redisplay mechanism.

e The redisplay mechanism is responsible for making sure that windows and frames are
displayed correctly. It is periodically told (by the event loop) to actually “do its job”,
i.e. snoop around and see what the current state of the environment (mostly of the
currently-existing windows, frames, and buffers) is, and make sure that state matches
what’s actually displayed. It keeps lots and lots of information around (such as what is
actually being displayed currently, and what the environment was last time it checked)
so that it can minimize the work it has to do. It is also helped along in that whenever
a relevant change to the environment occurs, the redisplay mechanism is told about
this, so it has a pretty good idea of where it has to look to find possible changes and
doesn’t have to look everywhere.

e The Lisp engine is responsible for executing the Lisp code in which most user commands
are written. It is entered through a call to eval or funcall, which occurs as a result
of dispatching an event from the event loop. The functions it calls issue commands to
the buffer mechanism, the window/frame subsystem, etc.

e The Lisp allocation subsystem is responsible for keeping track of Lisp objects. It is
given commands from the Lisp engine to allocate objects, garbage collect, etc.

etc.

20 XEmacs Internals Manual

The important idea here is that there are a number of independent subsystems each
with its own responsibility and persistent state, just like different employees in a company,
and each subsystem is periodically given commands from other subsystems. Commands
can flow from any one subsystem to any other, but there is usually some sort of hierarchy,
with all commands originating from the event subsystem.

XEmacs is entered in main(), which is in ‘emacs.c’. When this is called the first time
(in a properly-invoked ‘temacs’), it does the following:

1. It does some very basic environment initializations, such as determining where it and
its directories (e.g. ‘lisp/’ and ‘etc/’) reside and setting up signal handlers.

2. Tt initializes the entire Lisp interpreter.

3. It sets the initial values of many built-in variables (including many variables that are
visible to Lisp programs), such as the global keymap object and the built-in faces (a face
is an object that describes the display characteristics of text). This involves creating
Lisp objects and thus is dependent on step (2).

4. Tt performs various other initializations that are relevant to the particular environment
it is running in, such as retrieving environment variables, determining the current date
and the user who is running the program, examining its standard input, creating any
necessary file descriptors, etc.

5. At this point, the C initialization is complete. A Lisp program that was specified
on the command line (usually ‘loadup.el’) is called (temacs is normally invoked as
temacs -batch -1 loadup.el dump). ‘loadup.el’ loads all of the other Lisp files that
are needed for the operation of the editor, calls the dump-emacs function to write out
‘xemacs’, and then kills the temacs process.

When ‘xemacs’ is then run, it only redoes steps (1) and (4) above; all variables already
contain the values they were set to when the executable was dumped, and all memory that
was allocated with malloc() is still around. (XEmacs knows whether it is being run as
‘xemacs’ or ‘temacs’ because it sets the global variable initialized to 1 after step (4)
above.) At this point, ‘xemacs’ calls a Lisp function to do any further initialization, which
includes parsing the command-line (the C code can only do limited command-line parsing,
which includes looking for the ‘-batch’ and ‘-1’ flags and a few other flags that it needs
to know about before initialization is complete), creating the first frame (or window in
standard window-system parlance), running the user’s init file (usually the file ‘.emacs’ in
the user’s home directory), etc. The function to do this is usually called normal-top-level,;
‘loadup.el’ tells the C code about this function by setting its name as the value of the
Lisp variable top-level.

When the Lisp initialization code is done, the C code enters the event loop, and stays
there for the duration of the XEmacs process. The code for the event loop is contained
in ‘cmdloop.c’, and is called Fcommand_loop_1(). Note that this event loop could very
well be written in Lisp, and in fact a Lisp version exists; but apparently, doing this makes
XEmacs run noticeably slower.

Notice how much of the initialization is done in Lisp, not in C. In general, XEmacs
tries to move as much code as is possible into Lisp. Code that remains in C is code that
implements the Lisp interpreter itself, or code that needs to be very fast, or code that needs
to do system calls or other such stuff that needs to be done in C, or code that needs to
have access to “forbidden” structures. (One conscious aspect of the design of Lisp under

Chapter 6: XEmacs From the Inside 21

XEmacs is a clean separation between the external interface to a Lisp object’s functionality
and its internal implementation. Part of this design is that Lisp programs are forbidden
from accessing the contents of the object other than through using a standard API. In
this respect, XEmacs Lisp is similar to modern Lisp dialects but differs from GNU Emacs,
which tends to expose the implementation and allow Lisp programs to look at it directly.
The major advantage of hiding the implementation is that it allows the implementation to
be redesigned without affecting any Lisp programs, including those that might want to be
“clever” by looking directly at the object’s contents and possibly manipulating them.)

Moving code into Lisp makes the code easier to debug and maintain and makes it much
easier for people who are not XEmacs developers to customize XEmacs, because they can
make a change with much less chance of obscure and unwanted interactions occurring than
if they were to change the C code.

22

XEmacs Internals Manual

Chapter 7: The XEmacs Object System (Abstractly Speaking) 23

7 The XEmacs Object System (Abstractly
Speaking)

At the heart of the Lisp interpreter is its management of objects. XEmacs Lisp contains
many built-in objects, some of which are simple and others of which can be very complex;
and some of which are very common, and others of which are rarely used or are only
used internally. (Since the Lisp allocation system, with its automatic reclamation of unused
storage, is so much more convenient than malloc () and free(), the C code makes extensive
use of it in its internal operations.)

The basic Lisp objects are

integer 28 or 31 bits of precision, or 60 or 63 bits on 64-bit machines; the reason for this
is described below when the internal Lisp object representation is described.

float Same precision as a double in C.

cons A simple container for two Lisp objects, used to implement lists and most other
data structures in Lisp.

char An object representing a single character of text; chars behave like integers in
many ways but are logically considered text rather than numbers and have a
different read syntax. (the read syntax for a char contains the char itself or
some textual encoding of it—for example, a Japanese Kanji character might be
encoded as ‘"~ [$(B#&" [(B’ using the ISO-2022 encoding standard—rather than
the numerical representation of the char; this way, if the mapping between chars
and integers changes, which is quite possible for Kanji characters and other
extended characters, the same character will still be created. Note that some
primitives confuse chars and integers. The worst culprit is eq, which makes a
special exception and considers a char to be eq to its integer equivalent, even
though in no other case are objects of two different types eq. The reason for
this monstrosity is compatibility with existing code; the separation of char from
integer came fairly recently.)

symbol An object that contains Lisp objects and is referred to by name; symbols are
used to implement variables and named functions and to provide the equivalent
of preprocessor constants in C.

vector A one-dimensional array of Lisp objects providing constant-time access to any
of the objects; access to an arbitrary object in a vector is faster than for lists,
but the operations that can be done on a vector are more limited.

string Self-explanatory; behaves much like a vector of chars but has a different read
syntax and is stored and manipulated more compactly.

bit-vector
A vector of bits; similar to a string in spirit.

compiled-function
An object containing compiled Lisp code, known as byte code

subr A Lisp primitive, i.e. a Lisp-callable function implemented in C.

Note that there is no basic “function” type, as in more powerful versions of Lisp (where
it’s called a closure). XEmacs Lisp does not provide the closure semantics implemented

24 XEmacs Internals Manual

by Common Lisp and Scheme. The guts of a function in XEmacs Lisp are represented in
one of four ways: a symbol specifying another function (when one function is an alias for
another), a list (whose first element must be the symbol lambda) containing the function’s
source code, a compiled-function object, or a subr object. (In other words, given a symbol
specifying the name of a function, calling symbol-function to retrieve the contents of the
symbol’s function cell will return one of these types of objects.)

XEmacs Lisp also contains numerous specialized objects used to implement the editor:

buffer Stores text like a string, but is optimized for insertion and deletion and has
certain other properties that can be set.

frame An object with various properties whose displayable representation is a window
in window-system parlance.

window A section of a frame that displays the contents of a buffer; often called a pane
in window-system parlance.

window-configuration
An object that represents a saved configuration of windows in a frame.

device An object representing a screen on which frames can be displayed; equivalent
to a display in the X Window System and a TTY in character mode.

face An object specifying the appearance of text or graphics; it has properties such
as font, foreground color, and background color.

marker An object that refers to a particular position in a buffer and moves around as
text is inserted and deleted to stay in the same relative position to the text
around it.

extent Similar to a marker but covers a range of text in a buffer; can also specify

properties of the text, such as a face in which the text is to be displayed,
whether the text is invisible or unmodifiable, etc.

event Generated by calling next-event and contains information describing a partic-
ular event happening in the system, such as the user pressing a key or a process
terminating.

keymap An object that maps from events (described using lists, vectors, and symbols

rather than with an event object because the mapping is for classes of events,
rather than individual events) to functions to execute or other events to recur-
sively look up; the functions are described by name, using a symbol, or using
lists to specify the function’s code.

glyph An object that describes the appearance of an image (e.g. pixmap) on the
screen; glyphs can be attached to the beginning or end of extents and in some
future version of XEmacs will be able to be inserted directly into a buffer.

process An object that describes a connection to an externally-running process.
There are some other, less-commonly-encountered general objects:

hash-table
An object that maps from an arbitrary Lisp object to another arbitrary Lisp
object, using hashing for fast lookup.

Chapter 7: The XEmacs Object System (Abstractly Speaking) 25

obarray A limited form of hash-table that maps from strings to symbols; obarrays are
used to look up a symbol given its name and are not actually their own ob-
ject type but are kludgily represented using vectors with hidden fields (this
representation derives from GNU Emacs).

specifier
A complex object used to specify the value of a display property; a default
value is given and different values can be specified for particular frames, buffers,
windows, devices, or classes of device.

char-table
An object that maps from chars or classes of chars to arbitrary Lisp objects;
internally char tables use a complex nested-vector representation that is opti-
mized to the way characters are represented as integers.

range-table
An object that maps from ranges of integers to arbitrary Lisp objects.

And some strange special-purpose objects:

charset
coding-system
Objects used when MULE, or multi-lingual/Asian-language, support is enabled.

color-instance

font-instance

image-instance
An object that encapsulates a window-system resource; instances are mostly
used internally but are exposed on the Lisp level for cleanness of the specifier
model and because it’s occasionally useful for Lisp program to create or query
the properties of instances.

subwindow
An object that encapsulate a subwindow resource, i.e. a window-system child
window that is drawn into by an external process; this object should be inte-
grated into the glyph system but isn’t yet, and may change form when this is
done.

tooltalk-message

tooltalk-pattern
Objects that represent resources used in the ToolTalk interprocess communica-
tion protocol.

toolbar-button
An object used in conjunction with the toolbar.

And objects that are only used internally:

opaque A generic object for encapsulating arbitrary memory; this allows you the gen-
erality of malloc() and the convenience of the Lisp object system.

lstream A buffering I/O stream, used to provide a unified interface to anything that
can accept output or provide input, such as a file descriptor, a stdio stream, a
chunk of memory, a Lisp buffer, a Lisp string, etc.; it’s a Lisp object to make
its memory management more convenient.

26 XEmacs Internals Manual

char-table-entry
Subsidiary objects in the internal char-table representation.

extent-auxiliary

menubar-data

toolbar-data
Various special-purpose objects that are basically just used to encapsulate mem-
ory for particular subsystems, similar to the more general “opaque” object.

symbol-value-forward

symbol-value-buffer-local

symbol-value-varalias

symbol-value-lisp-magic
Special internal-only objects that are placed in the value cell of a symbol to
indicate that there is something special with this variable — e.g. it has no value,
it mirrors another variable, or it mirrors some C variable; there is really only one
kind of object, called a symbol-value-magic but it is sort-of halfway kludged
into semi-different object types.

Some types of objects are permanent meaning that once created, they do not disap-
pear until explicitly destroyed, using a function such as delete-buffer, delete-window,
delete-frame, etc. Others will disappear once they are not longer used, through the
garbage collection mechanism. Buffers, frames, windows, devices, and processes are among
the objects that are permanent. Note that some objects can go both ways: Faces can be
created either way; extents are normally permanent, but detached extents (extents not re-
ferring to any text, as happens to some extents when the text they are referring to is deleted)
are temporary. Note that some permanent objects, such as faces and coding systems, cannot
be deleted. Note also that windows are unique in that they can be undeleted after having
previously been deleted. (This happens as a result of restoring a window configuration.)

Note that many types of objects have a read syntax, i.e. a way of specifying an object
of that type in Lisp code. When you load a Lisp file, or type in code to be evaluated, what
really happens is that the function read is called, which reads some text and creates an
object based on the syntax of that text; then eval is called, which possibly does something
special; then this loop repeats until there’s no more text to read. (eval only actually does
something special with symbols, which causes the symbol’s value to be returned, similar to
referencing a variable; and with conses [i.e. lists], which cause a function invocation. All
other values are returned unchanged.)

The read syntax

17297

converts to an integer whose value is 17297.
1.983e-4

converts to a float whose value is 1.983e-4, or .0001983.
?b

converts to a char that represents the lowercase letter b.
7 [$(B#&"[(B

(where ‘~ [actually is an ‘ESC’ character) converts to a particular Kanji character when
using an ISO2022-based coding system for input. (To decode this goo: ‘ESC’ begins an

Chapter 7: The XEmacs Object System (Abstractly Speaking) 27

escape sequence; ‘ESC $ (is a class of escape sequences meaning “switch to a 94x94 char-
acter set”; ‘ESC $ (B’ means “switch to Japanese Kanji”; ‘#” and ‘&’ collectively index into
a 94-by-94 array of characters [subtract 33 from the ASCII value of each character to get
the corresponding index|; ‘ESC (’ is a class of escape sequences meaning “switch to a 94
character set”; ‘ESC (B’ means “switch to US ASCII”. It is a coincidence that the letter ‘B’
is used to denote both Japanese Kanji and US ASCII. If the first ‘B’ were replaced with an
‘4, you’d be requesting a Chinese Hanzi character from the GB2312 character set.)

"foobar"
converts to a string.
foobar
converts to a symbol whose name is "foobar". This is done by looking up the string
equivalent in the global variable obarray, whose contents should be an obarray. If no
symbol is found, a new symbol with the name "foobar" is automatically created and
added to obarray; this process is called interning the symbol.
(foo . bar)
converts to a cons cell containing the symbols foo and bar.
(1 a 2.5)

converts to a three-element list containing the specified objects (note that a list is actually
a set of nested conses; see the XEmacs Lisp Reference).

[1 a 2.5]
converts to a three-element vector containing the specified objects.
#l...o]

converts to a compiled-function object (the actual contents are not shown since they are
not relevant here; look at a file that ends with ‘.elc’ for examples).

#x01110110

converts to a bit-vector.
#s(hash-table)

converts to a hash table (the actual contents are not shown).
#s(range-table)

converts to a range table (the actual contents are not shown).
#s(char-table)

converts to a char table (the actual contents are not shown).

Note that the #s() syntax is the general syntax for structures, which are not really
implemented in XEmacs Lisp but should be.

When an object is printed out (using print or a related function), the read syntax is
used, so that the same object can be read in again.

The other objects do not have read syntaxes, usually because it does not really make
sense to create them in this fashion (i.e. processes, where it doesn’t make sense to have
a subprocess created as a side effect of reading some Lisp code), or because they can’t be
created at all (e.g. subrs). Permanent objects, as a rule, do not have a read syntax; nor do
most complex objects, which contain too much state to be easily initialized through a read
syntax.

28

XEmacs Internals Manual

Chapter 8: How Lisp Objects Are Represented in C 29

8 How Lisp Objects Are Represented in C

Lisp objects are represented in C using a 32-bit or 64-bit machine word (depending on the
processor; i.e. DEC Alphas use 64-bit Lisp objects and most other processors use 32-bit
Lisp objects). The representation stuffs a pointer together with a tag, as follows:

[33222222222211111111110000000000]
[10987654321098765432109876543210]]

a pointer to a structure, or an integer tag

A tag of 00 is used for all pointer object types, a tag of 10 is used for characters, and
the other two tags 01 and 11 are joined together to form the integer object type. This
representation gives us 31 bit integers and 30 bit characters, while pointers are represented
directly without any bit masking or shifting. This representation, though, assumes that
pointers to structs are always aligned to multiples of 4, so the lower 2 bits are always zero.

Lisp objects use the typedef Lisp_0bject, but the actual C type used for the Lisp object
can vary. It can be either a simple type (long on the DEC Alpha, int on other machines) or
a structure whose fields are bit fields that line up properly (actually, a union of structures is
used). Generally the simple integral type is preferable because it ensures that the compiler
will actually use a machine word to represent the object (some compilers will use more
general and less efficient code for unions and structs even if they can fit in a machine word).
The union type, however, has the advantage of stricter type checking. If you accidentally
pass an integer where a Lisp object is desired, you get a compile error. The choice of which
type to use is determined by the preprocessor constant USE_UNION_TYPE which is defined
via the -—use-union-type option to configure.

Various macros are used to convert between Lisp_Objects and the corresponding C type.
Macros of the form XINT(), XCHAR(), XSTRING (), XSYMBOL (), do any required bit shifting
and/or masking and cast it to the appropriate type. XINT() needs to be a bit tricky so
that negative numbers are properly sign-extended. Since integers are stored left-shifted, if
the right-shift operator does an arithmetic shift (i.e. it leaves the most-significant bit as-is
rather than shifting in a zero, so that it mimics a divide-by-two even for negative numbers)
the shift to remove the tag bit is enough. This is the case on all the systems we support.

Note that when ERROR_CHECK_TYPECHECK is defined, the converter macros become more
complicated—they check the tag bits and/or the type field in the first four bytes of a record
type to ensure that the object is really of the correct type. This is great for catching places
where an incorrect type is being dereferenced—this typically results in a pointer being
dereferenced as the wrong type of structure, with unpredictable (and sometimes not easily
traceable) results.

There are similar XSETTYPHE) macros that construct a Lisp object. These macros are of
the form XSETTYPE(lvalue , result), i.e. they have to be a statement rather than just
used in an expression. The reason for this is that standard C doesn’t let you “construct”
a structure (but GCC does). Granted, this sometimes isn’t too convenient; for the case of
integers, at least, you can use the function make_int (), which constructs and returns an
integer Lisp object. Note that the XSETTYPEK) macros are also affected by ERROR_CHECK_
TYPECHECK and make sure that the structure is of the right type in the case of record types,
where the type is contained in the structure.

30 XEmacs Internals Manual

The C programmer is responsible for guaranteeingthat a Lisp_Object is the correct type
before using the XTYPEmacros. This is especially important in the case of lists. Use XCAR
and XCDR if a Lisp_Object is certainly a cons cell, else use Fcar () and Fcdr (). Trust other C
code, but not Lisp code. On the other hand, if XEmacs has an internal logic error, it’s better
to crash immediately, so sprinkle assert()s and “unreachable” abort()s liberally about
the source code. Where performance is an issue, use type_checking_assert, bufpos_
checking_assert, and gc_checking_assert, which do nothing unless the corresponding
configure error checking flag was specified.

Chapter 9: Major Textual Changes 31

9 Major Textual Changes

Sometimes major textual changes are made to the source. This means that a search-and-
replace is done to change type names and such. Some people disagree with such changes,
and certainly if done without good reason will just lead to headaches. But it’s important to
keep the code clean and understable, and consistent naming goes a long way towards this.

An example of the right way to do this was the so-called "great integral type renaming".

9.1 Great Integral Type Renaming

The purpose of this is to rationalize the names used for various integral types, so that they
match their intended uses and follow consist conventions, and eliminate types that were not
semantically different from each other.

The conventions are:

e All integral types that measure quantities of anything are signed. Some people dis-
agree vociferously with this, but their arguments are mostly theoretical, and are vastly
outweighed by the practical headaches of mixing signed and unsigned values, and more
importantly by the far increased likelihood of inadvertent bugs: Because of the broken
"viral" nature of unsigned quantities in C (operations involving mixed signed /unsigned
are done unsigned, when exactly the opposite is nearly always wanted), even a single
error in declaring a quantity unsigned that should be signed, or even the even more
subtle error of comparing signed and unsigned values and forgetting the necessary cast,
can be catastrophic, as comparisons will yield wrong results. -Wsign-compare is turned
on specifically to catch this, but this tends to result in a great number of warnings when
mixing signed and unsigned, and the casts are annoying. More has been written on
this elsewhere.

e All such quantity types just mentioned boil down to EMACS_INT, which is 32 bits on
32-bit machines and 64 bits on 64-bit machines. This is guaranteed to be the same size
as Lisp objects of type ‘int’, and (as far as I can tell) of size_t (unsigned!) and ssize_t.
The only type below that is not an EMACS_INT is Hashcode, which is an unsigned
value of the same size as EMACS_INT.

e Type names should be relatively short (no more than 10 characters or so), with the
first letter capitalized and no underscores if they can at all be avoided.

e "count" == a zero-based measurement of some quantity. Includes sizes, offsets, and
indexes.
e "bpos" == a one-based measurement of a position in a buffer. "Charbpos" and "Byteb-

pos" count text in the buffer, rather than bytes in memory; thus Bytebpos does not
directly correspond to the memory representation. Use "Membpos" for this.

e "Char" refers to internal-format characters, not to the C type "char", which is really
a byte.

For the actual name changes, see the script below.

I ran the following script to do the conversion. (NOTE: This script is idempotent. You
can safely run it multiple times and it will not screw up previous results — in fact, it will
do nothing if nothing has changed. Thus, it can be run repeatedly as necessary to handle
patches coming in from old workspaces, or old branches.) There are two tags, just before and

32 XEmacs Internals Manual

just after the change: ‘pre-integral-type-rename’ and ‘post-integral-type-rename’.
When merging code from the main trunk into a branch, the best thing to do is first merge up
to ‘pre-integral-type-rename’, then apply the script and associated changes, then merge
from ‘post-integral-type-change’ to the present. (Alternatively, just do the merging in
one operation; but you may then have a lot of conflicts needing to be resolved by hand.)

Script ‘fixtypes.sh’ follows:

——————————————————————————————————— cut -----———--———————— - — -
files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*. [ch]
gr Memory_Count Bytecount $files

gr Lstream_Data_Count Bytecount $files
gr Element_Count Elemcount $files

gr Hash_Code Hashcode $files

gr extcount bytecount $files

gr bufpos charbpos $files

gr bytind bytebpos $files

gr memind membpos $files

gr bufbyte intbyte $files

gr Extcount Bytecount $files

gr Bufpos Charbpos $files

gr Bytind Bytebpos $files

gr Memind Membpos $files

gr Bufbyte Intbyte $files

gr EXTCOUNT BYTECOUNT $files

gr BUFPOS CHARBPOS $files

gr BYTIND BYTEBPOS $files

gr MEMIND MEMBPOS $files

gr BUFBYTE INTBYTE $files

gr MEMORY_COUNT BYTECOUNT $files

gr LSTREAM_DATA_COUNT BYTECOUNT $files
gr ELEMENT_COUNT ELEMCOUNT $files

gr HASH_CODE HASHCODE $files

The ‘gr’ script, and the scripts it uses, are documented in ‘README.global-renaming’,
because if placed in this file they would need to have their @ characters doubled, meaning
you couldn’t easily cut and paste from the source.

In addition to those programs, I needed to fix up a few other things, particularly relating
to the duplicate definitions of types, now that some types merged with others. Specifically:

1. in lisp.h, removed duplicate declarations of Bytecount. The changed code should now
look like this: (In each code snippet below, the first and last lines are the same as the
original, as are all lines outside of those lines. That allows you to locate the section
to be replaced, and replace the stuff in that section, verifying that there isn’t anything
new added that would need to be kept.)

/* Counts of bytes or chars */
typedef EMACS_INT Bytecount;

Chapter 9: Major Textual Changes 33

typedef EMACS_INT Charcount;

/* Counts of elements */
typedef EMACS_INT Elemcount;

/* Hash codes */
typedef unsigned long Hashcode;

————————————————————————————————— Snip ——-----------———m - ————— oo

2. in Istream.h, removed duplicate declaration of Bytecount. Rewrote the comment about
this type. The changed code should now look like this:

#endif

/* The have been some arguments over the what the type should be that
specifies a count of bytes in a data block to be written out or read in,
using Lstream_read(), Lstream_write(), and related functions.

Originally it was long, which worked fine; Martin "corrected" these to
size_t and ssize_t on the grounds that this is theoretically cleaner and
is in keeping with the C standards. Unfortunately, this practice is
horribly error-prone due to design flaws in the way that mixed
signed/unsigned arithmetic happens. In fact, by doing this change,
Martin introduced a subtle but fatal error that caused the operation of
sending large mail messages to the SMTP server under Windows to fail.
By putting all values back to be signed, avoiding any signed/unsigned
mixing, the bug immediately went away. The type then in use was
Lstream_Data_Count, so that it be reverted cleanly if a vote came to
that. Now it is Bytecount.

Some earlier comments about why the type must be signed: This MUST BE
SIGNED, since it also is used in functions that return the number of
bytes actually read to or written from in an operation, and these
functions can return -1 to signal error.

Note that the standard Unix read() and write() functions define the
count going in as a size_t, which is UNSIGNED, and the count going
out as an ssize_t, which is SIGNED. This is a horrible design
flaw. Not only is it highly likely to lead to logic errors when a
-1 gets interpreted as a large positive number, but operations are
bound to fail in all sorts of horrible ways when a number in the
upper-half of the size_t range is passed in -- this number is
unrepresentable as an ssize_t, so code that checks to see how many
bytes are actually written (which is mandatory if you are dealing
with certain types of devices) will get completely screwed up.

34 XEmacs Internals Manual

—--ben

*/

typedef enum lstream_buffering
————————————————————————————————— Snip ——-----------——— - ————— oo

3. in dumper.c, there are four places, all inside of switch() statements, where
XD_BYTECOUNT appears twice as a case tag. In each case, the two case blocks
contain identical code, and you should *REMOVE THE SECOND* and leave the
first.

9.2 Text/Char Type Renaming
The purpose of this was

1. To distinguish between “charptr” when it refers to operations on the pointer itself and
when it refers to operations on text

2. To use counsistent naming for everything referring to internal format, i.e.

Itext == text in internal format

Ibyte == a byte in such text

Ichar == a char as represented in internal character format
Thus e.g.

set_charptr_emchar -> set_itext_ichar
This was done using a script like this:

files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*. [ch]
gr Intbyte Ibyte $files

gr INTBYTE IBYTE $files

gr intbyte ibyte $files

gr EMCHAR ICHAR $files

gr emchar ichar $files

gr Emchar Ichar $files

gr INC_CHARPTR INC_IBYTEPTR $files

gr DEC_CHARPTR DEC_IBYTEPTR $files

gr VALIDATE_CHARPTR VALIDATE_IBYTEPTR $files
gr valid_charptr valid_ibyteptr $files

gr CHARPTR ITEXT $files

gr charptr itext $files

gr Charptr Itext $files

See above for the source to ‘gr’.

As in the integral-types change, there are pre and post tags before and after the change:
pre-internal-format-textual-renaming
post-internal-format-textual-renaming

When merging a large branch, follow the same sort of procedure documented above,
using these tags — essentially sync up to the pre tag, then apply the script yourself, then
sync from the post tag to the present. You can probably do the same if you don’t have
a separate workspace, but do have lots of outstanding changes and you’d rather not just
merge all the textual changes directly. Use something like this:

Chapter 9: Major Textual Changes 35

(WARNING: I'm not a CVS guru; before trying this, or any large operation that might
potentially mess things up, *DEFINITELY* make a backup of your existing workspace.)

cup -r pre-internal-format-textual-renaming

<apply script>

cup -A -j post-internal-format-textual-renaming -j HEAD
This might also work:

cup -j pre-internal-format-textual-renaming

<apply script>

cup —-Jj post-internal-format-textual-renaming —-j HEAD
ben
The following is a script to go in the opposite direction:

files="*.[ch] s/*.h m/*.h config.h.in ../configure.in Makefile.in.in ../lib-src/*. [ch]

Evidently Perl considers _ to be a word char ala \b, even though XEmacs
doesn’t. We need to be careful here with ibyte/ichar because of words
like Richard, eicharlen(), multibyte, HIBYTE, etc.

gr Ibyte Intbyte $files

gr ’\bIBYTE’ INTBYTE $files

gr ’\bibyte’ intbyte $files

gr ’\bICHAR’ EMCHAR $files

gr ’\bichar’ emchar $files

gr ’\bIchar’ Emchar $files

gr ’\bIBYTEPTR’ CHARPTR $files
gr ’\bibyteptr’ charptr $files
gr ’\bITEXT’ CHARPTR $files

gr ’\bitext’ charptr $files

gr ’\bItext’ CHARPTR $files

gr ’_IBYTE’ _INTBYTE $files
gr ’_ibyte’ _intbyte $files
gr ’_ICHAR’ _EMCHAR $files
gr ’_ichar’ _emchar $files
gr ’_Ichar’ _Emchar $files
gr ’_IBYTEPTR’ _CHARPTR $files
gr ’_ibyteptr’ _charptr $files
gr ’_ITEXT’ _CHARPTR $files
gr ’_itext’ _charptr $files
gr ’_Itext’ _CHARPTR $files

36

XEmacs Internals Manual

Chapter 10: Rules When Writing New C Code 37

10 Rules When Writing New C Code

The XEmacs C Code is extremely complex and intricate, and there are many rules that are
more or less consistently followed throughout the code. Many of these rules are not obvious,
so they are explained here. It is of the utmost importance that you follow them. If you
don’t, you may get something that appears to work, but which will crash in odd situations,
often in code far away from where the actual breakage is.

10.1 A Reader’s Guide to XEmacs Coding Conventions

Of course the low-level implementation language of XEmacs is C, but much of that uses
the Lisp engine to do its work. However, because the code is “inside” of the protective
containment shell around the “reactor core,” you’ll see lots of complex “plumbing” needed
to do the work and “safety mechanisms,” whose failure results in a meltdown. This section
provides a quick overview (or review) of the various components of the implementation of
Lisp objects.

Two typographic conventions help to identify C objects that implement Lisp objects.
The first is that capitalized identifiers, especially beginning with the letters ‘Q’, ‘V’, ‘F’, and
‘S’, for C variables and functions, and C macros with beginning with the letter ‘X’, are used
to implement Lisp. The second is that where Lisp uses the hyphen ‘-’ in symbol names, the
corresponding C identifiers use the underscore ‘_’". Of course, since XEmacs Lisp contains
interfaces to many external libraries, those external names will follow the coding conventions
their authors chose, and may overlap the “XEmacs name space.” However these cases are
usually pretty obvious.

All Lisp objects are handled indirectly. The Lisp_0Object type is usually a pointer
to a structure, except for a very small number of types with immediate representations
(currently characters and integers). However, these types cannot be directly operated on in
C code, either, so they can also be considered indirect. Types that do not have an immediate
representation always have a C typedef Lisp_type for a corresponding structure.

In older code, it was common practice to pass around pointers to Lisp_type , but this
is now deprecated in favor of using Lisp_Object for all function arguments and return
values that are Lisp objects. The Xtype macro is used to extract the pointer and cast it to
(Lisp_type =) for the desired type.

Convention: macros whose names begin with ‘X’ operate on Lisp_0bjects and do no
type-checking. Many such macros are type extractors, but others implement Lisp operations
in C (e.g., XCAR implements the Lisp car function). These are unsafe, and must only be
used where types of all data have already been checked. Such macros are only applied to
Lisp_0Objects. In internal implementations where the pointer has already been converted,
the structure is operated on directly using the C -> member access operator.

The type P, CHECK_type , and CONCHECK_type macros are used to test types. The first
returns a Boolean value, and the latter signal errors. (The ‘CONCHECK’ variety allows execu-
tion to be CONtinued under some circumstances, thus the name.) Functions which expect
to be passed user data invariably call ‘CHECK’ macros on arguments.

There are many types of specialized Lisp objects implemented in C, but the most per-
vasive type is the symbol. Symbols are used as identifiers, variables, and functions.

38 XEmacs Internals Manual

Convention: Global variables whose names begin with ‘Q" are constants whose value is
a symbol. The name of the variable should be derived from the name of the symbol using
the same rules as for Lisp primitives. Such variables allow the C code to check whether
a particular Lisp_Object is equal to a given symbol. Symbols are Lisp objects, so these
variables may be passed to Lisp primitives. (An alternative to the use of ‘Q..." variables
is to call the intern function at initialization in the vars_of_module function, which is
hardly less efficient.)

Convention: Global variables whose names begin with ‘V’ are variables that contain Lisp
objects. The convention here is that all global variables of type Lisp_0bject begin with ‘V’,
and no others do (not even integer and boolean variables that have Lisp equivalents). Most
of the time, these variables have equivalents in Lisp, which are defined via the ‘DEFVAR’
family of macros, but some don’t. Since the variable’s value is a Lisp_0bject, it can be
passed to Lisp primitives.

The implementation of Lisp primitives is more complex. Convention: Global variables
with names beginning with ‘S’ contain a structure that allows the Lisp engine to identify
and call a C function. In modern versions of XEmacs, these identifiers are almost always
completely hidden in the DEFUN and SUBR macros, but you will encounter them if you look
at very old versions of XEmacs or at GNU Emacs. Convention: Functions with names
beginning with ‘F’ implement Lisp primitives. Of course all their arguments and their
return values must be Lisp_Objects. (This is hidden in the DEFUN macro.)

10.2 General Coding Rules

The C code is actually written in a dialect of C called Clean C, meaning that it can be
compiled, mostly warning-free, with either a C or C++ compiler. Coding in Clean C has
several advantages over plain C. C++ compilers are more nit-picking, and a number of coding
errors have been found by compiling with C++. The ability to use both C and C++ tools
means that a greater variety of development tools are available to the developer.

Every module includes ‘<config.h>’ (angle brackets so that ‘--srcdir’ works correctly;
‘config.h’ may or may not be in the same directory as the C sources) and ‘lisp.h’.
‘config.h’ must always be included before any other header files (including system header
files) to ensure that certain tricks played by various ‘s/’ and ‘m/’ files work out correctly.

When including header files, always use angle brackets, not double quotes, except when
the file to be included is always in the same directory as the including file. If either file
is a generated file, then that is not likely to be the case. In order to understand why we
have this rule, imagine what happens when you do a build in the source directory using
‘./configure’ and another build in another directory using ‘. ./work/configure’. There
will be two different ‘config.h’ files. Which one will be used if you ‘#include "config.h"’?

Almost every module contains a syms_of_*() function and a vars_of_x*() function.
The former declares any Lisp primitives you have defined and defines any symbols you will
be using. The latter declares any global Lisp variables you have added and initializes global
C variables in the module. Important : There are stringent requirements on exactly what
can go into these functions. See the comment in ‘emacs.c’. The reason for this is to avoid
obscure unwanted interactions during initialization. If you don’t follow these rules, you’ll
be sorry! If you want to do anything that isn’t allowed, create a complex_vars_of_*()

Chapter 10: Rules When Writing New C Code 39

function for it. Doing this is tricky, though: you have to make sure your function is called
at the right time so that all the initialization dependencies work out.

Declare each function of these kinds in ‘symsinit.h’. Make sure it’s called in the ap-
propriate place in ‘emacs.c’. You never need to include ‘symsinit.h’ directly, because it
is included by ‘lisp.h’.

All global and static variables that are to be modi able must be declared uninitialized.
This means that you may not use the “declare with initializer” form for these variables,
such as int some_variable = 0;. The reason for this has to do with some kludges done
during the dumping process: If possible, the initialized data segment is re-mapped so that
it becomes part of the (unmodifiable) code segment in the dumped executable. This allows
this memory to be shared among multiple running XEmacs processes. XEmacs is careful to
place as much constant data as possible into initialized variables during the ‘temacs’ phase.

Please note: This kludge only works on a few systems nowadays, and is rapidly becoming
irrelevant because most modern operating systems provide copy-on-write semantics. All
data is initially shared between processes, and a private copy is automatically made (on a
page-by-page basis) when a process first attempts to write to a page of memory.

Formerly, there was a requirement that static variables not be declared inside of func-
tions. This had to do with another hack along the same vein as what was just described:
old USG systems put statically-declared variables in the initialized data space, so those
header files had a #define static declaration. (That way, the data-segment remapping
described above could still work.) This fails badly on static variables inside of functions,
which suddenly become automatic variables; therefore, you weren’t supposed to have any
of them. This awful kludge has been removed in XEmacs because

1. almost all of the systems that used this kludge ended up having to disable the data-
segment remapping anyway;

2. the only systems that didn’t were extremely outdated ones;

3. this hack completely messed up inline functions.

The C source code makes heavy use of C preprocessor macros. One popular macro style
is:
#define FOO(var, value) do {
Lisp_Object FOO_value = (value);
... /* compute using FOO0_value */
(var) = bar;
} while (0)
The do {...} while (0) is a standard trick to allow FOO to have statement semantics,
so that it can safely be used within an if statement in C, for example. Multiple evaluation

is prevented by copying a supplied argument into a local variable, so that FOO(var,fun(1))
only calls fun once.

~

Lisp lists are popular data structures in the C code as well as in Elisp. There are two
sets of macros that iterate over lists. EXTERNAL_LIST_LOOP_n should be used when the list
has been supplied by the user, and cannot be trusted to be acyclic and nil-terminated. A
malformed-list or circular-list error will be generated if the list being iterated over
is not entirely kosher. LIST_LOOP_n, on the other hand, is faster and less safe, and can be
used only on trusted lists.

40 XEmacs Internals Manual

Related macros are GET_EXTERNAL_LIST_LENGTH and GET_LIST_LENGTH, which calculate
the length of a list, and in the case of GET_EXTERNAL_LIST_LENGTH, validating the proper-
ness of the list. The macros EXTERNAL_LIST_LOOP_DELETE_IF and LIST_LOOP_DELETE_IF
delete elements from a lisp list satisfying some predicate.

10.3 Writing Lisp Primitives

Lisp primitives are Lisp functions implemented in C. The details of interfacing the C function
so that Lisp can call it are handled by a few C macros. The only way to really understand
how to write new C code is to read the source, but we can explain some things here.

An example of a special form is the definition of progl, from ‘eval.c’. (An ordinary
function would have the same general appearance.)
DEFUN ("progl”, Fprogl, 1, UNEVALLED, 0, /*
Similar to “progn’, but the value of the first form is returned.
\(progl FIRST BODY...): All the arguments are evaluated sequentially.
The value of FIRST is saved during evaluation of the remaining args,
whose values are discarded.
*/
(args))
/* This function can GC */

REGISTER Lisp_Object val, form, tail;
struct gcpro gcprol;

val = Feval (XCAR (args));
GCPRO1 (val);

LIST_LOOP_3 (form, XCDR (args), tail)
Feval (form);

UNGCPRO;
return val;
}
Let’s start with a precise explanation of the arguments to the DEFUN macro. Here is a
template for them:

DEFUN (lname, fname, min_args, max_args, interactive , /*

docstring
*/
(arglist))
Iname This string is the name of the Lisp symbol to define as the function name; in

the example above, it is "progl".

fname This is the C function name for this function. This is the name that is used in C
code for calling the function. The name is, by convention, ‘F’ prepended to the
Lisp name, with all dashes (‘-’) in the Lisp name changed to underscores. Thus,
to call this function from C code, call Fprogl. Remember that the arguments
are of type Lisp_Object; various macros and functions for creating values of
type Lisp_Object are declared in the file ‘1isp.h’.

Primitives whose names are special characters (e.g. + or <) are named by
spelling out, in some fashion, the special character: e.g. Fplus() or Flss().

Chapter 10: Rules When Writing New C Code 41

min_args

max_args

interactive

docstring

arglist

Primitives whose names begin with normal alphanumeric characters but also
contain special characters are spelled out in some creative way, e.g. let* be-
comes FletX().

Each function also has an associated structure that holds the data for the subr
object that represents the function in Lisp. This structure conveys the Lisp
symbol name to the initialization routine that will create the symbol and store
the subr object as its definition. The C variable name of this structure is always
‘S’ prepended to the fname You hardly ever need to be aware of the existence
of this structure, since DEFUN plus DEFSUBR takes care of all the details.

This is the minimum number of arguments that the function requires. The
function progl allows a minimum of one argument.

This is the maximum number of arguments that the function accepts, if there is
a fixed maximum. Alternatively, it can be UNEVALLED, indicating a special form
that receives unevaluated arguments, or MANY, indicating an unlimited number
of evaluated arguments (the C equivalent of &rest). Both UNEVALLED and MANY
are macros. If max_args is a number, it may not be less than min_args and it
may not be greater than 8. (If you need to add a function with more than 8
arguments, use the MANY form. Resist the urge to edit the definition of DEFUN
in ‘lisp.h’. If you do it anyways, make sure to also add another clause to the
switch statement in primitive_funcall().)

This is an interactive specification, a string such as might be used as the argu-
ment of interactive in a Lisp function. In the case of progl, it is 0 (a null
pointer), indicating that progl cannot be called interactively. A value of ""
indicates a function that should receive no arguments when called interactively.

This is the documentation string. It is written just like a documentation string
for a function defined in Lisp; in particular, the first line should be a single
sentence. Note how the documentation string is enclosed in a comment, none
of the documentation is placed on the same lines as the comment-start and
comment-end characters, and the comment-start characters are on the same
line as the interactive specification. ‘make-docfile’, which scans the C files for
documentation strings, is very particular about what it looks for, and will not
properly extract the doc string if it’s not in this exact format.

In order to make both ‘etags’ and ‘make-docfile’ happy, make sure that
the DEFUN line contains the Iname and fname, and that the comment-start
characters for the doc string are on the same line as the interactive specification,
and put a newline directly after them (and before the comment-end characters).

This is the comma-separated list of arguments to the C function. For a function
with a fixed maximum number of arguments, provide a C argument for each Lisp
argument. In this case, unlike regular C functions, the types of the arguments
are not declared; they are simply always of type Lisp_Object.

The names of the C arguments will be used as the names of the arguments to
the Lisp primitive as displayed in its documentation, modulo the same concerns
described above for F. .. names (in particular, underscores in the C arguments
become dashes in the Lisp arguments).

42 XEmacs Internals Manual

There is one additional kludge: A trailing ‘" on the C argument is discarded
when forming the Lisp argument. This allows C language reserved words (like
default) or global symbols (like dirname) to be used as argument names with-
out compiler warnings or errors.

A Lisp function with max_args = UNEVALLED is a special formy its arguments
are not evaluated. Instead it receives one argument of type Lisp_0Object, a
(Lisp) list of the unevaluated arguments, conventionally named (args).

When a Lisp function has no upper limit on the number of arguments, specify
max_args = MANY. In this case its implementation in C actually receives exactly
two arguments: the number of Lisp arguments (an int) and the address of a
block containing their values (a Lisp_Object *). In this case only are the C
types specified in the arglist: (int nargs, Lisp_0Object *args).

Within the function Fprogl itself, note the use of the macros GCPRO1 and UNGCPRO.
GCPRO1 is used to “protect” a variable from garbage collection—to inform the garbage
collector that it must look in that variable and regard the object pointed at by its contents
as an accessible object. This is necessary whenever you call Feval or anything that can
directly or indirectly call Feval (this includes the QUIT macro!). At such a time, any Lisp
object that you intend to refer to again must be protected somehow. UNGCPRO cancels the
protection of the variables that are protected in the current function. It is necessary to do
this explicitly.

The macro GCPRO1 protects just one local variable. If you want to protect two, use
GCPRO2 instead; repeating GCPRO1 will not work. Macros GCPRO3 and GCPR04 also exist.

These macros implicitly use local variables such as gcprol; you must declare these
explicitly, with type struct gcpro. Thus, if you use GCPRO2, you must declare gcprol and
gecpro2.

Note also that the general rule is caller-protects; i.e. you are only responsible for pro-
tecting those Lisp objects that you create. Any objects passed to you as arguments should
have been protected by whoever created them, so you don’t in general have to protect them.

In particular, the arguments to any Lisp primitive are always automatically GCPROed,
when called “normally” from Lisp code or bytecode. So only a few Lisp primitives that are
called frequently from C code, such as Fprogn protect their arguments as a service to their
caller. You don’t need to protect your arguments when writing a new DEFUN.

GCPROing is perhaps the trickiest and most error-prone part of XEmacs coding. It is
extremely important that you get this right and use a great deal of discipline when writing
this code. See Section 14.3 [GCPROing], page 86, for full details on how to do this.

What DEFUN actually does is declare a global structure of type Lisp_Subr whose name
begins with capital ‘SF’ and which contains information about the primitive (e.g. a pointer
to the function, its minimum and maximum allowed arguments, a string describing its Lisp
name); DEFUN then begins a normal C function declaration using the F... name. The Lisp
subr object that is the function definition of a primitive (i.e. the object in the function slot
of the symbol that names the primitive) actually points to this ‘SF’ structure; when Feval
encounters a subr, it looks in the structure to find out how to call the C function.

Defining the C function is not enough to make a Lisp primitive available; you must also
create the Lisp symbol for the primitive (the symbol is interned; see Section 18.2 [Obarrays],

Chapter 10: Rules When Writing New C Code 43

page 121) and store a suitable subr object in its function cell. (If you don’t do this, the
primitive won’t be seen by Lisp code.) The code looks like this:

DEFSUBR (fname) ;
Here fname is the same name you used as the second argument to DEFUN.

This call to DEFSUBR should go in the syms_of_* () function at the end of the module. If
no such function exists, create it and make sure to also declare it in ‘symsinit.h’ and call
it from the appropriate spot in main(). See Section 10.2 [General Coding Rules], page 38.

Note that C code cannot call functions by name unless they are defined in C. The
way to call a function written in Lisp from C is to use Ffuncall, which embodies the
Lisp function funcall. Since the Lisp function funcall accepts an unlimited number of
arguments, in C it takes two: the number of Lisp-level arguments, and a one-dimensional
array containing their values. The first Lisp-level argument is the Lisp function to call, and
the rest are the arguments to pass to it. Since Ffuncall can call the evaluator, you must
protect pointers from garbage collection around the call to Ffuncall. (However, Ffuncall
explicitly protects all of its parameters, so you don’t have to protect any pointers passed as
parameters to it.)

The C functions call0, calll, call2, and so on, provide handy ways to call a Lisp
function conveniently with a fixed number of arguments. They work by calling Ffuncall.

‘eval.c’is a very good file to look through for examples; ‘1isp.h’ contains the definitions
for important macros and functions.

10.4 Writing Good Comments

Comments are a lifeline for programmers trying to understand tricky code. In general, the
less obvious it is what you are doing, the more you need a comment, and the more detailed it
needs to be. You should always be on guard when you’re writing code for stuff that’s tricky,
and should constantly be putting yourself in someone else’s shoes and asking if that person
could figure out without much difficulty what’s going on. (Assume they are a competent
programmer who understands the essentials of how the XEmacs code is structured but
doesn’t know much about the module you're working on or any algorithms you’re using.)
If you're not sure whether they would be able to, add a comment. Always err on the side
of more comments, rather than less.

Generally, when making comments, there is no need to attribute them with your name
or initials. This especially goes for small, easy-to-understand, non-opinionated ones. Also,
comments indicating where, when, and by whom a file was changed are strongly discouraged,
and in general will be removed as they are discovered. This is exactly what ‘ChangeLogs’
are there for. However, it can occasionally be useful to mark exactly where (but not when
or by whom) changes are made, particularly when making small changes to a file imported
from elsewhere. These marks help when later on a newer version of the file is imported and
the changes need to be merged. (If everything were always kept in CVS, there would be no
need for this. But in practice, this often doesn’t happen, or the CVS repository is later on
lost or unavailable to the person doing the update.)

When putting in an explicit opinion in a comment, you should always attribute it with
your name, and optionally the date. This also goes for long, complex comments explaining
in detail the workings of something — by putting your name there, you make it possible

44 XEmacs Internals Manual

for someone who has questions about how that thing works to determine who wrote the
comment so they can write to them. Preferably, use your actual name and not your initials,
unless your initials are generally recognized (e.g. ‘jwz’). You can use only your first name
if it’s obvious who you are; otherwise, give first and last name. If you're not a regular
contributor, you might consider putting your email address in — it may be in the ChangeLog,
but after awhile ChangeLogs have a tendency of disappearing or getting muddled. (E.g.
your comment may get copied somewhere else or even into another program, and tracking
down the proper ChangeLog may be very difficult.)

If you come across an opinion that is not or no longer valid, or you come across any
comment that no longer applies but you want to keep it around, enclose it in ‘[[> and ‘ 11’
marks and add a comment afterwards explaining why the preceding comment is no longer
valid. Put your name on this comment, as explained above.

Just as comments are a lifeline to programmers, incorrect comments are death. If you
come across an incorrect comment, immediately correct it or flag it as incorrect, as described
in the previous paragraph. Whenever you work on a section of code, always make sure to
update any comments to be correct — or, at the very least, flag them as incorrect.

To indicate a "todo" or other problem, use four pound signs — i.e. ‘####’.

10.5 Adding Global Lisp Variables

Global variables whose names begin with ‘Q’ are constants whose value is a symbol of a
particular name. The name of the variable should be derived from the name of the symbol
using the same rules as for Lisp primitives. These variables are initialized using a call to
defsymbol() in the syms_of_x() function. (This call interns a symbol, sets the C variable
to the resulting Lisp object, and calls staticpro() on the C variable to tell the garbage-
collection mechanism about this variable. What staticpro() does is add a pointer to the
variable to a large global array; when garbage-collection happens, all pointers listed in the
array are used as starting points for marking Lisp objects. This is important because it’s
quite possible that the only current reference to the object is the C variable. In the case of
symbols, the staticpro() doesn’t matter all that much because the symbol is contained in
obarray, which is itself staticpro()ed. However, it’s possible that a naughty user could
do something like uninterning the symbol out of obarray or even setting obarray to a
different value [although this is likely to make XEmacs crash!].)

Please note: It is potentially deadly if you declare a ‘Q..." variable in two different
modules. The two calls to defsymbol() are no problem, but some linkers will complain
about multiply-defined symbols. The most insidious aspect of this is that often the link will
succeed anyway, but then the resulting executable will sometimes crash in obscure ways
during certain operations!

To avoid this problem, declare any symbols with common names (such as text) that are
not obviously associated with this particular module in the file ‘general-slots.h’. The
“-slots” suffix indicates that this is a file that is included multiple times in ‘general.c’.
Redefinition of preprocessor macros allows the effects to be different in each context, so this
is actually more convenient and less error-prone than doing it in your module.

Global variables whose names begin with ‘V’ are variables that contain Lisp objects.

The convention here is that all global variables of type Lisp_0bject begin with ‘V’, and
all others don’t (including integer and boolean variables that have Lisp equivalents). Most

Chapter 10: Rules When Writing New C Code 45

of the time, these variables have equivalents in Lisp, but some don’t. Those that do are
declared this way by a call to DEFVAR_LISP () in the vars_of_* () initializer for the module.
What this does is create a special symbol-value-forward Lisp object that contains a pointer
to the C variable, intern a symbol whose name is as specified in the call to DEFVAR_LISP(),
and set its value to the symbol-value-forward Lisp object; it also calls staticpro() on
the C variable to tell the garbage-collection mechanism about the variable. When eval
(or actually symbol-value) encounters this special object in the process of retrieving a
variable’s value, it follows the indirection to the C variable and gets its value. setq does
similar things so that the C variable gets changed.

Whether or not you DEFVAR_LISP() a variable, you need to initialize it in the vars_
of _x() function; otherwise it will end up as all zeroes, which is the integer 0 (not nil),
and this is probably not what you want. Also, if the variable is not DEFVAR_LISP()ed,
you must call staticpro() on the C variable in the vars_of_x() function. Otherwise, the
garbage-collection mechanism won’t know that the object in this variable is in use, and will
happily collect it and reuse its storage for another Lisp object, and you will be the one
who’s unhappy when you can’t figure out how your variable got overwritten.

10.6 Proper Use of Unsigned Types

Avoid using unsigned int and unsigned long whenever possible. Unsigned types are viral
— any arithmetic or comparisons involving mixed signed and unsigned types are automati-
cally converted to unsigned, which is almost certainly not what you want. Many subtle and
hard-to-find bugs are created by careless use of unsigned types. In general, you should al-
most never use an unsigned type to hold a regular quantity of any sort. The only exceptions
are

1. When there’s a reasonable possibility you will actually need all 32 or 64 bits to store
the quantity.

2. When calling existing API’s that require unsigned types. In this case, you should still
do all manipulation using signed types, and do the conversion at the very threshold of
the API call.

3. In existing code that you don’t want to modify because you don’t maintain it.
4. In bit-field structures.

Other reasonable uses of unsigned int and wunsigned long are representing
non-quantities — e.g. bit-oriented flags and such.

10.7 Coding for Mule

Although Mule support is not compiled by default in XEmacs, many people are using it,
and we consider it crucial that new code works correctly with multibyte characters. This
is not hard; it is only a matter of following several simple user-interface guidelines. Even
if you never compile with Mule, with a little practice you will find it quite easy to code
Mule-correctly.

Note that these guidelines are not necessarily tied to the current Mule implementation;
they are also a good idea to follow on the grounds of code generalization for future 118N
work.

46 XEmacs Internals Manual

10.7.1 Character-Related Data Types

First, let’s review the basic character-related datatypes used by XEmacs. Note that some
of the separate typedefs are not mandatory, but they improve clarity of code a great deal,
because one glance at the declaration can tell the intended use of the variable.

Ichar An Ichar holds a single Emacs character.

Obviously, the equality between characters and bytes is lost in the Mule world.
Characters can be represented by one or more bytes in the buffer, and Ichar is
a C type large enough to hold any character.

Without Mule support, an Ichar is equivalent to an unsigned char.

Ibyte The data representing the text in a buffer or string is logically a set of Ibytes.

XEmacs does not work with the same character formats all the time; when
reading characters from the outside, it decodes them to an internal format,
and likewise encodes them when writing. Ibyte (in fact unsigned char) is the
basic unit of XEmacs internal buffers and strings format. An Ibyte * is the
type that points at text encoded in the variable-width internal encoding.

One character can correspond to one or more Ibytes. In the current Mule
implementation, an ASCII character is represented by the same Ibyte, and
other characters are represented by a sequence of two or more Ibytes.

Without Mule support, there are exactly 256 characters, implicitly Latin-1,
and each character is represented using one Ibyte, and there is a one-to-one
correspondence between Ibytes and Ichars.

Charxpos

Charbpos

Charcount
A Charbpos represents a character position in a buffer. A Charcount represents
a number (count) of characters. Logically, subtracting two Charbpos values
yields a Charcount value. When representing a character position in a string,
we just use Charcount directly. The reason for having a separate typedef for
buffer positions is that they are 1-based, whereas string positions are 0-based
and hence string counts and positions can be freely intermixed (a string position
is equivalent to the count of characters from the beginning). When representing
a character position that could be either in a buffer or string (for example, in
the extent code), Charxpos is used. Although all of these are typedefed to
EMACS_INT, we use them in preference to EMACS_INT to make it clear what sort
of position is being used.

Charxpos, Charbpos and Charcount values are the only ones that are ever
visible to Lisp.

Bytexpos

Bytecount
A Bytebpos represents a byte position in a buffer. A Bytecount represents
the distance between two positions, in bytes. Byte positions in strings use
Bytecount, and for byte positions that can be either in a buffer or string,
Bytexpos is used. The relationship between Bytexpos, Bytebpos and

Chapter 10: Rules When Writing New C Code 47

Extbyte

Bytecount is the same as the relationship between Charxpos, Charbpos and
Charcount.

When dealing with the outside world, XEmacs works with Extbytes, which
are equivalent to char. The distance between two Extbytes is a Bytecount,
since external text is a byte-by-byte encoding. Extbytes occur mainly at the
transition point between internal text and external functions. XFEmacs code
should not, if it can possibly avoid it, do any actual manipulation using external
text, since its format is completely unpredictable (it might not even be ASCII-
compatible).

10.7.2 Working With Character and Byte Positions

Now that we have defined the basic character-related types, we can look at the macros and
functions designed for work with them and for conversion between them. Most of these
macros are defined in ‘buffer.h’. and we don’t discuss all of them here, but only the most
important ones. Examining the existing code is the best way to learn about them.

MAX_ICHAR_LEN

This preprocessor constant is the maximum number of buffer bytes to repre-
sent an Emacs character in the variable width internal encoding. It is useful
when allocating temporary strings to keep a known number of characters. For
instance:

{

Charcount cclen;

{
/* Allocate place for cclen characters. */
Ibyte *buf = (Ibyte *) alloca (cclen * MAX_ICHAR_LEN);

If you followed the previous section, you can guess that, logically, multiplying
a Charcount value with MAX_TICHAR_LEN produces a Bytecount value.

In the current Mule implementation, MAX_ICHAR_LEN equals 4. Without Mule,
it is 1.

itext_ichar
set_itext_ichar

The itext_ichar macro takes a Ibyte pointer and returns the Ichar stored
at that position. If it were a function, its prototype would be:

Ichar itext_ichar (Ibyte *p);
set_itext_ichar stores an Ichar to the specified byte position. It returns the
number of bytes stored:

Bytecount set_itext_ichar (Ibyte *p, Ichar c);
It is important to note that set_itext_ichar is safe only for appending a char-
acter at the end of a buffer, not for overwriting a character in the middle. This
is because the width of characters varies, and set_itext_ichar cannot resize

the string if it writes, say, a two-byte character where a single-byte character
used to reside.

48 XEmacs Internals Manual

A typical use of set_itext_ichar can be demonstrated by this example, which
copies characters from buffer buf to a temporary string of Ibytes.

{
Charbpos pos;
for (pos = beg; pos < end; pos++)
{
Ichar ¢ = BUF_FETCH_CHAR (buf, pos);
p += set_itext_ichar (buf, c);
}
}

Note how set_itext_ichar is used to store the Ichar and increment the
counter, at the same time.

INC_IBYTEPTR

DEC_IBYTEPTR
These two macros increment and decrement an Ibyte pointer, respectively.
They will adjust the pointer by the appropriate number of bytes according to
the byte length of the character stored there. Both macros assume that the
memory address is located at the beginning of a valid character.

Without Mule support, INC_IBYTEPTR (p) and DEC_IBYTEPTR (p) simply ex-
pand to p++ and p--, respectively.

bytecount_to_charcount
Given a pointer to a text string and a length in bytes, return the equivalent
length in characters.

Charcount bytecount_to_charcount (Ibyte *p, Bytecount bc);

charcount_to_bytecount
Given a pointer to a text string and a length in characters, return the equivalent
length in bytes.

Bytecount charcount_to_bytecount (Ibyte *p, Charcount cc);

itext_n_addr
Return a pointer to the beginning of the character offset cc (in characters) from
P.
Ibyte *itext_n_addr (Ibyte *p, Charcount cc);

10.7.3 Conversion to and from External Data

When an external function, such as a C library function, returns a char pointer, you should
almost never treat it as Ibyte. This is because these returned strings may contain 8bit
characters which can be misinterpreted by XEmacs, and cause a crash. Likewise, when
exporting a piece of internal text to the outside world, you should always convert it to an
appropriate external encoding, lest the internal stuff (such as the infamous \201 characters)
leak out.

The interface to conversion between the internal and external representations of text
are the numerous conversion macros defined in ‘buffer.h’. There used to be a fixed set of
external formats supported by these macros, but now any coding system can be used with

Chapter 10: Rules When Writing New C Code 49

them. The coding system alias mechanism is used to create the following logical coding sys-
tems, which replace the fixed external formats. The (dontusethis-set-symbol-value-handler)
mechanism was enhanced to make this possible (more work on that is needed).

Often useful coding systems:

Qbinary This is the simplest format and is what we use in the absence of a more appro-
priate format. This converts according to the binary coding system:

a. On input, bytes 0-255 are converted into (implicitly Latin-1) characters 0—
255. A non-Mule xemacs doesn’t really know about different character sets
and the fonts to display them, so the bytes can be treated as text in different
1-byte encodings by simply setting the appropriate fonts. So in a sense,
non-Mule xemacs is a multi-lingual editor if, for example, different fonts
are used to display text in different buffers, faces, or windows. The specifier
mechanism gives the user complete control over this kind of behavior.

b. On output, characters 0-255 are converted into bytes 0-255 and other
characters are converted into *~’.

Qnative Format used for the external Unix environment—argv[], stuff from getenv(),
stuff from the ‘/etc/passwd’ file, etc. This is encoded according to the encoding
specified by the current locale.

Qfile_name
Format used for filenames. This is normally the same as Qnative, but the
two should be distinguished for clarity and possible future separation — and
also because Qfile_name can be changed using either the file-name-coding-
system or pathname-coding-system (now obsolete) variables.

Qctext Compound-text format. This is the standard X11 format used for data stored
in properties, selections, and the like. This is an 8-bit no-lock-shift 1502022
coding system. This is a real coding system, unlike Qfile_name, which is user-
definable.

Qmswindows_tstr
Used for external data in all MS Windows functions that are declared to accept
data of type LPTSTR or LPCSTR. This maps to either Qmswindows_multibyte (a
locale-specific encoding, same as Qnative) or Qmswindows_unicode, depending
on whether XEmacs is being run under Windows 9X or Windows N'T'/2000/XP.

Many other coding systems are provided by default.
There are two fundamental macros to convert between external and internal format, as
well as various convenience macros to simplify the most common operations.

TO_INTERNAL_FORMAT converts external data to internal format, and TO_EXTERNAL_
FORMAT converts the other way around. The arguments each of these receives are a source
type, a source, a sink type, a sink, and a coding system (or a symbol naming a coding
system).

A typical call looks like

TO_EXTERNAL_FORMAT (LISP_STRING, str, C_STRING_MALLOC, ptr, Qfile_name);
which means that the contents of the lisp string str are written to a malloc’ed memory
area which will be pointed to by ptr, after the function returns. The conversion will be

50 XEmacs Internals Manual

done using the file-name coding system, which will be controlled by the user indirectly by
setting or binding the variable file-name-coding-system.

Some sources and sinks require two C variables to specify. We use some preprocessor
magic to allow different source and sink types, and even different numbers of arguments to
specify different types of sources and sinks.

So we can have a call that looks like

TO_INTERNAL_FORMAT (DATA, (ptr, len),
MALLOC, (ptr, len),
coding_system) ;
The parenthesized argument pairs are required to make the preprocessor magic work.

Here are the different source and sink types:

DATA, (ptr, len),
input data is a fixed buffer of size len at address ptr

ALLOCA, (ptr, len),
output data is placed in an alloca()ed buffer of size len pointed to by ptr

MALLOC, (ptr, lemn),
output data is in a malloc()ed buffer of size len pointed to by ptr

C_STRING_ALLOCA, ptr,
equivalent to ALLOCA (ptr, len_ignored) on output.

C_STRING_MALLOC, ptr,
equivalent to MALLOC (ptr, len_ignored) on output

C_STRING, ptr,
equivalent to DATA, (ptr, strlen/wcslen (ptr)) on input

LISP_STRING, string,
input or output is a Lisp_Object of type string

LISP_BUFFER, buffer,
output is written to (point) in lisp buffer bu er

LISP_LSTREAM, lstream,
input or output is a Lisp_Object of type Istream

LISP_OPAQUE, object,
input or output is a Lisp_Object of type opaque
A source type of C_STRING or a sink type of C_STRING_ALLOCA or C_STRING_MALLOC is
appropriate where the external API is not "\0’-byte-clean — i.e. it expects strings to be

terminated with a null byte. For external API’s that are in fact "\0’-byte-clean, we should
of course not use these.

The sinks to be specified must be lvalues, unless they are the lisp object types LISP_
LSTREAM or LISP_BUFFER.

There is no problem using the same lvalue for source and sink.

Garbage collection is inhibited during these conversion operations, so it is OK to pass
in data from Lisp strings using XSTRING_DATA.

Chapter 10: Rules When Writing New C Code o1

For the sink types ALLOCA and C_STRING_ALLOCA, the resulting text is stored in a stack-
allocated buffer, which is automatically freed on returning from the function. However,
the sink types MALLOC and C_STRING_MALLOC return xmalloc()ed memory. The caller is
responsible for freeing this memory using xfree().

Note that it doesn’t make sense for LISP_STRING to be a source for TO_INTERNAL_FORMAT
or a sink for TO_EXTERNAL_FORMAT. You'll get an assertion failure if you try.

99% of conversions involve raw data or Lisp strings as both source and sink, and usually
data is output as alloca(), or sometimes xmalloc (). For this reason, convenience macros
are defined for many types of conversions involving raw data and/or Lisp strings, especially
when the output is an alloca()ed string. (When the destination is a Lisp string, there
are other functions that should be used instead — build_ext_string() and make_ext_
string(), for example.) The convenience macros are of two types — the older kind that store
the result into a specified variable, and the newer kind that return the result. The newer
kind of macros don’t exist when the output is sized data, because that would have two return
values. NOTE: All convenience macros are ultimately defined in terms of TO_EXTERNAL_
FORMAT and TO_INTERNAL_FORMAT. Thus, any comments above about the workings of these
macros also apply to all convenience macros.

A typical old-style convenience macro is
C_STRING_TO_EXTERNAL (in, out, codesys);
This is equivalent to
TO_EXTERNAL_FORMAT (C_STRING, in, C_STRING_ALLOCA, out, codesys);

but is easier to write and somewhat clearer, since it clearly identifies the arguments
without the clutter of having the preprocessor types mixed in.

The new-style equivalent is NEW_C_STRING_TO_EXTERNAL (src, codesys), which returns
the converted data (still in alloca() space). This is far more convenient for most operations.

10.7.4 General Guidelines for Writing Mule-Aware Code

This section contains some general guidance on how to write Mule-aware code, as well as
some pitfalls you should avoid.

Never use char and char *.

In XEmacs, the use of char and char * is almost always a mistake. If you want
to manipulate an Emacs character from “C”, use Ichar. If you want to examine
a specific octet in the internal format, use Ibyte. If you want a Lisp-visible
character, use a Lisp_0Object and make_char. If you want a pointer to move
through the internal text, use Ibyte *. Also note that you almost certainly do
not need Ichar *. Other typedefs to clarify the use of char are Char_ASCIT,
Char_Binary, UChar_Binary, and CIbyte.

Be careful not to confuse Charcount, Bytecount, Charbpos and Bytebpos.
The whole point of using different types is to avoid confusion about the use
of certain variables. Lest this effect be nullified, you need to be careful about
using the right types.

Always convert external data
It is extremely important to always convert external data, because XEmacs can
crash if unexpected 8-bit sequences are copied to its internal buffers literally.

52 XEmacs Internals Manual

This means that when a system function, such as readdir, returns a string,
you normally need to convert it using one of the conversion macros described
in the previous chapter, before passing it further to Lisp.

Actually, most of the basic system functions that accept "\0’-terminated string
arguments, like stat () and open(), have encapsulatedequivalents that do the
internal to external conversion themselves. The encapsulated equivalents have
a gxe_ prefix and have string arguments of type Ibyte *, and you can pass
internally encoded data to them, often from a Lisp string using XSTRING_DATA.
(A better design might be to provide versions that accept Lisp strings directly.)

Also note that many internal functions, such as make_string, accept Ibytes,
which removes the need for them to convert the data they receive. This increases
efficiency because that way external data needs to be decoded only once, when
it is read. After that, it is passed around in internal format.

Do all work in internal format

External-formatted data is completely unpredictable in its format. It may be
fixed-width Unicode (not even ASCII compatible); it may be a modal encoding,
in which case some occurrences of (e.g.) the slash character may be part of two-
byte Asian-language characters, and a naive attempt to split apart a pathname
by slashes will fail; etc. Internal-format text should be converted to external
format only at the point where an external API is actually called, and the first
thing done after receiving external-format text from an external API should be
to convert it to internal text.

10.7.5 An Example of Mule-Aware Code

As an example of Mule-aware code, we will analyze the string function, which conses up
a Lisp string from the character arguments it receives. Here is the definition, pasted from
alloc.c:

DEFUN ("string", Fstring, O, MANY, O, /x
Concatenate all the argument characters and make the result a string.
*/
(int nargs, Lisp_Object *args))
{
Ibyte *storage = alloca_array (Ibyte, nargs * MAX_ICHAR_LEN);
Ibyte *p = storage;

for (; nargs; nargs--, args++)
{
Lisp_Object lisp_char = *args;
CHECK_CHAR_COERCE_INT (lisp_char);
p += set_itext_ichar (p, XCHAR (lisp_char));
}

return make_string (storage, p - storage);

}

Now we can analyze the source line by line.

Chapter 10: Rules When Writing New C Code 53

Obviously, string will be as long as there are arguments to the function. This is why we
allocate MAX_ICHAR_LEN * nargs bytes on the stack, i.e. the worst-case number of bytes for
nargs Ichars to fit in the string.

Then, the loop checks that each element is a character, converting integers in the pro-
cess. Like many other functions in XEmacs, this function silently accepts integers where
characters are expected, for historical and compatibility reasons. Unless you know what
you are doing, CHECK_CHAR will also suffice. XCHAR (1isp_char) extracts the Ichar from
the Lisp_Object, and set_itext_ichar stores it to storage, increasing p in the process.

Other instructive examples of correct coding under Mule can be found all over the
XEmacs code. For starters, I recommend Fnormalize_menu_item_name in ‘menubar.c’.
After you have understood this section of the manual and studied the examples, you can
proceed writing new Mule-aware code.

10.7.6 Mule-izing Code

A lot of code is written without Mule in mind, and needs to be made Mule-correct or
"Mule-ized". There is really no substitute for line-by-line analysis when doing this, but the
following checklist can help:

e Check all uses of XSTRING_DATA.

e Check all uses of build_string and make_string.
e Check all uses of tolower and toupper.

e Check object print methods.

e Check for use of functions such as write_c_string, write_fmt_string, stderr_out,
stdout_out.

e Check all occurrences of char and correct to one of the other typedefs described above.

e Check all existing uses of TO_EXTERNAL_FORMAT, TO_INTERNAL_FORMAT, and any con-
venience macros (grep for ‘EXTERNAL_TOQ’, ‘TO_EXTERNAL’, and ‘TO_SIZED_EXTERNAL’).

e In Windows code, string literals may need to be encapsulated with XETEXT.

10.8 Techniques for XEmacs Developers

To make a purified XEmacs, do: make puremacs. To make a quantified XEmacs, do: make
quantmacs.

You simply can’t dump Quantified and Purified images (unless using the portable
dumper). Purify gets confused when xemacs frees memory in one process that was
allocated in a different process on a different machine!. Run it like so:

temacs -batch -1 loadup.el run-temacs Xemacs-args...

Before you go through the trouble, are you compiling with all debugging and error-
checking oftf? If not, try that first. Be warned that while Quantify is directly responsible
for quite a few optimizations which have been made to XEmacs, doing a run which generates
results which can be acted upon is not necessarily a trivial task.

Also, if you're still willing to do some runs make sure you configure with the ‘--~quantify’
flag. That will keep Quantify from starting to record data until after the loadup is completed
and will shut off recording right before it shuts down (which generates enough bogus data

54 XEmacs Internals Manual

to throw most results off). It also enables three additional elisp commands: quantify-
start-recording-data, quantify-stop-recording-data and quantify-clear-data.

If you want to make XEmacs faster, target your favorite slow benchmark, run a profiler
like Quantify, gprof, or tcov, and figure out where the cycles are going. In many cases you
can localize the problem (because a particular new feature or even a single patch elicited it).
Don’t hesitate to use brute force techniques like a global counter incremented at strategic
places, especially in combination with other performance indications (e.g., degree of buffer
fragmentation into extents).

Specific projects:

e Make the garbage collector faster. Figure out how to write an incremental garbage
collector.

e Write a compiler that takes bytecode and spits out C code. Unfortunately, you will
then need a C compiler and a more fully developed module system.

e Speed up redisplay.

e Speed up syntax highlighting. It was suggested that “maybe moving some of the syntax
highlighting capabilities into C would make a difference.” Wrong idea, I think. When
processing one large file a particular low-level routine was being called 40 million times
simply for one call to newline-and-indent. Syntax highlighting needs to be rewritten
to use a reliable, fast parser, then to trust the pre-parsed structure, and only do re-
highlighting locally to a text change. Modern machines are fast enough to implement
such parsers in Lisp; but no machine will ever be fast enough to deal with quadratic
(or worse) algorithms!

e Implement tail recursion in Emacs Lisp (hard!).
Unfortunately, Emacs Lisp is slow, and is going to stay slow. Function calls in elisp are

especially expensive. Iterating over a long list is going to be 30 times faster implemented
in C than in Elisp.

Heavily used small code fragments need to be fast. The traditional way to implement
such code fragments in C is with macros. But macros in C are known to be broken.

Macro arguments that are repeatedly evaluated may suffer from repeated side effects or
suboptimal performance.

Variable names used in macros may collide with caller’s variables, causing (at least)
unwanted compiler warnings.

In order to solve these problems, and maintain statement semantics, one should use the
do { ... } while (0) trick while trying to reference macro arguments exactly once using
local variables.

Let’s take a look at this poor macro definition:

#define MARK_OBJECT(obj) \
if (!marked_p (obj)) mark_object (obj), did_mark = 1

This macro evaluates its argument twice, and also fails if used like this:

if (flag) MARK_OBJECT (obj); else do_something();

A much better definition is

#define MARK_OBJECT(obj) do { \
Lisp_Object mo_obj = (obj); \

Chapter 10: Rules When Writing New C Code 55

if (!marked_p (mo_obj))
{
mark_object (mo_obj);
did_mark = 1;
}
} while (0)

P

Notice the elimination of double evaluation by using the local variable with the obscure
name. Writing safe and efficient macros requires great care. The one problem with macros
that cannot be portably worked around is, since a C block has no value, a macro used as
an expression rather than a statement cannot use the techniques just described to avoid
multiple evaluation.

In most cases where a macro has function semantics, an inline function is a better
implementation technique. Modern compiler optimizers tend to inline functions even if
they have no inline keyword, and configure magic ensures that the inline keyword can
be safely used as an additional compiler hint. Inline functions used in a single .c files are
easy. The function must already be defined to be static. Just add another inline keyword
to the definition.

inline static int
heavily_used_small_function (int arg)

{
¥

Inline functions in header files are trickier, because we would like to make the following
optimization if the function is not inlined (for example, because we're compiling for debug-
ging). We would like the function to be defined externally exactly once, and each calling
translation unit would create an external reference to the function, instead of including a
definition of the inline function in the object code of every translation unit that uses it.
This optimization is currently only available for gcc. But you don’t have to worry about
the trickiness; just define your inline functions in header files using this pattern:

INLINE_HEADER int
i_used_to_be_a_crufty_macro_but_look_at_me_now (int arg);
INLINE_HEADER int
i_used_to_be_a_crufty_macro_but_look_at_me_now (int arg)

{

¥

The declaration right before the definition is to prevent warnings when compiling with
gcc -Wmissing-declarations. I consider issuing this warning for inline functions a gcc
bug, but the gcc maintainers disagree.

Every header which contains inline functions, either directly by using INLINE_HEADER or
indirectly by using DECLARE_LRECORD must be added to ‘inline.c’’s includes to make the
optimization described above work. (Optimization note: if all INLINE_HEADER functions
are in fact inlined in all translation units, then the linker can just discard inline.o, since
it contains only unreferenced code).

56

XEmacs Internals Manual

To get started debugging XEmacs, take a look at the ‘. gdbinit’ and ‘.dbxrc’ files in the

‘src’ directory. See the section in the XEmacs FAQ on How to Debug an XEmacs problem
with a debugger.

After making source code changes, run make check to ensure that you haven’t introduced

any regressions. If you want to make xemacs more reliable, please improve the test suite in
‘tests/automated’.

Did you make sure you didn’t introduce any new compiler warnings?
Before submitting a patch, please try compiling at least once with
configure --with-mule --use-union-type --error-checking=all

Here are things to know when you create a new source file:

o All *.¢’ files should #include <config.h> first. Almost all ‘.c’ files should #include

© 0N e oW

"lisp.h" second.

Generated header files should be included using the #include <...> syntax, not the
#include "..." syntax. The generated headers are:

‘config.h sheap-adjust.h paths.h Emacs.ad.h’

The basic rule is that you should assume builds using --srcdir and the #include
<...>syntax needs to be used when the to-be-included generated file is in a potentially
different directory at compile time. The non-obvious C rule is that #include "..."
means to search for the included file in the same directory as the including file, not in
the current directory.

Header files should not include <config.h> and "lisp.h". It is the responsibility of
the ¢.c’ files that use it to do so.
Here is a checklist of things to do when creating a new lisp object type named foo:
create foo.h
create foo.c
add definitions of syms_of_foo , etc. to ‘foo .c’
add declarations of syms_of_foo , etc. to ‘symsinit.h’
add calls to syms_of_foo , etc. to ‘emacs.c’
add definitions of macros like CHECK_FOQand FO® to ‘foo .h’
add the new type index to enum lrecord_type
add a DEFINE_LRECORD_IMPLEMENTATION call to ‘foo .c¢’
add an INIT_LRECORD_IMPLEMENTATION call to syms_of_foo .c

Chapter 11: Regression Testing XEmacs D7

11 Regression Testing XEmacs

The source directory ‘tests/automated’ contains XEmacs’ automated test suite. The usual
way of running all the tests is running make check from the top-level build directory.

The test suite is unfinished and it’s still lacking some essential features. It is nevertheless
recommended that you run the tests to confirm that XEmacs behaves correctly.

If you want to run a specific test case, you can do it from the command-line like this:
$ xemacs -batch -1 test-harness.elc -f batch-test-emacs TEST-FILE

If a test fails and you need more information, you can run the test suite interactively by
loading ‘test-harness.el’ into a running XEmacs and typing M-x test-emacs-test-file
RET<filename > RET You will see a log of passed and failed tests, which should allow you
to investigate the source of the error and ultimately fix the bug. If you are not capable
of, or don’t have time for, debugging it yourself, please do report the failures using M-x
report-emacs-bug or M-x build-report

test-emacs-test-file le [Command]
Runs the tests in le. ‘test-harness.el’ must be loaded. Defines all the macros
described in this node, and undefines them when done.

Adding a new test file is trivial: just create a new file here and it will be run. There is
no need to byte-compile any of the files in this directory—the test-harness will take care of
any necessary byte-compilation.

Look at the existing test cases for the examples of coding test cases. It all boils down
to your imagination and judicious use of the macros Assert, Check-Error, Check-Error-
Message, and Check-Message. Note that all of these macros are defined only for the
duration of the test: they do not exist in the global environment.

Assert expr [Macro]
Check that expr is non-nil at this point in the test.

Check-Error expected-error body [Macro]
Check that execution of body causes expected-errorto be signaled. body is a progn-
like body, and may contain several expressions. expected-erroris a symbol defined as
an error by define-error.

Check-Error-Message expected-error expected-error-regexp body [Macro]
Check that execution of body causes expected-error to be signaled, and generate a
message matching expected-error-regexp body is a progn-like body, and may contain
several expressions. expected-erroris a symbol defined as an error by define-error.

Check-Messageexpected-message body [Macro]
Check that execution of body causes expected-messageto be generated (using
message or a similar function). body is a progn-like body, and may contain several
expressions.

Here’s a simple example checking case-sensitive and case-insensitive comparisons from
‘case-tests.el’.

58 XEmacs Internals Manual

(with-temp-buffer

(insert "Test Buffer")

(let ((case-fold-search t))
(goto-char (point-min))
(Assert (eq (search-forward "test buffer" nil t) 12))
(goto-char (point-min))
(Assert (eq (search-forward "Test buffer" nil t) 12))
(goto-char (point-min))
(Assert (eq (search-forward "Test Buffer" nil t) 12))

(setq case-fold-search nil)

(goto-char (point-min))

(Assert (not (search-forward "test buffer" nil t)))
(goto-char (point-min))

(Assert (not (search-forward "Test buffer" nil t)))
(goto-char (point-min))

(Assert (eq (search-forward "Test Buffer" nil t) 12))))

This example could be saved in a file in ‘tests/automated’, and it would constitute a
complete test, automatically executed when you run make checkafter building XEmacs.
More complex tests may require substantial temporary scaffolding to create the environ-
ment that elicits the bugs, but the top-level ‘Makefile’ and ‘test-harness.el’ handle the
running and collection of results from the Assert, Check-Error, Check-Error-Message,
and Check-Message macros.

Don’t suppress tests just because they're due to known bugs not yet fixed—use the
Known-Bug-Expect-Failure wrapper macro to mark them.

Known-Bug-Expect-Failure body [Macro]
Arrange for failing tests in body to generate messages prefixed with "KNOWN BUG:"
instead of "FAIL:". body is a progn-like body, and may contain several tests.

A lot of the tests we run push limits; suppress Ebola warning messages with the Ignore-
Ebola wrapper macro.

Ignore-Ebola body [Macro]
Suppress Ebola warning messages while running tests in body. body is a progn-like
body, and may contain several tests.

Both macros are defined temporarily within the test function. Simple examples:

;; Apparently Ignore-Ebola is a solution with no problem to address.
;; There are no examples in 21.5, anyway.

;; from regexp-tests.el
(Known-Bug-Expect-Failure

(Assert (not (string-match "\\b" "")))
(Assert (not (string-match " \\b" " "))))

In general, you should avoid using functionality from packages in your tests, because you
can’t be sure that everyone will have the required package. However, if you've got a test

Chapter 11: Regression Testing XEmacs 59

that works, by all means add it. Simply wrap the test in an appropriate test, add a notice
that the test was skipped, and update the skipped-test-reasons hashtable. The wrapper
macro Skip-Test-Unless is provided to handle common cases.

skipped-test-reasons [Variable]
Hash table counting the number of times a particular reason is given for skipping
tests. This is only defined within test-emacs-test-file.

Skip-Test-Unless prerequisite reason description body [Macro]
prerequisite is usually a feature test (featurep, boundp, fboundp). reasonis a string
describing the prerequisite; it must be unique because it is used as a hash key in a
table of reasons for skipping tests. description describes the tests being skipped, for
the test result summary. body is a progn-like body, and may contain several tests.

Skip-Test-Unless is defined temporarily within the test function. Here’s an example
of usage from ‘syntax-tests.el’

;3 Test forward-comment at buffer boundaries
(with-temp-buffer
;3 try to use exactly what you need: featurep, boundp, fboundp
(Skip-Test-Unless (fboundp ’c-mode)
"c-mode unavailable"
"comment and parse-partial-sexp tests"
;; and here’s the test code
(c-mode)
(insert "// comment\n")
(forward-comment -2)
(Assert (eq (point) (point-min)))
(let ((point (point)))
(insert "/* comment */")
(goto-char point)
(forward-comment 2)
(Assert (eq (point) (point-max)))
(parse-partial-sexp point (point-max)))))

Skip-Test-Unless is intended for use with features that are normally present in typical
configurations. For truly optional features, or tests that apply to one of several alternative
implementations (eg, to GTK widgets, but not Athena, Motif, MS Windows, or Carbon),
simply silently suppress the test if the feature is not available.

Here are a few general hints for writing tests.
1. Include related successful cases. Fixes often break something.

2. Use the Known-Bug-Expect-Failure macro to mark the cases you know are going to fail.
We want to be able to distinguish between regressions and other unexpected failures,
and cases that have been (partially) analyzed but not yet repaired.

3. Mark the bug with the date of report. An “Unfixed since yyyy-mm-dd” gloss for
Known-Bug-Expect-Failure is planned to further increase developer embarrassment
(== incentive to fix the bug), but until then at least put a comment about the date so
we can easily see when it was first reported.

60

XEmacs Internals Manual

4. Tt’s a matter of your judgement, but you should often use generic tests (e.g., eq) instead

of more specific tests (= for numbers) even though you know that arguments “should”
be of correct type. That is, if the functions used can return generic objects (typically
nil), as well as some more specific type that will be returned on success. We don’t
want failures of those assertions reported as “other failures” (a wrong-type-arg signal,
rather than a null return), we want them reported as “assertion failures.”

One example is a test that tests (= (string-match this that) 0), expecting a suc-
cessful match. Now suppose string-match is broken such that the match fails. Then
it will return nil, and = will signal “wrong-type-argument, number-char-or-marker-p,
nil”, generating an “other failure” in the report. But this should be reported as an
assertion failure (the test failed in a foreseeable way), rather than something else (we
don’t know what happened because XEmacs is broken in a way that we weren’t trying
to test!)

Chapter 12: CVS Techniques 61

12 CVS Techniques

12.1 Merging a Branch into the Trunk

1. If you haven’t already done a merge, you will be merging from the branch point;
otherwise you’ll be merging from the last merge point, which should be marked by a
tag, e.g. ‘last-sync-ben-mule-21-5’. In the former case, create the last-sync tag,

e.g.
crw rtag -r ben-mule-21-5-bp last-sync-ben-mule-21-5 xemacs
(You did create a branch point tag when you created the branch, didn’t you?)
2. Check everything in on your branch.
3. Tag your branch with a pre-sync tag, e.g.
crw rtag -r ben-mule-21-5 ben-mule-21-5-pre-feb-20-2002-sync xemacs

Note, you need to use rtag and specify a version with ‘-r’ (use ‘-r HEAD’ if necessary)
so that removed files are handled correctly in some obscure cases. See section 4.8 of
the CVS manual.

4. Tag the trunk so you have a stable place to merge up to in case people are asyn-
chronously committing to the trunk, e.g.
crw rtag —r HEAD main-branch-ben-mule-21-5-syncpoint-feb-20-2002 xemacs
crw rtag —-F -r main-branch-ben-mule-21-5-syncpoint-feb-20-2002 next-sync-ben-mule-:
Use -F in the second case because the name might already exist, e.g. if you've already
done a merge. We make two tags because one is a permanent mark indicating a
syncpoint when merging, and the other is a symbolic tag to make other operations
easier.

5. Make a backup of your source tree (not totally necessary but useful for reference and
peace of mind): Move one level up from the top directory of your branch and do, e.g.

cp -a mule mule-backup-2-23-02
6. Now, we're ready to merge! Make sure you're in the top directory of your branch and
do, e.g.
cvs update -j last-sync-ben-mule-21-5 -j next-sync-ben-mule-21-5
7. Fix all merge conflicts. Get the sucker to compile and run.
8. Tag your branch with a post-sync tag, e.g.
crw rtag —-r ben-mule-21-5 ben-mule-21-5-post-feb-20-2002-sync xemacs
9. Update the last-sync tag, e.g.
crw rtag -F -r next-sync-ben-mule-21-5 last-sync-ben-mule-21-5 xemacs

62

XEmacs Internals Manual

Chapter 13: A Summary of the Various XEmacs Modules 63

13 A Summary of the Various XEmacs Modules
This is accurate as of XEmacs 20.0.

13.1 Low-Level Modules
config.h

This is automatically generated from ‘config.h.in’ based on the results of configure
tests and user-selected optional features and contains preprocessor definitions specifying the
nature of the environment in which XEmacs is being compiled.

paths.h

This is automatically generated from ‘paths.h.in’ based on supplied configure values,
and allows for non-standard installed configurations of the XEmacs directories. It’s cur-
rently broken, though.

emacs.c
signal.c

‘emacs.c’ contains main() and other code that performs the most basic environment
initializations and handles shutting down the XEmacs process (this includes kill-emacs,
the normal way that XEmacs is exited; dump-emacs, which is used during the build process
to write out the XEmacs executable; run-emacs-from-temacs, which can be used to start
XEmacs directly when temacs has finished loading all the Lisp code; and emergency code
to handle crashes [XEmacs tries to auto-save all files before it crashes]).

Low-level code that directly interacts with the Unix signal mechanism, however, is in
‘signal.c’. Note that this code does not handle system dependencies in interfacing to
signals; that is handled using the ‘syssignal.h’ header file, described in section J below

unexaix.c
unexalpha.c
unexapollo.c
unexconvex.c
unexec.c
unexelf.c
unexelfsgi.c
unexencap.c
unexenix.c
unexfreebsd.c
unexfx2800.c
unexhp9k3.c
unexhp9k800.c
unexmips.c
unexnext.c
unexsol2.c
unexsunos4.c

These modules contain code dumping out the XEmacs executable on various different
systems. (This process is highly machine-specific and requires intimate knowledge of the
executable format and the memory map of the process.) Only one of these modules is
actually used; this is chosen by ‘configure’.

64 XEmacs Internals Manual

ecrtO.c
lastfile.c
pre-crt0.c

These modules are used in conjunction with the dump mechanism. On some systems,
an alternative version of the C startup code (the actual code that receives control from the
operating system when the process is started, and which calls main()) is required so that
the dumping process works properly; ‘crt0.c’ provides this.

‘pre-crt0.c’ and ‘lastfile.c’ should be the very first and very last file linked, respec-
tively. (Actually, this is not really true. ‘lastfile.c’ should be after all Emacs modules
whose initialized data should be made constant, and before all other Emacs files and all
libraries. In particular, the allocation modules ‘gmalloc.c’, ‘alloca.c’, etc. are normally
placed past ‘lastfile.c’, and all of the files that implement Xt widget classes must be
placed after ‘lastfile.c’ because they contain various structures that must be statically
initialized and into which Xt writes at various times.) ‘pre-crt0.c’ and ‘lastfile.c’ con-
tain exported symbols that are used to determine the start and end of XEmacs’ initialized
data space when dumping.

alloca.c

free-hook.c

getpagesize.h

gmalloc.c

malloc.c

mem-limits.h

ralloc.c

vm-limit.c

These handle basic C allocation of memory. ‘alloca.c’ is an emulation of the stack

allocation function alloca() on machines that lack this. (XEmacs makes extensive use of
alloca() in its code.)

‘gmalloc.c’ and ‘malloc.c’ are two implementations of the standard C functions
malloc(), realloc() and free(). They are often used in place of the standard
system-provided malloc() because they usually provide a much faster implementation,
at the expense of additional memory use. ‘gmalloc.c’ is a newer implementation that
is much more memory-efficient for large allocations than ‘malloc.c’, and should always
be preferred if it works. (At one point, ‘gmalloc.c’ didn’t work on some systems where
‘malloc.c’ worked; but this should be fixed now.)

‘ralloc.c’ is the relocating allocator. It provides functions similar to malloc(),
realloc() and free() that allocate memory that can be dynamically relocated in
memory. The advantage of this is that allocated memory can be shuffled around to place
all the free memory at the end of the heap, and the heap can then be shrunk, releasing the
memory back to the operating system. The use of this can be controlled with the configure
option --rel-alloc; if enabled, memory allocated for buffers will be relocatable, so that if
a very large file is visited and the buffer is later killed, the memory can be released to the
operating system. (The disadvantage of this mechanism is that it can be very slow. On
systems with the mmap() system call, the XEmacs version of ‘ralloc.c’ uses this to move
memory around without actually having to block-copy it, which can speed things up; but
it can still cause noticeable performance degradation.)

Chapter 13: A Summary of the Various XEmacs Modules 65

On Linux systems using ‘glibc 2’ these strategies are built in to the so-called “Doug Lea
malloc.” See, for example, Doug Lea’s home page, especially “A Memory Allocator”. The
source file, ‘malloc.c’ (available at the same place) is copiously (and usefully!) commented.
Wolfram Gloger’s home page may also be useful.

‘free-hook.c’ contains some debugging functions for checking for invalid arguments to
free().

‘vm-limit.c’ contains some functions that warn the user when memory is getting low.
These are callback functions that are called by ‘gmalloc.c’ and ‘malloc.c’ at appropriate
times.

‘getpagesize.h’ provides a uniform interface for retrieving the size of a page in virtual
memory. ‘mem-limits.h’ provides a uniform interface for retrieving the total amount of
available virtual memory. Both are similar in spirit to the ‘sys#*.h’ files described in section
J, below.

blocktype.c
blocktype.h
dynarr.c

These implement a couple of basic C data types to facilitate memory allocation. The
Blocktype type efficiently manages the allocation of fixed-size blocks by minimizing the
number of times that malloc () and free() are called. It allocates memory in large chunks,
subdivides the chunks into blocks of the proper size, and returns the blocks as requested.
When blocks are freed, they are placed onto a linked list, so they can be efficiently reused.
This data type is not much used in XEmacs currently, because it’s a fairly new addition.

The Dynarr type implements a dynamic array, which is similar to a standard C array
but has no fixed limit on the number of elements it can contain. Dynamic arrays can hold
elements of any type, and when you add a new element, the array automatically resizes
itself if it isn’t big enough. Dynarrs are extensively used in the redisplay mechanism.

inline.c

This module is used in connection with inline functions (available in some compilers).
Often, inline functions need to have a corresponding non-inline function that does the same
thing. This module is where they reside. It contains no actual code, but defines some special
flags that cause inline functions defined in header files to be rendered as actual functions.
It then includes all header files that contain any inline function definitions, so that each one
gets a real function equivalent.

debug.c
debug.h

These functions provide a system for doing internal counsistency checks during code de-
velopment. This system is not currently used; instead the simpler assert () macro is used
along with the various checks provided by the ‘--error-check-*’ configuration options.

universe.h

This is not currently used.

13.2 Basic Lisp Modules
lisp-disunion.h
lisp-union.h

http://gee.cs.oswego.edu/dl/html/malloc.html
http://www.malloc.de/

66 XEmacs Internals Manual

lisp.h

lrecord.h

symsinit.h

These are the basic header files for all XEmacs modules. Each module includes ‘1isp.h’,

which brings the other header files in. ‘lisp.h’ contains the definitions of the structures
and extractor and constructor macros for the basic Lisp objects and various other basic
definitions for the Lisp environment, as well as some general-purpose definitions (e.g. min()
and max()). ‘lisp.h’ includes either ‘lisp-disunion.h’ or ‘lisp-union.h’, depending on
whether USE_UNION_TYPE is defined. These files define the typedef of the Lisp object itself
(as described above) and the low-level macros that hide the actual implementation of the
Lisp object. All extractor and constructor macros for particular types of Lisp objects are
defined in terms of these low-level macros.

As a general rule, all typedefs should go into the typedefs section of ‘1isp.h’ rather than
into a module-specific header file even if the structure is defined elsewhere. This allows
function prototypes that use the typedef to be placed into other header files. Forward
structure declarations (i.e. a simple declaration like struct foo; where the structure itself
is defined elsewhere) should be placed into the typedefs section as necessary.

‘lrecord.h’ contains the basic structures and macros that implement all record-type
Lisp objects—i.e. all objects whose type is a field in their C structure, which includes all
objects except the few most basic ones.

‘lisp.h’ contains prototypes for most of the exported functions in the various modules.
Lisp primitives defined using DEFUN that need to be called by C code should be declared
using EXFUN. Other function prototypes should be placed either into the appropriate section
of lisp.h, or into a module-specific header file, depending on how general-purpose the
function is and whether it has special-purpose argument types requiring definitions not in
‘lisp.h’.) All initialization functions are prototyped in ‘symsinit.h’.

alloc.c

The large module ‘alloc.c’” implements all of the basic allocation and garbage collection
for Lisp objects. The most commonly used Lisp objects are allocated in chunks, similar to
the Blocktype data type described above; others are allocated in individually malloc()ed
blocks. This module provides the foundation on which all other aspects of the Lisp envi-
ronment sit, and is the first module initialized at startup.

Note that ‘alloc.c’ provides a series of generic functions that are not dependent on any
particular object type, and interfaces to particular types of objects using a standardized
interface of type-specific methods. This scheme is a fundamental principle of object-oriented
programming and is heavily used throughout XEmacs. The great advantage of this is
that it allows for a clean separation of functionality into different modules—new classes of
Lisp objects, new event interfaces, new device types, new stream interfaces, etc. can be
added transparently without affecting code anywhere else in XEmacs. Because the different
subsystems are divided into general and specific code, adding a new subtype within a
subsystem will in general not require changes to the generic subsystem code or affect any of
the other subtypes in the subsystem; this provides a great deal of robustness to the XEmacs
code.

eval.c
backtrace.h

Chapter 13: A Summary of the Various XEmacs Modules 67

This module contains all of the functions to handle the flow of control. This includes the
mechanisms of defining functions, calling functions, traversing stack frames, and binding
variables; the control primitives and other special forms such as while, if, eval, let,
and, or, progn, etc.; handling of non-local exits, unwind-protects, and exception handlers;
entering the debugger; methods for the subr Lisp object type; etc. It does not include the
read function, the print function, or the handling of symbols and obarrays.

‘backtrace.h’ contains some structures related to stack frames and the flow of control.
lread.c

This module implements the Lisp reader and the read function, which converts text into
Lisp objects, according to the read syntax of the objects, as described above. This is similar
to the parser that is a part of all compilers.

print.c

This module implements the Lisp print mechanism and the print function and related
functions. This is the inverse of the Lisp reader — it converts Lisp objects to a printed,
textual representation. (Hopefully something that can be read back in using read to get
an equivalent object.)

general.c
symbols.c
symeval.h

‘symbols.c’ implements the handling of symbols, obarrays, and retrieving the values of
symbols. Much of the code is devoted to handling the special symbol-value-magic objects
that define special types of variables—this includes buffer-local variables, variable aliases,
variables that forward into C variables, etc. This module is initialized extremely early (right
after ‘alloc.c’), because it is here that the basic symbols t and nil are created, and those
symbols are used everywhere throughout XEmacs.

‘symeval.h’ contains the definitions of symbol structures and the DEFVAR_LISP() and
related macros for declaring variables.

data.c
floatfns.c
fns.c

These modules implement the methods and standard Lisp primitives for all the basic
Lisp object types other than symbols (which are described above). ‘data.c’ contains all
the predicates (primitives that return whether an object is of a particular type); the integer
arithmetic functions; and the basic accessor and mutator primitives for the various object
types. ‘fns.c’ contains all the standard predicates for working with sequences (where,
abstractly speaking, a sequence is an ordered set of objects, and can be represented by
a list, string, vector, or bit-vector); it also contains equal, perhaps on the grounds that
bulk of the operation of equal is comparing sequences. ‘floatfns.c’ contains methods and
primitives for floats and floating-point arithmetic.

bytecode.c
bytecode.h

‘bytecode.c’ implements the byte-code interpreter and compiled-function objects, and
‘bytecode.h’ contains associated structures. Note that the byte-code compiler is written
in Lisp.

68 XEmacs Internals Manual

13.3 Modules for Standard Editing Operations

buffer.c
buffer.h
bufslots.h

‘buffer.c’ implements the bu er Lisp object type. This includes functions that create
and destroy buffers; retrieve buffers by name or by other properties; manipulate lists of
buffers (remember that buffers are permanent objects and stored in various ordered lists);
retrieve or change buffer properties; etc. It also contains the definitions of all the built-in
buffer-local variables (which can be viewed as buffer properties). It does not contain code
to manipulate buffer-local variables (that’s in ‘symbols.c’, described above); or code to
manipulate the text in a buffer.

‘buffer.h’ defines the structures associated with a buffer and the various macros for
retrieving text from a buffer and special buffer positions (e.g. point, the default location
for text insertion). It also contains macros for working with buffer positions and converting
between their representations as character offsets and as byte offsets (under MULE, they
are different, because characters can be multi-byte). It is one of the largest header files.

‘bufslots.h’ defines the fields in the buffer structure that correspond to the built-
in buffer-local variables. It is its own header file because it is included many times in
‘buffer.c’, as a way of iterating over all the built-in buffer-local variables.

insdel.c
insdel.h

‘insdel.c’ contains low-level functions for inserting and deleting text in a buffer, keeping
track of changed regions for use by redisplay, and calling any before-change and after-change
functions that may have been registered for the buffer. It also contains the actual functions
that convert between byte offsets and character offsets.

‘insdel.h’ contains associated headers.
marker.c

This module implements the marker Lisp object type, which conceptually is a pointer
to a text position in a buffer that moves around as text is inserted and deleted, so as
to remain in the same relative position. This module doesn’t actually move the markers
around — that’s handled in ‘insdel.c’. This module just creates them and implements the
primitives for working with them. As markers are simple objects, this does not entail much.

Note that the standard arithmetic primitives (e.g. +) accept markers in place of integers
and automatically substitute the value of marker-position for the marker, i.e. an integer
describing the current buffer position of the marker.

extents.c
extents.h

This module implements the extent Lisp object type, which is like a marker that works
over a range of text rather than a single position. Extents are also much more complex
and powerful than markers and have a more efficient (and more algorithmically complex)
implementation. The implementation is described in detail in comments in ‘extents.c’.

The code in ‘extents.c’ works closely with ‘insdel.c’ so that extents are properly

moved around as text is inserted and deleted. There is also code in ‘extents.c’ that provides
information needed by the redisplay mechanism for efficient operation. (Remember that

Chapter 13: A Summary of the Various XEmacs Modules 69

extents can have display properties that affect [sometimes drastically, as in the invisible
property| the display of the text they cover.)

editfns.c

‘editfns.c’ contains the standard Lisp primitives for working with a buffer’s text, and
calls the low-level functions in ‘insdel.c’. It also contains primitives for working with
point (the default buffer insertion location).

‘editfns.c’ also contains functions for retrieving various characteristics from the exter-
nal environment: the current time, the process ID of the running XEmacs process, the name
of the user who ran this XEmacs process, etc. It’s not clear why this code is in ‘editfns.c’.

callint.c
cmds.c
commands.h

These modules implement the basic interactive commands, i.e. user-callable functions.
Commands, as opposed to other functions, have special ways of getting their parameters
interactively (by querying the user), as opposed to having them passed in a normal function
invocation. Many commands are not really meant to be called from other Lisp functions,
because they modify global state in a way that’s often undesired as part of other Lisp
functions.

‘callint.c’ implements the mechanism for querying the user for parameters and calling
interactive commands. The bulk of this module is code that parses the interactive spec that
is supplied with an interactive command.

‘cmds.c’ implements the basic, most commonly used editing commands: commands to
move around the current buffer and insert and delete characters. These commands are
implemented using the Lisp primitives defined in ‘editfns.c’.

‘commands.h’ contains associated structure definitions and prototypes.

regex.c
regex.h
search.c

‘search.c’ implements the Lisp primitives for searching for text in a buffer, and some
of the low-level algorithms for doing this. In particular, the fast fixed-string Boyer-Moore
search algorithm is implemented in ‘search.c’. The low-level algorithms for doing regular-
expression searching, however, are implemented in ‘regex.c’ and ‘regex.h’. These two
modules are largely independent of XEmacs, and are similar to (and based upon) the
regular-expression routines used in ‘grep’ and other GNU utilities.

doprnt.c

‘doprnt.c’ implements formatted-string processing, similar to printf () command in C.

undo.c

This module implements the undo mechanism for tracking buffer changes. Most of this
could be implemented in Lisp.

13.4 Editor-Level Control Flow Modules

event-Xt.c
event-msw.c

70 XEmacs Internals Manual

event-stream.c
event-tty.c
events-mod.h
gpmevent.c
gpmevent.h
events.c
events.h

These implement the handling of events (user input and other system notifications).

‘events.c’ and ‘events.h’ define the event Lisp object type and primitives for manip-
ulating it.

‘event-stream.c’ implements the basic functions for working with event queues, dis-
patching an event by looking it up in relevant keymaps and such, and handling timeouts;
this includes the primitives next-event and dispatch-event, as well as related primitives
such as sit-for, sleep-for, and accept-process-output. (‘event-stream.c’ is one of
the hairiest and trickiest modules in XEmacs. Beware! You can easily mess things up here.)

‘event-Xt.c’ and ‘event-tty.c’ implement the low-level interfaces onto retrieving
events from Xt (the X toolkit) and from TTY’s (using read() and select()), respectively.
The event interface enforces a clean separation between the specific code for interfacing
with the operating system and the generic code for working with events, by defining an
API of basic, low-level event methods; ‘event-Xt.c’ and ‘event-tty.c’ are two different
implementations of this API. To add support for a new operating system (e.g. NeXTstep),
one merely needs to provide another implementation of those API functions.

Note that the choice of whether to use ‘event-Xt.c’ or ‘event-tty.c’ is made at compile
time! Or at the very latest, it is made at startup time. ‘event-Xt.c’ handles events for
both X and TTY frames; ‘event-tty.c’ is only used when X support is not compiled into
XEmacs. The reason for this is that there is only one event loop in XEmacs: thus, it needs
to be able to receive events from all different kinds of frames.

keymap.c
keymap.h

‘keymap.c’ and ‘keymap.h’ define the keymap Lisp object type and associated methods
and primitives. (Remember that keymaps are objects that associate event descriptions with
functions to be called to “execute” those events; dispatch-event looks up events in the
relevant keymaps.)

cmdloop.c

‘cmdloop.c’ contains functions that implement the actual editor command loop—i.e. the
event loop that cyclically retrieves and dispatches events. This code is also rather tricky,
just like ‘event-stream.c’.

macros.c
macros.h

These two modules contain the basic code for defining keyboard macros. These functions
don’t actually do much; most of the code that handles keyboard macros is mixed in with
the event-handling code in ‘event-stream.c’.

minibuf.c

Chapter 13: A Summary of the Various XEmacs Modules 71

This contains some miscellaneous code related to the minibuffer (most of the minibuffer
code was moved into Lisp by Richard Mlynarik). This includes the primitives for completion
(although filename completion is in ‘dired.c’), the lowest-level interface to the minibuffer
(if the command loop were cleaned up, this too could be in Lisp), and code for dealing with
the echo area (this, too, was mostly moved into Lisp, and the only code remaining is code
to call out to Lisp or provide simple bootstrapping implementations early in temacs, before
the echo-area Lisp code is loaded).

13.5 Modules for the Basic Displayable Lisp Objects

console-msw.cC
console-msw.h
console-stream.c
console-stream.h
console-tty.c
console-tty.h
console-x.c
console-x.h
console.c
console.h

These modules implement the console Lisp object type. A console contains multiple
display devices, but only one keyboard and mouse. Most of the time, a console will contain
exactly one device.

Consoles are the top of a lisp object inclusion hierarchy. Consoles contain devices, which
contain frames, which contain windows.

device-msw.c
device-tty.c
device-x.c
device.c
device.h

These modules implement the device Lisp object type. This abstracts a particular screen
or connection on which frames are displayed. As with Lisp objects, event interfaces, and
other subsystems, the device code is separated into a generic component that contains a
standardized interface (in the form of a set of methods) onto particular device types.

The device subsystem defines all the methods and provides method services for not only
device operations but also for the frame, window, menubar, scrollbar, toolbar, and other
displayable-object subsystems. The reason for this is that all of these subsystems have the
same subtypes (X, TTY, NeXTstep, Microsoft Windows, etc.) as devices do.

frame-msw.c
frame-tty.c
frame-x.c
frame.c
frame.h

Each device contains one or more frames in which objects (e.g. text) are displayed. A
frame corresponds to a window in the window system; usually this is a top-level window
but it could potentially be one of a number of overlapping child windows within a top-level

72 XEmacs Internals Manual

window, using the MDI (Multiple Document Interface) protocol in Microsoft Windows or
a similar scheme.

The ‘frame-*’ files implement the frame Lisp object type and provide the generic and
device-type-specific operations on frames (e.g. raising, lowering, resizing, moving, etc.).

window.c
window.h

Each frame consists of one or more non-overlapping windows (better known as panesin
standard window-system terminology) in which a buffer’s text can be displayed. Windows
can also have scrollbars displayed around their edges.

‘window.c’ and ‘window.h’ implement the window Lisp object type and provide code to
manage windows. Since windows have no associated resources in the window system (the
window system knows only about the frame; no child windows or anything are used for
XEmacs windows), there is no device-type-specific code here; all of that code is part of the
redisplay mechanism or the code for particular object types such as scrollbars.

13.6 Modules for other Display-Related Lisp Objects

faces.c
faces.h

bitmaps.h
glyphs-eimage.c
glyphs-msw.c
glyphs-msw.h
glyphs-widget.c
glyphs-x.c
glyphs-x.h
glyphs.c
glyphs.h

objects-msw.
objects-msw.
objects-tty.
objects-tty.
objects-x.c
objects-x.h
objects.c
objects.h

5o B o

menubar-msw.c
menubar-msw.h
menubar-x.c
menubar.c
menubar.h

scrollbar-msw.c
scrollbar-msw.h
scrollbar-x.c
scrollbar-x.h
scrollbar.c

Chapter 13: A Summary of the Various XEmacs Modules 73

scrollbar.h

toolbar-msw.c
toolbar-x.c
toolbar.c
toolbar.h

font-lock.c

This file provides C support for syntax highlighting—i.e. highlighting different syntactic
constructs of a source file in different colors, for easy reading. The C support is provided
so that this is fast.

dgif_lib.c
gif_err.c
gif_1lib.h
gifalloc.c

These modules decode GIF-format image files, for use with glyphs. These files were
removed due to Unisys patent infringement concerns.

13.7 Modules for the Redisplay Mechanism

redisplay-output.c
redisplay-msw.c
redisplay-tty.c
redisplay-x.c
redisplay.c
redisplay.h

These files provide the redisplay mechanism. As with many other subsystems in XEmacs,
there is a clean separation between the general and device-specific support.

‘redisplay.c’ contains the bulk of the redisplay engine. These functions update the
redisplay structures (which describe how the screen is to appear) to reflect any changes
made to the state of any displayable objects (buffer, frame, window, etc.) since the last
time that redisplay was called. These functions are highly optimized to avoid doing more
work than necessary (since redisplay is called extremely often and is potentially a huge
time sink), and depend heavily on notifications from the objects themselves that changes
have occurred, so that redisplay doesn’t explicitly have to check each possible object. The
redisplay mechanism also contains a great deal of caching to further speed things up; some
of this caching is contained within the various displayable objects.

‘redisplay-output.c’ goes through the redisplay structures and converts them into
calls to device-specific methods to actually output the screen changes.

‘redisplay-x.c’ and ‘redisplay-tty.c’ are two implementations of these redisplay
output methods, for X frames and TTY frames, respectively.

indent.c

This module contains various functions and Lisp primitives for converting between buffer
positions and screen positions. These functions call the redisplay mechanism to do most of
the work, and then examine the redisplay structures to get the necessary information. This
module needs work.

74 XEmacs Internals Manual

termcap.c
terminfo.c
tparam.c

These files contain functions for working with the termcap (BSD-style) and terminfo
(System V style) databases of terminal capabilities and escape sequences, used when
XEmacs is displaying in a TTY.

cm.c
cm.h

These files provide some miscellaneous TTY-output functions and should probably be
merged into ‘redisplay-tty.c’.

13.8 Modules for Interfacing with the File System

lstream.c
lstream.h

These modules implement the stream Lisp object type. This is an internal-only Lisp
object that implements a generic buffering stream. The idea is to provide a uniform in-
terface onto all sources and sinks of data, including file descriptors, stdio streams, chunks
of memory, Lisp buffers, Lisp strings, etc. That way, I/O functions can be written to the
stream interface and can transparently handle all possible sources and sinks. (For example,
the read function can read data from a file, a string, a buffer, or even a function that is
called repeatedly to return data, without worrying about where the data is coming from or
what-size chunks it is returned in.)

Note that in the C code, streams are called Istreams (for “Lisp streams”) to distinguish
them from other kinds of streams, e.g. stdio streams and C++ I/O streams.

Similar to other subsystems in XEmacs, Istreams are separated into generic functions and
a set of methods for the different types of Istreams. ‘lstream.c’ provides implementations
of many different types of streams; others are provided, e.g., in ‘file-coding.c’.

fileio.c

This implements the basic primitives for interfacing with the file system. This includes
primitives for reading files into buffers, writing buffers into files, checking for the presence or
accessibility of files, canonicalizing file names, etc. Note that these primitives are usually not
invoked directly by the user: There is a great deal of higher-level Lisp code that implements
the user commands such as find-file and save-buffer. This is similar to the distinction
between the lower-level primitives in ‘editfns.c’ and the higher-level user commands in
‘commands.c’ and ‘simple.el’.

filelock.c

This file provides functions for detecting clashes between different processes (e.g.
XEmacs and some external process, or two different XEmacs processes) modifying the
same file. (XEmacs can optionally use the ‘lock/’ subdirectory to provide a form of
“locking” between different XEmacs processes.) This module is also used by the low-level
functions in ‘insdel.c’ to ensure that, if the first modification is being made to a buffer
whose corresponding file has been externally modified, the user is made aware of this so
that the buffer can be synched up with the external changes if necessary.

filemode.c

Chapter 13: A Summary of the Various XEmacs Modules 75

This file provides some miscellaneous functions that construct a ‘rwxr-xr-x’-type per-
missions string (as might appear in an ‘ls’-style directory listing) given the information
returned by the stat () system call.

dired.c
ndir.h

These files implement the XEmacs interface to directory searching. This includes a num-
ber of primitives for determining the files in a directory and for doing filename completion.
(Remember that generic completion is handled by a different mechanism, in ‘minibuf.c’.)

‘ndir.h’ is a header file used for the directory-searching emulation functions provided
in ‘sysdep.c’ (see section J below), for systems that don’t provide any directory-searching
functions. (On those systems, directories can be read directly as files, and parsed.)

realpath.c

This file provides an implementation of the realpath() function for expanding symbolic
links, on systems that don’t implement it or have a broken implementation.

13.9 Modules for Other Aspects of the Lisp Interpreter and

Object System
elhash.c
elhash.h
hash.c
hash.h

These files provide two implementations of hash tables. Files ‘hash.c’ and ‘hash.h’ pro-
vide a generic C implementation of hash tables which can stand independently of XEmacs.
Files ‘elhash.c’ and ‘elhash.h’ provide a separate implementation of hash tables that can
store only Lisp objects, and knows about Lispy things like garbage collection, and implement
the hash-table Lisp object type.

specifier.c
specifier.h

This module implements the specier Lisp object type. This is primarily used for dis-
playable properties, and allows for values that are specific to a particular buffer, window,
frame, device, or device class, as well as a default value existing. This is used, for example,
to control the height of the horizontal scrollbar or the appearance of the default, bold, or
other faces. The specifier object consists of a number of specifications, each of which maps
from a buffer, window, etc. to a value. The function specifier-instance looks up a value
given a window (from which a buffer, frame, and device can be derived).

chartab.c
chartab.h
casetab.c

‘chartab.c’ and ‘chartab.h’ implement the char table Lisp object type, which maps
from characters or certain sorts of character ranges to Lisp objects. The implementation
of this object type is optimized for the internal representation of characters. Char tables
come in different types, which affect the allowed object types to which a character can be
mapped and also dictate certain other properties of the char table.

76 XEmacs Internals Manual

‘casetab.c’ implements one sort of char table, the case table which maps characters
to other characters of possibly different case. These are used by XEmacs to implement
case-changing primitives and to do case-insensitive searching.

syntax.c
syntax.h

This module implements syntax tables, another sort of char table that maps characters
into syntax classes that define the syntax of these characters (e.g. a parenthesis belongs to
a class of ‘open’ characters that have corresponding ‘close’ characters and can be nested).
This module also implements the Lisp scanner a set of primitives for scanning over text
based on syntax tables. This is used, for example, to find the matching parenthesis in a
command such as forward-sexp, and by ‘font-lock.c’ to locate quoted strings, comments,
etc.

Syntax codes are implemented as bitfields in an int. Bits 0-6 contain the syntax code
itself, bit 7 is a special prefix flag used for Lisp, and bits 16-23 contain comment syntax
flags. From the Lisp programmer’s point of view, there are 11 flags: 2 styles X 2 characters
X {start, end} flags for two-character comment delimiters, 2 style flags for one-character
comment delimiters, and the prefix flag.

Internally, however, the characters used in multi-character delimiters will have non-
comment-character syntax classes (e.g., the /” in C’s ‘/*’ comment-start delimiter has
“punctuation” (here meaning “operator-like”) class in C modes). Thus in a mixed comment
style, such as C++’s *//’ to end of line, is represented by giving ‘/’ the “punctuation” class
and the “style b first character of start sequence” and “style b second character of start
sequence” flags. The fact that class is not punctuation allows the syntax scanner to recognize
that this is a multi-character delimiter. The ‘newline’ character is given (single-character)
“comment-end” class and the “style b first character of end sequence” flag. The “comment-
end” class allows the scanner to determine that no second character is needed to terminate
the comment.

casefiddle.c

This module implements various Lisp primitives for upcasing, downcasing and capital-
izing strings or regions of buffers.

rangetab.c

This module implements the range table Lisp object type, which provides for a mapping
from ranges of integers to arbitrary Lisp objects.
opaque.c
opaque.h
This module implements the opaque Lisp object type, an internal-only Lisp object that
encapsulates an arbitrary block of memory so that it can be managed by the Lisp allocation
system. To create an opaque object, you call make_opaque (), passing a pointer to a block
of memory. An object is created that is big enough to hold the memory, which is copied
into the object’s storage. The object will then stick around as long as you keep pointers to
it, after which it will be automatically reclaimed.

Opaque objects can also have an arbitrary mark method associated with them, in case the
block of memory contains other Lisp objects that need to be marked for garbage-collection
purposes. (If you need other object methods, such as a finalize method, you should just go
ahead and create a new Lisp object type—it’s not hard.)

Chapter 13: A Summary of the Various XEmacs Modules T

abbrev.c

This function provides a few primitives for doing dynamic abbreviation expansion. In
XEmacs, most of the code for this has been moved into Lisp. Some C code remains for speed
and because the primitive self-insert-command (which is executed for all self-inserting
characters) hooks into the abbrev mechanism. (self-insert-command is itself in C only
for speed.)

doc.c

This function provides primitives for retrieving the documentation strings of functions
and variables. These documentation strings contain certain special markers that get dy-
namically expanded (e.g. a reverse-lookup is performed on some named functions to re-
trieve their current key bindings). Some documentation strings (in particular, for the
built-in primitives and pre-loaded Lisp functions) are stored externally in a file ‘DOC’ in
the ‘lib-src/’ directory and need to be fetched from that file. (Part of the build stage
involves building this file, and another part involves constructing an index for this file and
embedding it into the executable, so that the functions in ‘doc.c’ do not have to search the
entire ‘DOC’ file to find the appropriate documentation string.)

md5.c

This function provides a Lisp primitive that implements the MD5 secure hashing scheme,
used to create a large hash value of a string of data such that the data cannot be derived
from the hash value. This is used for various security applications on the Internet.

13.10 Modules for Interfacing with the Operating System

callproc.c
process.c
process.h

These modules allow XEmacs to spawn and communicate with subprocesses and network
connections.

‘callproc.c’ implements (through the call-process primitive) what are called syn-
chronous subprocessesThis means that XEmacs runs a program, waits till it’s done, and
retrieves its output. A typical example might be calling the ‘1s’ program to get a directory
listing.

‘process.c’ and ‘process.h’ implement asynchronous subprocessesThis means that
XEmacs starts a program and then continues normally, not waiting for the process to finish.
Data can be sent to the process or retrieved from it as it’s running. This is used for the
shell command (which provides a front end onto a shell program such as ‘csh’), the mail
and news readers implemented in XEmacs, etc. The result of calling start-process to
start a subprocess is a process object, a particular kind of object used to communicate with
the subprocess. You can send data to the process by passing the process object and the data
to send-process, and you can specify what happens to data retrieved from the process by
setting properties of the process object. (When the process sends data, XEmacs receives
a process event, which says that there is data ready. When dispatch-event is called on
this event, it reads the data from the process and does something with it, as specified by
the process object’s properties. Typically, this means inserting the data into a buffer or
calling a function.) Another property of the process object is called the sentinel, which is a
function that is called when the process terminates.

78 XEmacs Internals Manual

Process objects are also used for network connections (connections to a process running
on another machine). Network connections are started with open-network-stream but
otherwise work just like subprocesses.

sysdep.c
sysdep.h

These modules implement most of the low-level, messy operating-system interface code.
This includes various device control (ioctl) operations for file descriptors, TTY’s, pseudo-
terminals, etc. (usually this stuff is fairly system-dependent; thus the name of this module),
and emulation of standard library functions and system calls on systems that don’t provide
them or have broken versions.

sysdir.h

sysfile.h

sysfloat.h

sysproc.h

syspwd.h

syssignal.h

systime.h

systty.h

syswait.h

These header files provide consistent interfaces onto system-dependent header files

and system calls. The idea is that, instead of including a standard header file like
‘<sys/param.h>’ (which may or may not exist on various systems) or having to worry
about whether all system provide a particular preprocessor constant, or having to deal
with the four different paradigms for manipulating signals, you just include the appropriate
‘sys*.h’ header file, which includes all the right system header files, defines and missing
preprocessor constants, provides a uniform interface onto system calls, etc.

‘sysdir.h’ provides a uniform interface onto directory-querying functions. (In some
cases, this is in conjunction with emulation functions in ‘sysdep.c’.)

‘sysfile.h’ includes all the necessary header files for standard system calls (e.g.
read()), ensures that all necessary open() and stat() preprocessor constants are
defined, and possibly (usually) substitutes sugared versions of read(), write(), etc. that
automatically restart interrupted I/O operations.

‘sysfloat.h’ includes the necessary header files for floating-point operations.

‘sysproc.h’ includes the necessary header files for calling select (), fork(), execve(),
socket operations, and the like, and ensures that the FD_x() macros for descriptor-set
manipulations are available.

‘syspwd.h’ includes the mnecessary header files for obtaining information from
‘/etc/passwd’ (the functions are emulated under VMS).

‘syssignal.h’ includes the necessary header files for signal-handling and provides a
uniform interface onto the different signal-handling and signal-blocking paradigms.

‘systime.h’ includes the necessary header files and provides uniform interfaces for re-
trieving the time of day, setting file access/modification times, getting the amount of time
used by the XEmacs process, etc.

‘systty.h’ buffers against the infinitude of different ways of controlling TTYs.

Chapter 13: A Summary of the Various XEmacs Modules 79

‘syswait.h’ provides a uniform way of retrieving the exit status from a wait()ed-on
process (some systems use a union, others use an int).
hpplay.c
libsst.c
libsst.h
libst.h
linuxplay.c
nas.c
sgiplay.c
sound.c
sunplay.c
These files implement the ability to play various sounds on some types of computers.
You have to configure your XEmacs with sound support in order to get this capability.

‘sound.c’ provides the generic interface. It implements various Lisp primitives and
variables that let you specify which sounds should be played in certain conditions. (The
conditions are identified by symbols, which are passed to ding to make a sound. Various
standard functions call this function at certain times; if sound support does not exist, a
simple beep results.

‘sgiplay.c’, ‘sunplay.c’, ‘hpplay.c’, and ‘linuxplay.c’ interface to the machine’s
speaker for various different kind of machines. This is called native sound.

‘nas.c’ interfaces to a computer somewhere else on the network using the NAS (Network
Audio Server) protocol, playing sounds on that machine. This allows you to run XEmacs
on a remote machine, with its display set to your local machine, and have the sounds be
made on your local machine, provided that you have a NAS server running on your local
machine.

‘libsst.c’, ‘libsst.h’, and ‘libst.h’ provide some additional functions for playing
sound on a Sun SPARC but are not currently in use.

tooltalk.c
tooltalk.h

These two modules implement an interface to the ToolTalk protocol, which is an in-
terprocess communication protocol implemented on some versions of Unix. ToolTalk is a
high-level protocol that allows processes to register themselves as providers of particular
services; other processes can then request a service without knowing or caring exactly who
is providing the service. It is similar in spirit to the DDE protocol provided under Microsoft
Windows. ToolTalk is a part of the new CDE (Common Desktop Environment) specification
and is used to connect the parts of the SPARCWorks development environment.

getloadavg.c

This module provides the ability to retrieve the system’s current load average. (The way
to do this is highly system-specific, unfortunately, and requires a lot of special-case code.)

sunpro.c

This module provides a small amount of code used internally at Sun to keep statistics
on the usage of XEmacs.

broken-sun.h
strcmp.c

80 XEmacs Internals Manual

strcpy.c
sun0S-fix.c

These files provide replacement functions and prototypes to fix numerous bugs in early
releases of SunOS 4.1.

hftctl.c

This module provides some terminal-control code necessary on versions of AIX prior to
4.1.

13.11 Modules for Interfacing with X Windows
Emacs.ad.h

A file generated from ‘Emacs.ad’, which contains XEmacs-supplied fallback resources
(so that XEmacs has pretty defaults).

EmacsFrame.c
EmacsFrame.h
EmacsFrameP.h

These modules implement an Xt widget class that encapsulates a frame. This is for ease
in integrating with Xt. The EmacsFrame widget covers the entire X window except for the
menubar; the scrollbars are positioned on top of the EmacsFrame widget.

Warning: Abandon hope, all ye who enter here. This code took an ungodly amount of
time to get right, and is likely to fall apart mercilessly at the slightest change. Such is life
under Xt.

EmacsManager.c
EmacsManager.h
EmacsManagerP.h

These modules implement a simple Xt manager (i.e. composite) widget class that simply
lets its children set whatever geometry they want. It’s amazing that Xt doesn’t provide
this standardly, but on second thought, it makes sense, considering how amazingly broken
Xt is.

EmacsShell-sub.c
EmacsShell.c
EmacsShell.h
EmacsShellP.h

These modules implement two Xt widget classes that are subclasses of the TopLevelShell
and TransientShell classes. This is necessary to deal with more brokenness that Xt has
sadistically thrust onto the backs of developers.

xgccache.c
xgccache.h

These modules provide functions for maintenance and caching of GC’s (graphics con-
texts) under the X Window System. This code is junky and needs to be rewritten.

select-msw.cC
select-x.c
select.c
select.h

Chapter 13: A Summary of the Various XEmacs Modules 81

This module provides an interface to the X Window System’s concept of selections the
standard way for X applications to communicate with each other.

Xintrinsic.h
xintrinsicp.h
xmmanagerp.h
xmprimitivep.h
These header files are similar in spirit to the ‘sys*.h’ files and buffer against different
implementations of Xt and Motif.

e ‘xintrinsic.h’ should be included in place of ‘<Intrinsic.h>’.

e ‘xintrinsicp.h’ should be included in place of ‘<IntrinsicP.h>’.

e ‘xmmanagerp.h’ should be included in place of ‘<XmManagerP .h>’.

e ‘zmprimitivep.h’ should be included in place of ‘<XmPrimitiveP.h>’.

Xmu.cC
xmu.h

These files provide an emulation of the Xmu library for those systems (i.e. HPUX) that
don’t provide it as a standard part of X.

ExternalClient-X1lib.c
ExternalClient.c
ExternalClient.h
ExternalClientP.h
ExternalShell.c
ExternalShell.h
ExternalShellP.h
extw-X1lib.c
extw-X1ib.h
extw-Xt.c
extw-Xt.h

These files provide the external widget interface, which allows an XEmacs frame
to appear as a widget in another application. To do this, you have to configure with
‘-—external-widget’.

‘ExternalShellx’ provides the server (XEmacs) side of the connection.

‘ExternalClient*’ provides the client (other application) side of the connection. These
files are not compiled into XEmacs but are compiled into libraries that are then linked into
your application.

‘extw-*" 1s common code that is used for both the client and server.

Don’t touch this code; something is liable to break if you do.

13.12 Modules for Internationalization

mule-canna.c
mule-ccl.c
mule-charset.c
mule-charset.h
file-coding.c

82 XEmacs Internals Manual

file-coding.h
mule-mcpath.c
mule-mcpath.h
mule-wnnfns.c
mule.c

These files implement the MULE (Asian-language) support. Note that MULE actually
provides a general interface for all sorts of languages, not just Asian languages (although
they are generally the most complicated to support). This code is still in beta.

‘mule-charset.*’ and ‘file-coding.*’ provide the heart of the XEmacs MULE sup-
port. ‘mule-charset.*’ implements the charset Lisp object type, which encapsulates a
character set (an ordered one- or two-dimensional set of characters, such as US ASCII or
JISX0208 Japanese Kanji).

‘file-coding.*’ implements the coding-system Lisp object type, which encapsulates
a method of converting between different encodings. An encoding is a representation of a
stream of characters, possibly from multiple character sets, using a stream of bytes or words,
and defines (e.g.) which escape sequences are used to specify particular character sets, how
the indices for a character are converted into bytes (sometimes this involves setting the
high bit; sometimes complicated rearranging of the values takes place, as in the Shift-JIS
encoding), etc.

‘mule-ccl.c’ provides the CCL (Code Conversion Language) interpreter. CCL is similar
in spirit to Lisp byte code and is used to implement converters for custom encodings.

‘mule-canna.c’ and ‘mule-wnnfns.c’ implement interfaces to external programs used
to implement the Canna and WNN input methods, respectively. This is currently in beta.

‘mule-mcpath.c’ provides some functions to allow for pathnames containing extended
characters. This code is fragmentary, obsolete, and completely non-working. Instead,
pathname-coding-system is used to specify conversions of names of files and directories.
The standard C I/O functions like ‘open()’ are wrapped so that conversion occurs auto-
matically.

‘mule.c’ provides a few miscellaneous things that should probably be elsewhere.
intl.c
This provides some miscellaneous internationalization code for implementing message
translation and interfacing to the Ximp input method. Nome of this code is currently
working.
iso-wide.h
This contains leftover code from an earlier implementation of Asian-language support,
and is not currently used.

13.13 Modules for Regression Testing

test-harness.el
base64-tests.el
byte-compiler-tests.el
case-tests.el
ccl-tests.el
c-tests.el

Chapter 13: A Summary of the Various XEmacs Modules 83

database-tests.el
extent-tests.el
hash-table-tests.el
lisp-tests.el
mdS5-tests.el
mule-tests.el
regexp-tests.el
symbol-tests.el
syntax-tests.el

‘test-harness.el’ defines the macros Assert, Check-Error, Check-Error-Message,
and Check-Message. The other files are test files, testing various XEmacs facilities.

84

XEmacs Internals Manual

Chapter 14: Allocation of Objects in XEmacs Lisp 85

14 Allocation of Objects in XEmacs Lisp

14.1 Introduction to Allocation

Emacs Lisp, like all Lisps, has garbage collection. This means that the programmer never
has to explicitly free (destroy) an object; it happens automatically when the object becomes
inaccessible. Most experts agree that garbage collection is a necessity in a modern, high-
level language. Its omission from C stems from the fact that C was originally designed to
be a nice abstract layer on top of assembly language, for writing kernels and basic system
utilities rather than large applications.

Lisp objects can be created by any of a number of Lisp primitives. Most object types
have one or a small number of basic primitives for creating objects. For conses, the basic
primitive is cons; for vectors, the primitives are make-vector and vector; for symbols,
the primitives are make-symbol and intern; etc. Some Lisp objects, especially those that
are primarily used internally, have no corresponding Lisp primitives. Every Lisp object,
though, has at least one C primitive for creating it.

Recall from section (VII) that a Lisp object, as stored in a 32-bit or 64-bit word, has a
few tag bits, and a “value” that occupies the remainder of the bits. We can separate the
different Lisp object types into three broad categories:

e (a) Those for whom the value directly represents the contents of the Lisp object. Only
two types are in this category: integers and characters. No special allocation or garbage
collection is necessary for such objects. Lisp objects of these types do not need to be
GCPROed.

In the remaining two categories, the type is stored in the object itself. The tag for all
such objects is the generic Irecord (Lisp_Type_Record) tag. The first bytes of the object’s
structure are an integer (actually a char) characterising the object’s type and some flags,
in particular the mark bit used for garbage collection. A structure describing the type is
accessible thru the Irecord_implementation_table indexed with said integer. This structure
includes the method pointers and a pointer to a string naming the type.

e (b) Those Irecords that are allocated in frob blocks (see above). This includes the
objects that are most common and relatively small, and includes conses, strings, subrs,
floats, compiled functions, symbols, extents, events, and markers. With the cleanup of
frob blocks done in 19.12, it’s not terribly hard to add more objects to this category,
but it’s a bit trickier than adding an object type to type (c) (esp. if the object needs
a finalization method), and is not likely to save much space unless the object is small
and there are many of them. (In fact, if there are very few of them, it might actually
waste space.)

e (c) Those lrecords that are individually malloc()ed. These are called Icrecords All
other types are in this category. Adding a new type to this category is comparatively
easy, and all types added since 19.8 (when the current allocation scheme was devised,
by Richard Mlynarik), with the exception of the character type, have been in this
category.

Note that bit vectors are a bit of a special case. They are simple Irecords as in category
(b), but are individually malloc()ed like vectors. You can basically view them as exactly

86 XEmacs Internals Manual

like vectors except that their type is stored in Irecord fashion rather than in directly-tagged
fashion.

14.2 Garbage Collection

Garbage collection is simple in theory but tricky to implement. Emacs Lisp uses the oldest
garbage collection method, called mark and sweep Garbage collection begins by starting
with all accessible locations (i.e. all variables and other slots where Lisp objects might
occur) and recursively traversing all objects accessible from those slots, marking each one
that is found. We then go through all of memory and free each object that is not marked,
and unmarking each object that is marked. Note that “all of memory” means all currently
allocated objects. Traversing all these objects means traversing all frob blocks, all vectors
(which are chained in one big list), and all lerecords (which are likewise chained).

Garbage collection can be invoked explicitly by calling garbage-collect but is also
called automatically by eval, once a certain amount of memory has been allocated since
the last garbage collection (according to gc-cons-threshold).

14.3 GCPR@

GCPROing is one of the ugliest and trickiest parts of Emacs internals. The basic idea is that
whenever garbage collection occurs, all in-use objects must be reachable somehow or other
from one of the roots of accessibility. The roots of accessibility are:

1. All objects that have been staticpro()d or staticpro_nodump()ed. This is used
for any global C variables that hold Lisp objects. A call to staticpro() happens
implicitly as a result of any symbols declared with defsymbol() and any variables
declared with DEFVAR_F00(). You need to explicitly call staticpro() (in the vars_
of _foo() method of a module) for other global C variables holding Lisp objects. (This
typically includes internal lists and such things.). Use staticpro_nodump() only in
the rare cases when you do not want the pointed variable to be saved at dump time
but rather recompute it at startup.

Note that obarray is one of the staticpro()d things. Therefore, all functions and
variables get marked through this.

Any shadowed bindings that are sitting on the specpdl stack.

Any objects sitting in currently active (Lisp) stack frames, catches, and condition cases.
A couple of special-case places where active objects are located.

Anything currently marked with GCPRO.

Gtk W

Marking with GCPRO is necessary because some C functions (quite a lot, in fact), allocate
objects during their operation. Quite frequently, there will be no other pointer to the object
while the function is running, and if a garbage collection occurs and the object needs to be
referenced again, bad things will happen. The solution is to mark those objects with GCPRO.
Unfortunately this is easy to forget, and there is basically no way around this problem.
Here are some rules, though:

1. For every GCPRON, there have to be declarations of struct gcpro geprol, gepro2, etc.

2. You must UNGCPRO anything that’s GCPROed, and you must not UNGCPRO if you haven’t
GCPROed. Getting either of these wrong will lead to crashes, often in completely random
places unrelated to where the problem lies.

Chapter 14: Allocation of Objects in XEmacs Lisp 87

10.

11.

12.

The way this actually works is that all currently active GCPROs are chained through the
struct gcpro local variables, with the variable ‘gcprolist’ pointing to the head of
the list and the nth local gcpro variable pointing to the first gcpro variable in the next
enclosing stack frame. Each GCPROed thing is an lvalue, and the struct gcpro local
variable contains a pointer to this lvalue. This is why things will mess up badly if you
don’t pair up the GCPROs and UNGCPROs—you will end up with gcprolists containing
pointers to struct gcpros or local Lisp_0bject variables in no-longer-active stack
frames.

It is actually possible for a single struct gcpro to protect a contiguous array of any
number of values, rather than just a single lvalue. To effect this, call GCPRON as usual
on the first object in the array and then set gcpron.nvars.

Strings are relocated. What this means in practice is that the pointer obtained using
XSTRING_DATA() is liable to change at any time, and you should never keep it around
past any function call, or pass it as an argument to any function that might cause a
garbage collection. This is why a number of functions accept either a “non-relocatable”
char * pointer or a relocatable Lisp string, and only access the Lisp string’s data at
the very last minute. In some cases, you may end up having to alloca() some space
and copy the string’s data into it.

By convention, if you have to nest GCPRQ’s, use NGCPRON (along with struct gcpro
ngcprol, ngepro2, etc.), NNGCPRON, etc. This avoids compiler warnings about shad-
owed locals.

It is always better to err on the side of extra GCPROs rather than too few. The extra
cycles spent on this are almost never going to make a whit of difference in the speed
of anything.

The general rule to follow is that caller, not callee, GCPROs. That is, you should not
have to explicitly GCPRO any Lisp objects that are passed in as parameters.

One exception from this rule is if you ever plan to change the parameter value, and
store a new object in it. In that case, you must GCPRO the parameter, because otherwise
the new object will not be protected.

So, if you create any Lisp objects (remember, this happens in all sorts of circumstances,
e.g. with Fcons(), etc.), you are responsible for GCPROing them, unless you are abso-
lutely sure that there’s no possibility that a garbage-collection can occur while you
need to use the object. Even then, consider GCPROing.

A garbage collection can occur whenever anything calls Feval, or whenever a QUIT can
occur where execution can continue past this. (Remember, this is almost anywhere.)

If you have the least smidgeon of doubt about whether you need to GCPRO, you should
GCPRO.

Beware of GCPROiIng something that is uninitialized. If you have any shade of doubt
about this, initialize all your variables to Qnil.

Be careful of traps, like calling Fcons () in the argument to another function. By the
“caller protects” law, you should be GCPROing the newly-created cons, but you aren’t.
A certain number of functions that are commonly called on freshly created stuff (e.g.
nconc2(), Fsignal()), break the “caller protects” law and go ahead and GCPRO their
arguments so as to simplify things, but make sure and check if it’'s OK whenever doing
something like this.

88 XEmacs Internals Manual

13. Once again, remember to GCPRO! Bugs resulting from insufficient GCPROing are inter-
mittent and extremely difficult to track down, often showing up in crashes inside of
garbage-collect or in weirdly corrupted objects or even in incorrect values in a totally
different section of code.

If you don’t understand whether to GCPRO in a particular instance, ask on the mailing
lists. A general hint is that progl is the canonical example.

Given the extremely error-prone nature of the GCPRO scheme, and the difficulties in
tracking down, it should be considered a deficiency in the XEmacs code. A solution to this
problem would involve implementing so-called conservative garbage collection for the C
stack. That involves looking through all of stack memory and treating anything that looks
like a reference to an object as a reference. This will result in a few objects not getting
collected when they should, but it obviates the need for GCPROing, and allows garbage
collection to happen at any point at all, such as during object allocation.

14.4 Garbage Collection - Step by Step

14.4.1 Invocation

The first thing that anyone should know about garbage collection is: when and how the
garbage collector is invoked. Omne might think that this could happen every time new
memory is allocated, e.g. new objects are created, but this is not the case. Instead, we
have the following situation:

The entry point of any process of garbage collection is an invocation of the function
garbage_collect_1 in file alloc.c. The invocation can occur ezplicitly by calling the
function Fgarbage_collect (in addition this function provides information about the freed
memory), or can occur implicitly in four different situations:

1. In function main_1 in file emacs.c. This function is called at each startup of xemacs.
The garbage collection is invoked after all initial creations are completed, but only if a
special internal error checking-constant ERROR_CHECK_GC is defined.

2. In function disksave_object_finalization in file alloc.c. The only purpose of this
function is to clear the objects from memory which need not be stored with xemacs
when we dump out an executable. This is only done by Fdump_emacs or by Fdump_
emacs_data respectively (both in emacs.c). The actual clearing is accomplished by
making these objects unreachable and starting a garbage collection. The function is
only used while building xemacs.

3. In function Feval / eval in file eval.c. Each time the well known and often used
function eval is called to evaluate a form, one of the first things that could happen, is
a potential call of garbage_collect_1. There exist three global variables, consing_
since_gc (counts the created cons-cells since the last garbage collection), gc_cons_
threshold (a specified threshold after which a garbage collection occurs) and always_
gc. If always_gc is set or if the threshold is exceeded, the garbage collection will
start.

4. In function Ffuncall / funcall in file eval.c. This function evaluates calls of elisp
functions and works according to Feval.

The upshot is that garbage collection can basically occur everywhere Feval, respectively
Ffuncall, is used - either directly or through another function. Since calls to these two func-

Chapter 14: Allocation of Objects in XEmacs Lisp 89

tions are hidden in various other functions, many calls to garbage_collect_1 are not obvi-
ously foreseeable, and therefore unexpected. Instances where they are used that are worth
remembering are various elisp commands, as for example or, and, if, cond, while, setq,
etc., miscellaneous gui_item_... functions, everything related to eval (Feval_buffer,
callo, ...) and inside Fsignal. The latter is used to handle signals, as for example the
ones raised by every QUIT-macro triggered after pressing Ctrl-g.

14.4.2 garbage collect 1
We can now describe exactly what happens after the invocation takes place.

1. There are several cases in which the garbage collector is left immediately: when we
are already garbage collecting (gc_in_progress), when the garbage collection is some-
how forbidden (gc_currently_forbidden), when we are currently displaying some-
thing (in_display) or when we are preparing for the armageddon of the whole system
(preparing_for_armageddon).

2. Next the correct frame in which to put all the output occurring during garbage collect-
ing is determined. In order to be able to restore the old display’s state after displaying
the message, some data about the current cursor position has to be saved. The variables
pre_gc_cursor and cursor_changed take care of that.

3. The state of gc_currently_forbidden must be restored after the garbage collection,
no matter what happens during the process. We accomplish this by record_unwind_
protecting the suitable function restore_gc_inhibit together with the current value
of gc_currently_forbidden.

4. If we are concurrently running an interactive xemacs session, the next step is simply
to show the garbage collector’s cursor/message.

5. The following steps are the intrinsic steps of the garbage collector, therefore gc_in_
progress is set.

6. For debugging purposes, it is possible to copy the current C stack frame. However, this
seems to be a currently unused feature.

7. Before actually starting to go over all live objects, references to objects that are no
longer used are pruned. We only have to do this for events (clear_event_resource)
and for specifiers (cleanup_specifiers).

8. Now the mark phase begins and marks all accessible elements. In order to start from
all slots that serve as roots of accessibility, the function mark_object is called for each
root individually to go out from there to mark all reachable objects. All roots that are
traversed are shown in their processed order:

o all constant symbols and static variables that are registered via staticpro in the
dynarr staticpros. See Section 10.5 [Adding Global Lisp Variables], page 44.

e all Lisp objects that are created in C functions and that must be protected from
freeing them. They are registered in the global list gcprolist. See Section 14.3
[GCPROing], page 86.

e all local variables (i.e. their name fields symbol and old values old_values)
that are bound during the evaluation by the Lisp engine. They are stored in
specbinding structs pushed on a stack called specpdl. See Section 17.2 [Dy-
namic Binding; The specbinding Stack; Unwind-Protects], page 119.

90

XEmacs Internals Manual

e all catch blocks that the Lisp engine encounters during the evaluation cause the
creation of structs catchtag inserted in the list catchlist. Their tag (tag) and
value (val fields are freshly created objects and therefore have to be marked. See
Section 17.4 [Catch and Throw], page 119.

e every function application pushes new structs backtrace on the call stack of the
Lisp engine (backtrace_list). The unique parts that have to be marked are the
fields for each function (function) and all their arguments (args). See Section 17.1
[Evaluation], page 117.

e all objects that are used by the redisplay engine that must not be freed are marked
by a special function called mark_redisplay (in redisplay.c).

e all objects created for profiling purposes are allocated by C functions instead of
using the lisp allocation mechanisms. In order to receive the right ones during the
sweep phase, they also have to be marked manually. That is done by the function
mark_profiling_info

9. Hash tables in XEmacs belong to a kind of special objects that make use of a concept

often called 'weak pointers’. To make a long story short, these kind of pointers are
not followed during the estimation of the live objects during garbage collection. Any
object referenced only by weak pointers is collected anyway, and the reference to it
is cleared. In hash tables there are different usage patterns of them, manifesting in
different types of hash tables, namely 'non-weak’, 'weak’, ’key-weak’ and 'value-weak’
(internally also 'key-car-weak’ and ’value-car-weak’) hash tables, each clearing entries
depending on different conditions. More information can be found in the documentation
to the function make-hash-table.

Because there are complicated dependency rules about when and what to mark while
processing weak hash tables, the standard marker method is only active if it is marking
non-weak hash tables. As soon as a weak component is in the table, the hash table
entries are ignored while marking. Instead their marking is done each separately by the
function finish_marking weak_hash_tables. This function iterates over each hash
table entry hentries for each weak hash table in Vall_weak_hash_tables. Depend-
ing on the type of a table, the appropriate action is performed. If a table is acting
as HASH_TABLE_KEY_WEAK, and a key already marked, everything reachable from the
value component is marked. If it is acting as a HASH_TABLE_VALUE_WEAK and the
value component is already marked, the marking starts beginning only from the key
component. If it is a HASH_TABLE_KEY_CAR_WEAK and the car of the key entry is al-
ready marked, we mark both the key and value components. Finally, if the table is of
the type HASH_TABLE_VALUE_CAR_WEAK and the car of the value components is already
marked, again both the key and the value components get marked.

Again, there are lists with comparable properties called weak lists. There exist different
peculiarities of their types called simple, assoc, key-assoc and value-assoc. You
can find further details about them in the description to the function make-weak-1ist.
The scheme of their marking is similar: all weak lists are listed in Qall_weak_lists,
therefore we iterate over them. The marking is advanced until we hit an already
marked pair. Then we know that during a former run all the rest has been marked
completely. Again, depending on the special type of the weak list, our jobs differ. If
it is a WEAK_LIST_SIMPLE and the elem is marked, we mark the cons part. If it is a
WEAK_LIST_ASSOC and not a pair or a pair with both marked car and cdr, we mark the

Chapter 14: Allocation of Objects in XEmacs Lisp 91

cons and the elem. If it is a WEAK_LIST_KEY_ASSOC and not a pair or a pair with a
marked car of the elem, we mark the cons and the elem. Finally, if it is a WEAK_LIST_
VALUE_ASSOC and not a pair or a pair with a marked cdr of the elem, we mark both
the cons and the elem.

Since, by marking objects in reach from weak hash tables and weak lists, other objects
could get marked, this perhaps implies further marking of other weak objects, both
finishing functions are redone as long as yet unmarked objects get freshly marked.

10. After completing the special marking for the weak hash tables and for the weak lists,
all entries that point to objects that are going to be swept in the further process are
useless, and therefore have to be removed from the table or the list.

The function prune_weak_hash_tables does the job for weak hash tables. Totally
unmarked hash tables are removed from the list Vall_weak_hash_tables. The other
ones are treated more carefully by scanning over all entries and removing one as soon
as one of the components key and value is unmarked.

The same idea applies to the weak lists. It is accomplished by prune_weak_lists: An
unmarked list is pruned from Vall_weak_lists immediately. A marked list is treated
more carefully by going over it and removing just the unmarked pairs.

11. The function prune_specifiers checks all listed specifiers held in Vall_specifiers
and removes the ones from the lists that are unmarked.

12. All syntax tables are stored in a list called Vall_syntax_tables. The function prune_
syntax_tables walks through it and unlinks the tables that are unmarked.

13. Next, we will attack the complete sweeping - the function gc_sweep which holds the
predominance.

14. First, all the variables with respect to garbage collection are reset. consing_since_gc
- the counter of the created cells since the last garbage collection - is set back to 0, and
gc_in_progress is not true anymore.

15. In case the session is interactive, the displayed cursor and message are removed again.

16. The state of gc_inhibit is restored to the former value by unwinding the stack.

17. A small memory reserve is always held back that can be reached by breathing_space.
If nothing more is left, we create a new reserve and exit.

14.4.3 mark_object

The first thing that is checked while marking an object is whether the object is a real
Lisp object Lisp_Type_Record or just an integer or a character. Integers and characters
are the only two types that are stored directly - without another level of indirection, and
therefore they don’t have to be marked and collected. See Chapter 8 [How Lisp Objects
Are Represented in CJ, page 29.

The second case is the one we have to handle. It is the one when we are dealing with a
pointer to a Lisp object. But, there exist also three possibilities, that prevent us from doing
anything while marking: The object is read only which prevents it from being garbage
collected, i.e. marked (C_READONLY_RECORD_HEADER). The object in question is already
marked, and need not be marked for the second time (checked by MARKED_RECORD_HEADER_
P). If it is a special, unmarkable object (UNMARKABLE_RECORD_HEADER_P, apparently, these
are objects that sit in some const space, and can therefore not be marked, see this_one_
is_unmarkable in alloc.c).

92 XEmacs Internals Manual

Now, the actual marking is feasible. We do so by once using the macro MARK_RECORD_
HEADER to mark the object itself (actually the special flag in the Irecord header), and calling
its special marker "method" marker if available. The marker method marks every other
object that is in reach from our current object. Note, that these marker methods should not
call mark_object recursively, but instead should return the next object from where further
marking has to be performed.

In case another object was returned, as mentioned before, we reiterate the whole mark_
object process beginning with this next object.

14.4.4 gc_sweep

The job of this function is to free all unmarked records from memory. As we know, there
are different types of objects implemented and managed, and consequently different ways
to free them from memory. See Section 14.1 [Introduction to Allocation], page 85.

We start with all objects stored through lcrecords. All bulkier objects are allocated
and handled using that scheme of 1crecords. Each object is malloced separately instead
of placing it in one of the contiguous frob blocks. All types that are currently stored
using lcrecords’s alloc_lcrecord and make_lcrecord_list are the types: vectors,
buffers, char-table, char-table-entry, console, weak-list, database, device, Idap, hash-table,
command-builder, extent-auxiliary, extent-info, face, coding-system, frame, image-instance,
glyph, popup-data, gui-item, keymap, charset, color_instance, font_instance, opaque,
opaque-list, process, range-table, specifier, symbol-value-buffer-local, symbol-value-lisp-
magic, symbol-value-varalias, toolbar-button, tooltalk-message, tooltalk-pattern, window,
and window-configuration. We take care of them in the fist place in order to be able to
handle and to finalize items stored in them more easily. The function sweep_lcrecords_1
as described below is doing the whole job for us. For a description about the internals: See
Section 14.7 [Irecords], page 95.

Our next candidates are the other objects that behave quite differently than everything
else: the strings. They consists of two parts, a fixed-size portion (struct Lisp_String)
holding the string’s length, its property list and a pointer to the second part, and the
actual string data, which is stored in string-chars blocks comparable to frob blocks. In this
block, the data is not only freed, but also a compression of holes is made, i.e. all strings
are relocated together. See Section 14.14 [String], page 100. This compacting phase is
performed by the function compact_string_chars, the actual sweeping by the function
sweep_strings is described below.

After that, the other types are swept step by step using functions sweep_conses,
sweep_bit_vectors_1, sweep_compiled_functions, sweep_floats, sweep_symbols,
sweep_extents, sweep_markers and sweep_extents. They are the fixed-size types cons,
floats, compiled-functions, symbol, marker, extent, and event stored in so-called "frob
blocks", and therefore we can basically do the same on every type objects, using the same
macros, especially defined only to handle everything with respect to fixed-size blocks. The
only fixed-size type that is not handled here are the fixed-size portion of strings, because
we took special care of them earlier.

The only big exceptions are bit vectors stored differently and therefore treated differently
by the function sweep_bit_vectors_1 described later.

At first, we need some brief information about how these fixed-size types are managed
in general, in order to understand how the sweeping is done. They have all a fixed size, and

Chapter 14: Allocation of Objects in XEmacs Lisp 93

are therefore stored in big blocks of memory - allocated at once - that can hold a certain
amount of objects of one type. The macro DECLARE_FIXED_TYPE_ALLOC creates the suitable
structures for every type. More precisely, we have the block struct (holding a pointer to the
previous block prev and the objects in block[]), a pointer to current block (current_. . ._
block)) and its last index (current_..._block_index), and a pointer to the free list that
will be created. Also a macro FIXED_TYPE_FROM_BLOCK plus some related macros exists
that are used to obtain a new object, either from the free list ALLOCATE_FIXED_TYPE_1 if
there is an unused object of that type stored or by allocating a completely new block using
ALLOCATE_FIXED_TYPE_FROM_BLOCK.

The rest works as follows: all of them define a macro UNMARK_. . . that is used to unmark
the object. They define a macro ADDITIONAL_FREE_... that defines additional work that
has to be done when converting an object from in use to not in use (so far, only markers
use it in order to unchain them). Then, they all call the macro SWEEP_FIXED_TYPE_BLOCK
instantiated with their type name and their struct name.

This call in particular does the following: we go over all blocks starting with the current
moving towards the oldest. For each block, we look at every object in it. If the object
already freed (checked with FREE_STRUCT_P using the first pointer of the object), or if it is
set to read only (C_READONLY_RECORD_HEADER_P, nothing must be done. If it is unmarked
(checked with MARKED_RECORD_HEADER_P), it is put in the free list and set free (using the
macro FREE_FIXED_TYPE, otherwise it stays in the block, but is unmarked (by UNMARK_. . .).
While going through one block, we note if the whole block is empty. If so, the whole block
is freed (using xfree) and the free list state is set to the state it had before handling this
block.

14.4.5 sweep_Icrecords 1

After nullifying the complete lcrecord statistics, we go over all lcrecords two separate times.
They are all chained together in a list with a head called all_lcrecords.

The first loop calls for each object its finalizer method, but only in the case that it is
not read only (C_READONLY_RECORD_HEADER_P), it is not already marked (MARKED_RECORD_
HEADER_P), it is not already in a free list (list of freed objects, field free) and finally it owns
a finalizer method.

The second loop actually frees the appropriate objects again by iterating through the
whole list. In case an object is read only or marked, it has to persist, otherwise it is
manually freed by calling xfree. During this loop, the lcrecord statistics are kept up to
date by calling tick_lcrecord_stats with the right arguments,

14.4.6 compact_string_chars

The purpose of this function is to compact all the data parts of the strings that are held
in so-called string_chars_block, i.e. the strings that do not exceed a certain maximal
length.

The procedure with which this is done is as follows. We are keeping two positions in
the string_chars_blocks using two pointer/integer pairs, namely from_sb/from_pos and
to_sb/to_pos. They stand for the actual positions, from where to where, to copy the
actually handled string.

94 XEmacs Internals Manual

While going over all chained string_char_blocks and their held strings, staring at
first_string_chars_block, both pointers are advanced and eventually a string is copied
from from_sb to to_sb, depending on the status of the pointed at strings.

More precisely, we can distinguish between the following actions.

e The string at from_sb’s position could be marked as free, which is indicated by an
invalid pointer to the pointer that should point back to the fixed size string object, and
which is checked by FREE_STRUCT_P. In this case, the from_sb/from_pos is advanced
to the next string, and nothing has to be copied.

o Also, if a string object itself is unmarked, nothing has to be copied. We likewise advance
the from_sb/from_pos pair as described above.

e In all other cases, we have a marked string at hand. The string data must be moved
from the from-position to the to-position. In case there is not enough space in the
actual to_sb-block, we advance this pointer to the beginning of the next block before
copying. In case the from and to positions are different, we perform the actual copying
using the library function memmove.

After compacting, the pointer to the current string_chars_block, sitting in current_
string_chars_block, is reset on the last block to which we moved a string, i.e. to_block,
and all remaining blocks (we know that they just carry garbage) are explicitly xfreed.

14.4.7 sweep_strings

The sweeping for the fixed sized string objects is essentially exactly the same as it is for
all other fixed size types. As before, the freeing into the suitable free list is done by using
the macro SWEEP_FIXED_SIZE_BLOCK after defining the right macros UNMARK_string and
ADDITIONAL_FREE_string. These two definitions are a little bit special compared to the
ones used for the other fixed size types.

UNMARK_string is defined the same way except some additional code used for updating
the bookkeeping information.

For strings, ADDITIONAL_FREE_string has to do something in addition: in case, the
string was not allocated in a string_chars_block because it exceeded the maximal length,
and therefore it was malloced separately, we know also xfree it explicitly.

14.4.8 sweep_bit_vectors 1

Bit vectors are also one of the rare types that are malloced individually. Consequently,
while sweeping, all further needless bit vectors must be freed by hand. This is done, as
one might imagine, the expected way: since they are all registered in a list called all_bit_
vectors, all elements of that list are traversed, all unmarked bit vectors are unlinked by
calling xfree and all of them become unmarked. In addition, the bookkeeping information
used for garbage collector’s output purposes is updated.

14.5 Integers and Characters

Integer and character Lisp objects are created from integers using the macros XSETINT ()
and XSETCHAR() or the equivalent functions make_int() and make_char(). (These are
actually macros on most systems.) These functions basically just do some moving of bits
around, since the integral value of the object is stored directly in the Lisp_Object.

Chapter 14: Allocation of Objects in XEmacs Lisp 95

XSETINT() and the like will truncate values given to them that are too big; i.e. you
won’t get the value you expected but the tag bits will at least be correct.

14.6 Allocation from Frob Blocks

The uninitialized memory required by a Lisp_Object of a particular type is allocated
using ALLOCATE_FIXED_TYPE(). This only occurs inside of the lowest-level object-creating
functions in ‘alloc.c’: Fcons(), make_float(), Fmake_byte_code(), Fmake_symbol(),
allocate_extent(), allocate_event(), Fmake_marker (), and make_uninit_string().
The idea is that, for each type, there are a number of frob blocks (each 2K in size); each
frob block is divided up into object-sized chunks. Each frob block will have some of these
chunks that are currently assigned to objects, and perhaps some that are free. (If a frob
block has nothing but free chunks, it is freed at the end of the garbage collection cycle.)
The free chunks are stored in a free list, which is chained by storing a pointer in the first
four bytes of the chunk. (Except for the free chunks at the end of the last frob block, which
are handled using an index which points past the end of the last-allocated chunk in the
last frob block.) ALLOCATE_FIXED_TYPE() first tries to retrieve a chunk from the free list;
if that fails, it calls ALLOCATE_FIXED_TYPE_FROM_BLOCK (), which looks at the end of the
last frob block for space, and creates a new frob block if there is none. (There are actually
two versions of these macros, one of which is more defensive but less efficient and is used
for error-checking.)

14.7 lrecords

[see ‘lrecord.h’]

All Irecords have at the beginning of their structure a struct lrecord_header. This just
contains a type number and some flags, including the mark bit. All builtin type numbers are
defined as constants in enum 1lrecord_type, to allow the compiler to generate more efficient
code for type P. The type number, thru the 1record_implementation_table, gives access
toa struct lrecord_implementation, which is a structure containing method pointers and
such. There is one of these for each type, and it is a global, constant, statically-declared
structure that is declared in the DEFINE_LRECORD_IMPLEMENTATION() macro.

Simple Irecords (of type (b) above) just have a struct lrecord_header at their begin-
ning. lcrecords, however, actually have a struct lcrecord_header. This, in turn, has a
struct lrecord_header at its beginning, so sanity is preserved; but it also has a pointer
used to chain all lcrecords together, and a special ID field used to distinguish one lcrecord
from another. (This field is used only for debugging and could be removed, but the space
gain is not significant.)

Simple lrecords are created using ALLOCATE_FIXED_TYPE(), just like for other frob
blocks. The only change is that the implementation pointer must be initialized correctly.
(The implementation structure for an lrecord, or rather the pointer to it, is named 1lrecord_
float, lrecord_extent, lrecord_buffer, etc.)

lcrecords are created using alloc_lcrecord(). This takes a size to allocate and an
implementation pointer. (The size needs to be passed because some lcrecords, such as
window configurations, are of variable size.) This basically just malloc()s the storage,
initializes the struct lcrecord_header, and chains the lcrecord onto the head of the list of

96 XEmacs Internals Manual

all lcrecords, which is stored in the variable all_lcrecords. The calls to alloc_lcrecord()
generally occur in the lowest-level allocation function for each Irecord type.

Whenever you create an lrecord, you need to call either DEFINE_LRECORD_
IMPLEMENTATION() or DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION(). This needs
to be specified in a ‘.c’ file, at the top level. What this actually does is define and
initialize the implementation structure for the lrecord. (And possibly declares a function
error_check_foo() that implements the XFOO() macro when error-checking is enabled.)
The arguments to the macros are the actual type name (this is used to construct the C
variable name of the Irecord implementation structure and related structures using the ‘##’
macro concatenation operator), a string that names the type on the Lisp level (this may
not be the same as the C type name; typically, the C type name has underscores, while the
Lisp string has dashes), various method pointers, and the name of the C structure that
contains the object. The methods are used to encapsulate type-specific information about
the object, such as how to print it or mark it for garbage collection, so that it’s easy to
add new object types without having to add a specific case for each new type in a bunch
of different places.

The difference between DEFINE_LRECORD_IMPLEMENTATION() and DEFINE_LRECORD_
SEQUENCE_IMPLEMENTATION() is that the former is used for fixed-size object types and the
latter is for variable-size object types. Most object types are fixed-size; some complex
types, however (e.g. window configurations), are variable-size. Variable-size object types
have an extra method, which is called to determine the actual size of a particular object of
that type. (Currently this is only used for keeping allocation statistics.)

For the purpose of keeping allocation statistics, the allocation engine keeps a list of
all the different types that exist. Note that, since DEFINE_LRECORD_IMPLEMENTATION() is
a macro that is specified at top-level, there is no way for it to initialize the global data
structures containing type information, like 1record_implementations_table. For this
reason a call to INIT_LRECORD_IMPLEMENTATION must be added to the same source file
containing DEFINE_LRECORD_IMPLEMENTATION, but instead of to the top level, to one of the
init functions, typically syms_of_foo .c. INIT_LRECORD_IMPLEMENTATION must be called
before an object of this type is used.

The type number is also used to index into an array holding the number of objects of
each type and the total memory allocated for objects of that type. The statistics in this
array are computed during the sweep stage. These statistics are returned by the call to
garbage-collect.

Note that for every type defined with a DEFINE_LRECORD_* () macro, there needs to be
a DECLARE_LRECORD_IMPLEMENTATION() somewhere in a ‘.h’ file, and this ‘.h’ file needs to
be included by ‘inline.c’.

Furthermore, there should generally be a set of XFOOBAR(), FOOBARP (), etc. macros in
a ‘.h’ (or occasionally ‘.c’) file. To create one of these, copy an existing model and modify
as necessary.

Please note: If you define an Irecord in an external dynamically-loaded module, you
must use DECLARE_EXTERNAL_LRECORD, DEFINE_EXTERNAL_LRECORD_IMPLEMENTATION, and
DEFINE_EXTERNAL_LRECORD_SEQUENCE_IMPLEMENTATION instead of the non-EXTERNAL
forms. These macros will dynamically add new type numbers to the global enum that

Chapter 14: Allocation of Objects in XEmacs Lisp 97

records them, whereas the non-EXTERNAL forms assume that the programmer has already
inserted the correct type numbers into the enum’s code at compile-time.

The various methods in the Irecord implementation structure are:

1. A mark method. This is called during the marking stage and passed a function pointer
(usually the mark_object () function), which is used to mark an object. All Lisp objects
that are contained within the object need to be marked by applying this function to
them. The mark method should also return a Lisp object, which should be either
nil or an object to mark. (This can be used in lieu of calling mark_object () on the
object, to reduce the recursion depth, and consequently should be the most heavily
nested sub-object, such as a long list.)

Please note: When the mark method is called, garbage collection is in progress, and
special precautions need to be taken when accessing objects; see section (B) above.

If your mark method does not need to do anything, it can be NULL.

2. A print method. This is called to create a printed representation of the object, whenever
princ, prinl, or the like is called. It is passed the object, a stream to which the
output is to be directed, and an escapeflag which indicates whether the object’s
printed representation should be escapedso that it is readable. (This corresponds
to the difference between princ and prinl.) Basically, escapedmeans that strings
will have quotes around them and confusing characters in the strings such as quotes,
backslashes, and newlines will be backslashed; and that special care will be taken to
make symbols print in a readable fashion (e.g. symbols that look like numbers will
be backslashed). Other readable objects should perhaps pass escapeflag on when
sub-objects are printed, so that readability is preserved when necessary (or if not,
always pass in a 1 for escapeflag). Non-readable objects should in general ignore
escapeflag, except that some use it as an indication that more verbose output should
be given.

Sub-objects are printed using print_internal (), which takes exactly the same argu-
ments as are passed to the print method.

Literal C strings should be printed using write_c_string(), or write_string_1()
for non-null-terminated strings.

Functions that do not have a readable representation should check the print_readably
flag and signal an error if it is set.

If you specify NULL for the print method, the default_object_printer() will be
used.

3. A nalize method. This is called at the beginning of the sweep stage on lcrecords that
are about to be freed, and should be used to perform any extra object cleanup. This
typically involves freeing any extra malloc()ed memory associated with the object,
releasing any operating-system and window-system resources associated with the object
(e.g. pixmaps, fonts), etc.

The finalize method can be NULL if nothing needs to be done.

WARNING #1: The finalize method is also called at the end of the dump phase;
this time with the for_disksave parameter set to non-zero. The object is not about
to disappear, so you have to make sure to not free any extra malloc()ed memory if
you're going to need it later. (Also, signal an error if there are any operating-system
and window-system resources here, because they can’t be dumped.)

98

XEmacs Internals Manual

Finalize methods should, as a rule, set to zero any pointers after they’ve been freed, and
check to make sure pointers are not zero before freeing. Although I'm pretty sure that
finalize methods are not called twice on the same object (except for the for_disksave
proviso), we’ve gotten nastily burned in some cases by not doing this.

WARNING #2: The finalize method is only called for Icrecords, not for simply Irecords.
If you need a finalize method for simple Irecords, you have to stick it in the ADDITIONAL _
FREE_foo() macro in ‘alloc.c’.

WARNING #3: Things are in an extremely bizarre state when ADDITIONAL_FREE_
foo () is called, so you have to be incredibly careful when writing one of these functions.
See the comment in gc_sweep(). If you ever have to add one of these, consider using
an lcrecord or dealing with the problem in a different fashion.

An equal method. This compares the two objects for similarity, when equal is called.
It should compare the contents of the objects in some reasonable fashion. It is passed
the two objects and a depth value, which is used to catch circular objects. To compare
sub-Lisp-objects, call internal_equal() and bump the depth value by one. If this
value gets too high, a circular-object error will be signaled.

If this is NULL, objects are equal only when they are eq, i.e. identical.

A hash method. This is used to hash objects when they are to be compared with
equal. The rule here is that if two objects are equal, they must hash to the same
value; i.e. your hash function should use some subset of the sub-fields of the object that
are compared in the “equal” method. If you specify this method as NULL, the object’s
pointer will be used as the hash, which will fail if the object has an equal method, so
don’t do this.

To hash a sub-Lisp-object, call internal_hash(). Bump the depth by one, just like
in the “equal” method.

To convert a Lisp object directly into a hash value (using its pointer), use LISP_HASH().
This is what happens when the hash method is NULL.

To hash two or more values together into a single value, use HASH2(), HASH3(),
HASH4 (), etc.

getprop, putprop, remprop, and plist methods. These are used for object types
that have properties. 1 don’t feel like documenting them here. If you create
one of these objects, you have to wuse different macros to define them, i.e.
DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS() or DEFINE_LRECORD_SEQUENCE_
IMPLEMENTATION_WITH_PROPS().

A sizein_bytes method, when the object is of variable-size. (i.e. declared with a
_SEQUENCE_IMPLEMENTATION macro.) This should simply return the object’s size in
bytes, exactly as you might expect. For an example, see the methods for window
configurations and opaques.

14.8 Low-level allocation

Memory that you want to allocate directly should be allocated using xmalloc() rather
than malloc (). This implements error-checking on the return value, and once upon a time
did some more vital stuff (i.e. BLOCK_INPUT, which is no longer necessary). Free using
xfree (), and realloc using xrealloc(). Note that xmalloc() will do a non-local exit if

Chapter 14: Allocation of Objects in XEmacs Lisp 99

the memory can’t be allocated. (Many functions, however, do not expect this, and thus
XEmacs will likely crash if this happens. This is a bug. If you can, you should strive
to make your function handle this OK. However, it’s difficult in the general circumstance,
perhaps requiring extra unwind-protects and such.)

Note that XEmacs provides two separate replacements for the standard malloc() li-
brary function. These are called old GNU malloc (‘malloc.c’) and new GNU malloc
(‘gmalloc.c’), respectively. New GNU malloc is better in pretty much every way than old
GNU malloc, and should be used if possible. (It used to be that on some systems, the old
one worked but the new one didn’t. I think this was due specifically to a bug in SunOS,
which the new one now works around; so I don’t think the old one ever has to be used
any more.) The primary difference between both of these mallocs and the standard system
malloc is that they are much faster, at the expense of increased space. The basic idea is
that memory is allocated in fixed chunks of powers of two. This allows for basically con-
stant malloc time, since the various chunks can just be kept on a number of free lists. (The
standard system malloc typically allocates arbitrary-sized chunks and has to spend some
time, sometimes a significant amount of time, walking the heap looking for a free block to
use and cleaning things up.) The new GNU malloc improves on things by allocating large
objects in chunks of 4096 bytes rather than in ever larger powers of two, which results in
ever larger wastage. There is a slight speed loss here, but it’s of doubtful significance.

NOTE: Apparently there is a third-generation GNU malloc that is significantly better
than the new GNU malloc, and should probably be included in XEmacs.

There is also the relocating allocator, ‘ralloc.c’. This actually moves blocks of memory
around so that the sbrk() pointer shrunk and virtual memory released back to the system.
On some systems, this is a big win. On all systems, it causes a noticeable (and sometimes
huge) speed penalty, so I turn it off by default. ‘ralloc.c’ only works with the new GNU
malloc in ‘gmalloc.c’. There are also two versions of ‘ralloc.c’, one that uses mmap ()
rather than block copies to move data around. This purports to be faster, although that
depends on the amount of data that would have had to be block copied and the system-call
overhead for mmap(). I don’t know exactly how this works, except that the relocating-
allocation routines are pretty much used only for the memory allocated for a buffer, which
is the biggest consumer of space, esp. of space that may get freed later.

Note that the GNU mallocs have some “memory warning” facilities. XEmacs taps into
them and issues a warning through the standard warning system, when memory gets to
75%, 85%, and 95% full. (On some systems, the memory warnings are not functional.)

Allocated memory that is going to be used to make a Lisp object is created using
allocate_lisp_storage(). This just calls xmalloc(). It used to verify that the pointer
to the memory can fit into a Lisp word, before the current Lisp object representation was
introduced. allocate_lisp_storage() is called by alloc_lcrecord(), ALLOCATE_FIXED_
TYPE(), and the vector and bit-vector creation routines. These routines also call INCREMENT _
CONS_COUNTER() at the appropriate times; this keeps statistics on how much memory is
allocated, so that garbage-collection can be invoked when the threshold is reached.

14.9 Cons

Conses are allocated in standard frob blocks. The only thing to note is that conses can
be explicitly freed using free_cons() and associated functions free_list() and free_

100 XEmacs Internals Manual

alist (). This immediately puts the conses onto the cons free list, and decrements the
statistics on memory allocation appropriately. This is used to good effect by some extremely
commonly-used code, to avoid generating extra objects and thereby triggering GC sooner.
However, you have to be extremely careful when doing this. If you mess this up, you will
get BADLY BURNED, and it has happened before.

14.10 Vector

As mentioned above, each vector is malloc ()ed individually, and all are threaded through
the variable all_vectors. Vectors are marked strangely during garbage collection, by
kludging the size field. Note that the struct Lisp_Vector is declared with its contents
field being a stretchy array of one element. It is actually malloc()ed with the right size,
however, and access to any element through the contents array works fine.

14.11 Bit Vector

Bit vectors work exactly like vectors, except for more complicated code to access an indi-
vidual bit, and except for the fact that bit vectors are Irecords while vectors are not. (The
only difference here is that there’s an Irecord implementation pointer at the beginning and
the tag field in bit vector Lisp words is “lrecord” rather than “vector”.)

14.12 Symbol

Symbols are also allocated in frob blocks. Symbols in the awful horrible obarray structure
are chained through their next field.

Remember that intern looks up a symbol in an obarray, creating one if necessary.

14.13 Marker

Markers are allocated in frob blocks, as usual. They are kept in a buffer unordered, but in a
doubly-linked list so that they can easily be removed. (Formerly this was a singly-linked list,
but in some cases garbage collection took an extraordinarily long time due to the O(N~2)
time required to remove lots of markers from a buffer.) Markers are removed from a buffer
in the finalize stage, in ADDITIONAL_FREE_marker ().

14.14 String

As mentioned above, strings are a special case. A string is logically two parts, a fixed-size
object (containing the length, property list, and a pointer to the actual data), and the
actual data in the string. The fixed-size object is a struct Lisp_String and is allocated in
frob blocks, as usual. The actual data is stored in special string-chars blocks which are 8K
blocks of memory. Currently-allocated strings are simply laid end to end in these string-
chars blocks, with a pointer back to the struct Lisp_String stored before each string in
the string-chars block. When a new string needs to be allocated, the remaining space at
the end of the last string-chars block is used if there’s enough, and a new string-chars block
is created otherwise.

There are never any holes in the string-chars blocks due to the string compaction and

relocation that happens at the end of garbage collection. During the sweep stage of garbage
collection, when objects are reclaimed, the garbage collector goes through all string-chars

Chapter 14: Allocation of Objects in XEmacs Lisp 101

blocks, looking for unused strings. Each chunk of string data is preceded by a pointer to the
corresponding struct Lisp_String, which indicates both whether the string is used and
how big the string is, i.e. how to get to the next chunk of string data. Holes are compressed
by block-copying the next string into the empty space and relocating the pointer stored in
the corresponding struct Lisp_String. This means you have to be careful with strings in
your code. See the section above on GCPROing.

Note that there is one situation not handled: a string that is too big to fit into a string-
chars block. Such strings, called big strings, are all malloc ()ed as their own block. (####
Although it would make more sense for the threshold for big strings to be somewhat lower,
e.g. 1/2 or 1/4 the size of a string-chars block. It seems that this was indeed the case
formerly—indeed, the threshold was set at 1/8—but Mly forgot about this when rewriting
things for 19.8.)

Note also that the string data in string-chars blocks is padded as necessary so that proper
alignment constraints on the struct Lisp_String back pointers are maintained.

Finally, strings can be resized. This happens in Mule when a character is substituted
with a different-length character, or during modeline frobbing. (You could also export this
to Lisp, but it’s not done so currently.) Resizing a string is a potentially tricky process.
If the change is small enough that the padding can absorb it, nothing other than a simple
memory move needs to be done. Keep in mind, however, that the string can’t shrink too
much because the offset to the next string in the string-chars block is computed by looking
at the length and rounding to the nearest multiple of four or eight. If the string would
shrink or expand beyond the correct padding, new string data needs to be allocated at the
end of the last string-chars block and the data moved appropriately. This leaves some dead
string data, which is marked by putting a special marker of OxFFFFFFFF in the struct
Lisp_String pointer before the data (there’s no real struct Lisp_String to point to and
relocate), and storing the size of the dead string data (which would normally be obtained
from the now-non-existent struct Lisp_String) at the beginning of the dead string data
gap. The string compactor recognizes this special OxFFFFFFFF marker and handles it
correctly.

14.15 Compiled Function
Not yet documented.

102 XEmacs Internals Manual

Chapter 15: Dumping 103

15 Dumping

15.1 What is dumping and its justification

The C code of XEmacs is just a Lisp engine with a lot of built-in primitives useful for
writing an editor. The editor itself is written mostly in Lisp, and represents around 100K
lines of code. Loading and executing the initialization of all this code takes a bit a time
(five to ten times the usual startup time of current xemacs) and requires having all the lisp
source files around. Having to reload them each time the editor is started would not be
acceptable.

The traditional solution to this problem is called dumping: the build process first creates
the lisp engine under the name ‘temacs’, then runs it until it has finished loading and ini-
tializing all the lisp code, and eventually creates a new executable called ‘xemacs’ including
both the object code in ‘temacs’ and all the contents of the memory after the initialization.

This solution, while working, has a huge problem: the creation of the new executable
from the actual contents of memory is an extremely system-specific process, quite error-
prone, and which interferes with a lot of system libraries (like malloc). It is even getting
worse nowadays with libraries using constructors which are automatically called when the
program is started (even before main()) which tend to crash when they are called multiple
times, once before dumping and once after (IRIX 6.x libz.so pulls in some C++ image
libraries thru dependencies which have this problem). Writing the dumper is also one of
the most difficult parts of porting XEmacs to a new operating system. Basically, ‘dumping’
is an operation that is just not officially supported on many operating systems.

The aim of the portable dumper is to solve the same problem as the system-specific
dumper, that is to be able to reload quickly, using only a small number of files, the fully
initialized lisp part of the editor, without any system-specific hacks.

15.2 Overview

The portable dumping system has to:

1. At dump time, write all initialized, non-quickly-rebuildable data to a file [Note: cur-
rently named ‘xemacs.dmp’, but the name will change], along with all informations
needed for the reloading.

2. When starting xemacs, reload the dump file, relocate it to its new starting address if
needed, and reinitialize all pointers to this data. Also, rebuild all the quickly rebuildable
data.

15.3 Data descriptions

The more complex task of the dumper is to be able to write lisp objects (lrecords) and C
structs to disk and reload them at a different address, updating all the pointers they include
in the process. This is done by using external data descriptions that give information about
the layout of the structures in memory.

The specification of these descriptions is in lrecord.h. A description of an lrecord is an
array of struct lrecord_description. Each of these structs include a type, an offset in the
structure and some optional parameters depending on the type. For instance, here is the
string description:

104 XEmacs Internals Manual

static const struct lrecord_description string_description[] = {

{ XD_BYTECOUNT, offsetof (Lisp_String, size) },

{ XD_OPAQUE_DATA_PTR, offsetof (LiSp_String, data), XD_INDIRECT(O, 1) 1},
{ XD_LISP_OBJECT, offsetof (Lisp_String, plist) 1},

{ XD_END }

};

The first line indicates a member of type Bytecount, which is used by the next, indirect
directive. The second means "there is a pointer to some opaque data in the field data".
The length of said data is given by the expression XD_INDIRECT (O, 1), which means "the
value in the Oth line of the description (welcome to C) plus one". The third line means
"there is a Lisp_Object member plist in the Lisp_String structure". XD_END then ends the
description.

This gives us all the information we need to move around what is pointed to by a
structure (C or lrecord) and, by transitivity, everything that it points to. The only miss-
ing information for dumping is the size of the structure. For lrecords, this is part of
the Irecord_implementation, so we don’t need to duplicate it. For C structures we use
a struct struct_description, which includes a size field and a pointer to an associated array
of lrecord_description.

15.4 Dumping phase

Dumping is done by calling the function pdump() (in dumper.c) which is invoked from
Fdump_emacs (in emacs.c). This function performs a number of tasks.

15.4.1 Object inventory
The first task is to build the list of the objects to dump. This includes:
e lisp objects
e C structures
We end up with one pdump_entry_list_elmt per object group (arrays of C structs are
kept together) which includes a pointer to the first object of the group, the per-object size

and the count of objects in the group, along with some other information which is initialized
later.

These entries are linked together in pdump_entry_list structures and can be enumer-
ated thru either:

1. the pdump_object_table, an array of pdump_entry_list, one per lrecord type, in-
dexed by type number.

2. the pdump_opaque_data_list, used for the opaque data which does not include point-
ers, and hence does not need descriptions.

3. the pdump_struct_table, which is a vector of struct_description/pdump_entry_
list pairs, used for non-opaque C structures.
This uses a marking strategy similar to the garbage collector. Some differences though:

1. We do not use the mark bit (which does not exist for C structures anyway); we use a
big hash table instead.

Chapter 15: Dumping 105

2. We do not use the mark function of lrecords but instead rely on the external descrip-
tions. This happens essentially because we need to follow pointers to C structures and
opaque data in addition to Lisp_Object members.

This is done by pdump_register_object (), which handles Lisp_Object variables, and
pdump_register_struct () which handles C structures, which both delegate the description
management to pdump_register_sub().

The hash table doubles as a map object to pdump_entry_list_elmt (i.e. allows us to look
up a pdump_entry_list_elmt with the object it points to). Entries are added with pdump_
add_entry () and looked up with pdump_get_entry(). There is no need for entry removal.
The hash value is computed quite simply from the object pointer by pdump_make_hash().

The roots for the marking are:

1. the staticpro’ed variables (there is a special staticpro_nodump() call for protected
variables we do not want to dump).

2. the variables registered via dump_add_root_object (staticpro() is equivalent to
staticpro_nodump() + dump_add_root_object()).

3. the variables registered via dump_add_root_struct_ptr, each of which points to a C
structure.

This does not include the GCPRO’ed variables, the specbinds, the catchtags, the backlist,
the redisplay or the profiling info, since we do not want to rebuild the actual chain of lisp
calls which end up to the dump-emacs call, only the global variables.

Weak lists and weak hash tables are dumped as if they were their non-weak equivalent
(without changing their type, of course). This has not yet been a problem.

15.4.2 Address allocation

The next step is to allocate the offsets of each of the objects in the final dump file.
This is done by pdump_allocate_offset () which is called indirectly by pdump_scan_by_
alignment ().

The strategy to deal with alignment problems uses these facts:
1. real world alignment requirements are powers of two.

2. the C compiler is required to adjust the size of a struct so that you can have an array
of them next to each other. This means you can have an upper bound of the alignment
requirements of a given structure by looking at which power of two its size is a multiple.

3. the non-variant part of variable size Irecords has an alignment requirement of 4.
Hence, for each Irecord type, C struct type or opaque data block the alignment require-
ment is computed as a power of two, with a minimum of 272 for lrecords. pdump_scan_

by_alignment () then scans all the pdump_entry_list_elmt’s, the ones with the highest
requirements first. This ensures the best packing.

The maximum alignment requirement we take into account is 2°8.

pdump_allocate_offset () only has to do a linear allocation, starting at offset 256 (this
leaves room for the header and keeps the alignments happy).

106 XEmacs Internals Manual

15.4.3 The header

The next step creates the file and writes a header with a signature and some random
information in it. The reloc_address field, which indicates at which address the file
should be loaded if we want to avoid post-reload relocation, is set to 0. It then seeks to
offset 256 (base offset for the objects).

15.4.4 Data dumping

The data is dumped in the same order as the addresses were allocated by pdump_dump_
data(), called from pdump_scan_by_alignment(). This function copies the data to a
temporary buffer, relocates all pointers in the object to the addresses allocated in step
Address Allocation, and writes it to the file. Using the same order means that, if we are
careful with lrecords whose size is not a multiple of 4, we are ensured that the object is
always written at the offset in the file allocated in step Address Allocation.

15.4.5 Pointers dumping

A bunch of tables needed to reassign properly the global pointers are then written. They
are:

1. the pdump_root_struct_ptrs dynarr
2. the pdump_opaques dynarr

3. a vector of all the offsets to the objects in the file that include a description (for faster
relocation at reload time)

4. the pdump_root_objects and pdump_weak_object_chains dynarrs.
For each of the dynarrs we write both the pointer to the variables and the relocated

offset of the object they point to. Since these variables are global, the pointers are still
valid when restarting the program and are used to regenerate the global pointers.

The pdump_weak_object_chains dynarr is a special case. The variables it points to are
the head of weak linked lists of lisp objects of the same type. Not all objects of this list are
dumped so the relocated pointer we associate with them points to the first dumped object
of the list, or Qnil if none is available. This is also the reason why they are not used as
roots for the purpose of object enumeration.

Some very important information like the staticpros and lrecord_implementations_
table are handled indirectly using dump_add_opaque or dump_add_root_struct_ptr.

This is the end of the dumping part.

15.5 Reloading phase

15.5.1 File loading

The file is mmap’ed in memory (which ensures a PAGESIZE alignment, at least 4096), or
if mmap is unavailable or fails, a 256-bytes aligned malloc is done and the file is loaded.

Some variables are reinitialized from the values found in the header.

The difference between the actual loading address and the reloc_address is computed
and will be used for all the relocations.

Chapter 15: Dumping 107

15.5.2 Putting back the pdump _opaques

The memory contents are restored in the obvious and trivial way.

15.5.3 Putting back the pdump _root _struct _ptrs

The variables pointed to by pdump_root_struct_ptrs in the dump phase are reset to the
right relocated object addresses.

15.5.4 Object relocation

All the objects are relocated using their description and their offset by pdump_reloc_one.
This step is unnecessary if the reloc_address is equal to the file loading address.

15.5.5 Putting back the pdump _root _objects and
pdump _weak _object _chains

Same as Putting back the pdump_root_struct_ptrs.

15.5.6 Reorganize the hash tables

Since some of the hash values in the lisp hash tables are address-dependent, their layout
is now wrong. So we go through each of them and have them resorted by calling pdump_
reorganize_hash_table.

15.6 Remaining issues

The build process will have to start a post-dump xemacs, ask it the loading address (which
will, hopefully, be always the same between different xemacs invocations) and relocate the
file to the new address. This way the object relocation phase will not have to be done,
which means no writes in the objects and that, because of the use of mmap, the dumped
data will be shared between all the xemacs running on the computer.

Some executable signature will be necessary to ensure that a given dump file is really
associated with a given executable, or random crashes will occur. Maybe a random number
set at compile or configure time thru a define. This will also allow for having differently-
compiled xemacsen on the same system (mule and no-mule comes to mind).

The DOC file contents should probably end up in the dump file.

108 XEmacs Internals Manual

Chapter 16: Events and the Event Loop 109

16 Events and the Event Loop

16.1 Introduction to Events

An event is an object that encapsulates information about an interesting occurrence in the
operating system. Events are generated either by user action, direct (e.g. typing on the
keyboard or moving the mouse) or indirect (moving another window, thereby generating an
expose event on an Emacs frame), or as a result of some other typically asynchronous action
happening, such as output from a subprocess being ready or a timer expiring. Events come
into the system in an asynchronous fashion (typically through a callback being called) and
are converted into a synchronous event queue (first-in, first-out) in a process that we will
call collection.

Note that each application has its own event queue. (It is immaterial whether the
collection process directly puts the events in the proper application’s queue, or puts them
into a single system queue, which is later split up.)

The most basic level of event collection is done by the operating system or window
system. Typically, XEmacs does its own event collection as well. Often there are multiple
layers of collection in XEmacs, with events from various sources being collected into a queue,
which is then combined with other sources to go into another queue (i.e. a second level of
collection), with perhaps another level on top of this, etc.

XEmacs has its own types of events (called Emacs events, which provides an abstract
layer on top of the system-dependent nature of the most basic events that are received.
Part of the complex nature of the XEmacs event collection process involves converting from
the operating-system events into the proper Emacs events—there may not be a one-to-one
correspondence.

Emacs events are documented in ‘events.h’; I'll discuss them later.

16.2 Main Loop

The command loopis the top-level loop that the editor is always running. It loops endlessly,
calling next-event to retrieve an event and dispatch-event to execute it. dispatch-
event does the appropriate thing with non-user events (process, timeout, magic, eval, mouse
motion); this involves calling a Lisp handler function, redrawing a newly-exposed part of a
frame, reading subprocess output, etc. For user events, dispatch-event looks up the event
in relevant keymaps or menubars; when a full key sequence or menubar selection is reached,
the appropriate function is executed. dispatch-event may have to keep state across calls;
this is done in the “command-builder” structure associated with each console (remember,
there’s usually only one console), and the engine that looks up keystrokes and constructs
full key sequences is called the command builder. This is documented elsewhere.

The guts of the command loop are in command_loop_1(). This function doesn’t catch
errors, though—that’s the job of command_loop_2(), which is a condition-case (i.e. error-
trapping) wrapper around command_loop_1(). command_loop_1() never returns, but may
get thrown out of.

When an error occurs, cmd_error() is called, which usually invokes the Lisp error
handler in command-error; however, a default error handler is provided if command-error

110 XEmacs Internals Manual

isnil (e.g. during startup). The purpose of the error handler is simply to display the error
message and do associated cleanup; it does not need to throw anywhere. When the error
handler finishes, the condition-case in command_loop_2() will finish and command_loop_2()
will reinvoke command_loop_1().

command_loop_2() is invoked from three places: from initial_command_loop() (called
from main() at the end of internal initialization), from the Lisp function recursive-edit,
and from call_command_loop().

call_command_loop() is called when a macro is started and when the minibuffer is
entered; normal termination of the macro or minibuffer causes a throw out of the recursive
command loop. (To execute-kbd-macro for macros and exit for minibuffers. Note also
that the low-level minibuffer-entering function, read-minibuffer-internal, provides its
own error handling and does not need command_loop_2()’s error encapsulation; so it tells
call_command_loop() to invoke command_loop_1() directly.)

Note that both read-minibuffer-internal and recursive-edit set up a catch for exit; this
is why abort-recursive-edit, which throws to this catch, exits out of either one.

initial_command_loop(), called from main(), sets up a catch for top-level when
invoking command_loop_2(), allowing functions to throw all the way to the top level if
they really need to. Before invoking command_loop_2(), initial_command_loop() calls
top_level_1(), which handles all of the startup stuff (creating the initial frame, handling
the command-line options, loading the user’s ‘.emacs’ file, etc.). The function that actually
does this is in Lisp and is pointed to by the variable top-level; normally this function is
normal-top-level. top_level_1() is just an error-handling wrapper similar to command _
loop_2(). Note also that initial_command_loop() sets up a catch for top-level when
invoking top_level_1(), just like when it invokes command_loop_2().

16.3 Specifics of the Event Gathering Mechanism

Here is an approximate diagram of the collection processes at work in XEmacs, under TTY’s
(TTY’s are simpler than X so we’ll look at this first):

asynch. asynch. asynch. asynch. [Collectors in
kbd events kbd events process process the 0S]
I | output output

| | | |
| | | | SIGINT, [signal handlers

[| [| SIGQUIT, in XEmacs]
') vV ') v SIGWINCH,
file file file file SIGALRM
desc. desc. desc. desc. |
(TTY) (TTY) (pipe) (pipe) |
[| [| fake timeouts
file |
desc.

|

| |
| (pipe) |
I I I
| |
| |

Chapter 16: Events and the Event Loop 111

|
|
| [collected using select() in emacs_tty_next_event()
| and converted to the appropriate Emacs event]

|

|

v (above this line is TTY-specific)
Emacs -=-=----====------——mm e
event (below this line is the generic event mechanism)
I
|
was there if not, call
a SIGINT? emacs_tty_next_event()

|
[[collected in event_stream_next_event();
[SIGINT is converted using maybe_read_quit_event ()]

\-—==>—=——=- >——--- maybe_kbd_translate() ---->---\
I
I
I
command event queue |
if not from command
(contains events that were event queue, call
read earlier but not processed, event_stream_next_event ()
typically when waiting in a

sit-for, sleep-for, etc. for
a particular event to be received)

|
| [collected in

| next_event_internal()]
|

|

unread- unread- event from

112 XEmacs Internals Manual

command- command- keyboard else, call
events event macro next_event_internal()
I I I I
| | I |
| | I |
v v v v
_________ >______________________<____________

[collected in ‘next-event’, which may loop
more than once if the event it gets is on
a dead frame, device, etc.]

feed into top-level event loop,
which repeatedly calls ‘next-event’
and then dispatches the event
using ‘dispatch-event’
Notice the separation between TTY-specific and generic event mechanism. When using
the Xt-based event loop, the TTY-specific stuff is replaced but the rest stays the same.

It’s also important to realize that only one different kind of system-specific event loop can
be operating at a time, and must be able to receive all kinds of events simultaneously. For the
two existing event loops (implemented in ‘event-tty.c’ and ‘event-Xt.c’, respectively),
the TTY event loop only handles T'TY consoles, while the Xt event loop handles both TTY
and X consoles. This situation is different from all of the output handlers, where you simply
have one per console type.

Here’s the Xt Event Loop Diagram (notice that below a certain point, it’s the same as
the above diagram):

asynch. asynch. asynch. asynch. [Collectors in
kbd kbd process process the 08S]
events events output output
I I I I
asynch. asynch. [Collectors in the
X X 0S and X Window System]
events events

SIGINT, [signal handlers
SIGQUIT, in XEmacs]
SIGWINCH,

SIGALRM

timeouts
I

Chapter 16: Events and the Event Loop 113

I I I I I I v

Vv ' \' \') ') ') fake
file file file file file file file
desc. desc. desc. desc. desc. desc. desc.

(TTY) (TTY) (pipe) (pipe) (socket) (socket) (pipe)

[collected using select() in
_XtWaitForSomething(), called
from XtAppProcessEvent(), called
in emacs_Xt_next_event();
dispatched to various callbacks]

emacs_Xt_ p_s_callback(),
event_handler() x_u_v_s_callback(),

[popup_selection_callback]
[x_update_vertical_scrollbar_

|
|
|
|
|
|
|
|
|
- |

[x_u_h_s_callback(),| callback]

| search_callback() | [x_update_horizontal_scrollbar_

| | | callback]
| | |
| | |
enqueue_Xt_ signal_special_ I
dispatch_event() Xt_user_event() |
[maybe multiple | I
times, maybe O | I
times] I |
| enqueue_Xt_ |
| dispatch_event() |
| | |
| | |
v v |
—=>—————————= <-- |
| |
| |

dispatch Xt_what_callback()

event sets flags

queue

114

\

Emacs

XEmacs Internals Manual

[collected and converted as appropriate in
emacs_Xt_next_event ()]

(above this line is Xt-specific)

event (below this line is the generic event mechanism)

was there if not,

call

a SIGINT? emacs_Xt_next_event ()

|
| [collected in event_stream_next_event();
[SIGINT is converted using maybe_read_quit_event()]

\-—==>=———=- >-—--- maybe_kbd_translate() -->----- \

command event queue

(contains events that were

read earlier but not processed,
typically when waiting in a
sit-for, sleep-for, etc. for
a particular event to be received)

v
unread- unread-
command-— command-

events event

event from
keyboard
macro

I
I
I
I
if not from command

event queue, call
event_stream_next_event ()

|
| [collected in

| next_event_internal()]
|

|

else, call
next_event_internal ()

Chapter 16: Events and the Event Loop 115

[collected in ‘next-event’, which may loop
more than once if the event it gets is on
a dead frame, device, etc.]

feed into top-level event loop,
which repeatedly calls ‘next-event’
and then dispatches the event
using ‘dispatch-event’

16.4 Specifics About the Emacs Event

16.5 The Event Stream Callback Routines

16.6 Other Event Loop Functions

detect_input_pending() and input-pending-p look for input by calling event_stream-
>event_pending_p and looking in [V]unread-command-event and the command_event_
queue (they do not check for an executing keyboard macro, though).

discard-input cancels any command events pending (and any keyboard macros cur-
rently executing), and puts the others onto the command_event_queue. There is a comment,
about a “race condition”, which is not a good sign.

next-command-event and read-char are higher-level interfaces to next-event. next-
command-event gets the next commandevent (i.e. keypress, mouse event, menu selection, or
scrollbar action), calling dispatch-event on any others. read-char calls next-command-
event and uses event_to_character() to return the character equivalent. With the right
kind of input method support, it is possible for (read-char) to return a Kanji character.

16.7 Converting Events

character_to_event (), event_to_character (), event-to-character, and character-
to-event convert between characters and keypress events corresponding to the charac-
ters. If the event was not a keypress, event_to_character() returns -1 and event-to-
character returns nil. These functions convert between character representation and the
split-up event representation (keysym plus mod keys).

16.8 Dispatching Events; The Command Builder
Not yet documented.

116 XEmacs Internals Manual

Chapter 17: Evaluation; Stack Frames; Bindings 117

17 Evaluation; Stack Frames; Bindings

17.1 Evaluation

Feval() evaluates the form (a Lisp object) that is passed to it. Note that evaluation is only
non-trivial for two types of objects: symbols and conses. A symbol is evaluated simply by
calling symbol-value on it and returning the value.

Evaluating a cons means calling a function. First, eval checks to see if garbage-collection
is necessary, and calls garbage_collect_1() if so. It then increases the evaluation depth by
1 (1isp_eval_depth, which is always less than max_lisp_eval_depth) and adds an element
to the linked list of struct backtrace’s (backtrace_list). Each such structure contains a
pointer to the function being called plus a list of the function’s arguments. Originally these
values are stored unevalled, and as they are evaluated, the backtrace structure is updated.
Garbage collection pays attention to the objects pointed to in the backtrace structures
(garbage collection might happen while a function is being called or while an argument
is being evaluated, and there could easily be no other references to the arguments in the
argument list; once an argument is evaluated, however, the unevalled version is not needed
by eval, and so the backtrace structure is changed).

At this point, the function to be called is determined by looking at the car of the cons
(if this is a symbol, its function definition is retrieved and the process repeated). The
function should then consist of either a Lisp_Subr (built-in function written in C), a Lisp_
Compiled_Function object, or a cons whose car is one of the symbols autoload, macro or
lambda.

If the function is a Lisp_Subr, the lisp object points to a struct Lisp_Subr (created
by DEFUN()), which contains a pointer to the C function, a minimum and maximum num-
ber of arguments (or possibly the special constants MANY or UNEVALLED), a pointer to the
symbol referring to that subr, and a couple of other things. If the subr wants its arguments
UNEVALLED, they are passed raw as a list. Otherwise, an array of evaluated arguments
is created and put into the backtrace structure, and either passed whole (MANY) or each
argument is passed as a C argument.

If the function is a Lisp_Compiled_Function, funcall_compiled_function() is called.
If the function is a lambda list, funcall_lambda() is called. If the function is a macro, |.....
fill in] is done. If the function is an autoload, do_autoload() is called to load the definition
and then eval starts over [explain this more].

When Feval () exits, the evaluation depth is reduced by one, the debugger is called if
appropriate, and the current backtrace structure is removed from the list.

Both funcall_compiled_function() and funcall_lambda() need to go through the
list of formal parameters to the function and bind them to the actual arguments, checking
for &rest and &optional symbols in the formal parameters and making sure the number
of actual arguments is correct. funcall_compiled_function() can do this a little more
efficiently, since the formal parameter list can be checked for sanity when the compiled
function object is created.

funcall_lambda() simply calls Fprogn to execute the code in the lambda list.

118 XEmacs Internals Manual

funcall_compiled_function() calls the real byte-code interpreter execute_
optimized_program() on the byte-code instructions, which are converted into an internal
form for faster execution.

When a compiled function is executed for the first time by funcall_compiled_
function(), or during the dump phase of building XEmacs, the byte-code instructions
are converted from a Lisp_String (which is inefficient to access, especially in the
presence of MULE) into a Lisp_Opaque object containing an array of unsigned char,
which can be directly executed by the byte-code interpreter. At this time the byte
code is also analyzed for validity and transformed into a more optimized form, so that
execute_optimized_program() can really fly.

Here are some of the optimizations performed by the internal byte-code transformer:

1. References to the constants array are checked for out-of-range indices, so that the
byte interpreter doesn’t have to.

2. References to the constants array that will be used as a Lisp variable are checked for
being correct non-constant (i.e. not t, nil, or keywordp) symbols, so that the byte
interpreter doesn’t have to.

3. The maximum number of variable bindings in the byte-code is pre-computed, so that
space on the specpdl stack can be pre-reserved once for the whole function execution.

4. All byte-code jumps are relative to the current program counter instead of the start of
the program, thereby saving a register.

5. One-byte relative jumps are converted from the byte-code form of unsigned chars offset
by 127 to machine-friendly signed chars.

Of course, this transformation of the instructions should not be visible to the user, so
Fcompiled_function_instructions() needs to know how to convert the optimized opaque
object back into a Lisp string that is identical to the original string from the ‘.elc’ file.
(Actually, the resulting string may (rarely) contain slightly different, yet equivalent, byte
code.)

Ffuncall() implements Lisp funcall. (funcall fun x1 x2 x3 ...) is equivalent to
(eval (1ist fun (quote x1) (quote x2) (quote x3) ...)). Ffuncall() contains its
own code to do the evaluation, however, and is very similar to Feval().

From the performance point of view, it is worth knowing that most of the time in
Lisp evaluation is spent executing Lisp_Subr and Lisp_Compiled_Function objects via
Ffuncall() (not Feval()).

Fapply () implements Lisp apply, which is very similar to funcall except that if the
last argument is a list, the result is the same as if each of the arguments in the list had been
passed separately. Fapply() does some business to expand the last argument if it’s a list,
then calls Ffuncall() to do the work.

applyl1(), call0(), calll(), call2(), and call3() call a function, passing it the
argument(s) given (the arguments are given as separate C arguments rather than being
passed as an array). applyl() uses Fapply() while the others use Ffuncall() to do the
real work.

Chapter 17: Evaluation; Stack Frames; Bindings 119

17.2 Dynamic Binding; The specbinding Stack; Unwind-
Protects

struct specbinding
{
Lisp_0Object symbol;
Lisp_0Object old_value;
Lisp_Object (*func) (Lisp_0bject); /* for unwind-protect */
};
struct specbinding is used for local-variable bindings and unwind-protects. specpdl
holds an array of struct specbinding’s, specpdl_ptr points to the beginning of the free
bindings in the array, specpdl_size specifies the total number of binding slots in the
array, and max_specpdl_size specifies the maximum number of bindings the array can be
expanded to hold. grow_specpdl() increases the size of the specpdl array, multiplying its
size by 2 but never exceeding max_specpdl_size (except that if this number is less than
400, it is first set to 400).

specbind () binds a symbol to a value and is used for local variables and 1et forms. The
symbol and its old value (which might be Qunbound, indicating no prior value) are recorded
in the specpdl array, and specpdl_size is increased by 1.

record_unwind_protect () implements an unwind-protect, which, when placed around
a section of code, ensures that some specified cleanup routine will be executed even if the
code exits abnormally (e.g. through a throw or quit). record_unwind_protect() simply
adds a new specbinding to the specpdl array and stores the appropriate information in it.
The cleanup routine can either be a C function, which is stored in the func field, or a progn
form, which is stored in the old_value field.

unbind_to () removes spechindings from the specpdl array until the specified position
is reached. Each specbinding can be one of three types:

1. an unwind-protect with a C cleanup function (func is not 0, and 0ld_value holds an
argument to be passed to the function);

2. an unwind-protect with a Lisp form (func is 0, symbol is nil, and old_value holds
the form to be executed with Fprogn()); or

3. a local-variable binding (func is 0, symbol is not nil, and old_value holds the old
value, which is stored as the symbol’s value).

17.3 Simple Special Forms
or, and, if, cond, progn, progl, prog2, setq, quote, function, let*, let, while
All of these are very simple and work as expected, calling Feval() or Fprogn() as

necessary and (in the case of let and let*) using specbind() to create bindings and
unbind_to() to undo the bindings when finished.

Note that, with the exception of Fprogn, these functions are typically called in real
life only in interpreted code, since the byte compiler knows how to convert calls to these
functions directly into byte code.

17.4 Catch and Throw

struct catchtag
{

120 XEmacs Internals Manual

Lisp_0Object tag;

Lisp_0Object val;

struct catchtag *next;

struct gcpro *gcpro;

jmp_buf jmp;

struct backtrace *backlist;

int lisp_eval_depth;

int pdlcount;

};
catch is a Lisp function that places a catch around a body of code. A catch is a means

of non-local exit from the code. When a catch is created, a tag is specified, and executing
a throw to this tag will exit from the body of code caught with this tag, and its value will
be the value given in the call to throw. If there is no such call, the code will be executed
normally.

Information pertaining to a catch is held in a struct catchtag, which is placed at the
head of a linked list pointed to by catchlist. internal_catch() is passed a C function
to call (Fprogn() when Lisp catch is called) and arguments to give it, and places a catch
around the function. Each struct catchtag is held in the stack frame of the internal_
catch() instance that created the catch.

internal_catch() is fairly straightforward. It stores into the struct catchtag the
tag name and the current values of backtrace_list, lisp_eval_depth, gcprolist, and
the offset into the specpdl array, sets a jump point with _setjmp() (storing the jump
point into the struct catchtag), and calls the function. Control will return to internal_
catch() either when the function exits normally or through a _longjmp() to this jump
point. In the latter case, throw will store the value to be returned into the struct catchtag
before jumping. When it’s done, internal_catch() removes the struct catchtag from
the catchlist and returns the proper value.

Fthrow() goes up through the catchlist until it finds one with a matching tag. It then
calls unbind_catch() to restore everything to what it was when the appropriate catch was
set, stores the return value in the struct catchtag, and jumps (with _longjmp()) to its
jump point.

unbind_catch() removes all catches from the catchlist until it finds the correct one.
Some of the catches might have been placed for error-trapping, and if so, the appropriate
entries on the handlerlist must be removed (see “errors”). unbind_catch() also restores
the values of gcprolist, backtrace_list, and 1isp_eval, and calls unbind_to() to undo
any specbindings created since the catch.

Chapter 18: Symbols and Variables 121

18 Symbols and Variables

18.1 Introduction to Symbols

A symbol is basically just an object with four fields: a name (a string), a value (some Lisp
object), a function (some Lisp object), and a property list (usually a list of alternating
keyword /value pairs). What makes symbols special is that there is usually only one symbol
with a given name, and the symbol is referred to by name. This makes a symbol a convenient
way of calling up data by name, i.e. of implementing variables. (The variable’s value is
stored in the value slot) Similarly, functions are referenced by name, and the definition
of the function is stored in a symbol’s function slot. This means that there can be a
distinct function and variable with the same name. The property list is used as a more
general mechanism of associating additional values with particular names, and once again
the namespace is independent of the function and variable namespaces.

18.2 Obarrays

The identity of symbols with their names is accomplished through a structure called an
obarray, which is just a poorly-implemented hash table mapping from strings to symbols
whose name is that string. (I say “poorly implemented” because an obarray appears in Lisp
as a vector with some hidden fields rather than as its own opaque type. This is an Emacs
Lisp artifact that should be fixed.)

Obarrays are implemented as a vector of some fixed size (which should be a prime for
best results), where each “bucket” of the vector contains one or more symbols, threaded
through a hidden next field in the symbol. Lookup of a symbol in an obarray, and adding
a symbol to an obarray, is accomplished through standard hash-table techniques.

The standard Lisp function for working with symbols and obarrays is intern. This looks
up a symbol in an obarray given its name; if it’s not found, a new symbol is automatically
created with the specified name, added to the obarray, and returned. This is what happens
when the Lisp reader encounters a symbol (or more precisely, encounters the name of a
symbol) in some text that it is reading. There is a standard obarray called obarray that is
used for this purpose, although the Lisp programmer is free to create his own obarrays and
intern symbols in them.

Note that, once a symbol is in an obarray, it stays there until something is done about
it, and the standard obarray obarray always stays around, so once you use any particular
variable name, a corresponding symbol will stay around in obarray until you exit XEmacs.

Note that obarray itself is a variable, and as such there is a symbol in obarray whose
name is "obarray" and which contains obarray as its value.

Note also that this call to intern occurs only when in the Lisp reader, not when the code
is executed (at which point the symbol is already around, stored as such in the definition
of the function).

You can create your own obarray using make-vector (this is horrible but is an artifact)
and intern symbols into that obarray. Doing that will result in two or more symbols with
the same name. However, at most one of these symbols is in the standard obarray: You
cannot have two symbols of the same name in any particular obarray. Note that you cannot

122 XEmacs Internals Manual

add a symbol to an obarray in any fashion other than using intern: i.e. you can’t take
an existing symbol and put it in an existing obarray. Nor can you change the name of an
existing symbol. (Since obarrays are vectors, you can violate the consistency of things by
storing directly into the vector, but let’s ignore that possibility.)

Usually symbols are created by intern, but if you really want, you can explicitly create
a symbol using make-symbol, giving it some name. The resulting symbol is not in any
obarray (i.e. it is uninterned), and you can’t add it to any obarray. Therefore its primary
purpose is as a symbol to use in macros to avoid namespace pollution. It can also be used
as a carrier of information, but cons cells could probably be used just as well.

You can also use intern-soft to look up a symbol but not create a new one, and
unintern to remove a symbol from an obarray. This returns the removed symbol. (Re-
member: You can’t put the symbol back into any obarray.) Finally, mapatoms maps over
all of the symbols in an obarray.

18.3 Symbol Values

The value field of a symbol normally contains a Lisp object. However, a symbol can be
unbound, meaning that it logically has no value. This is internally indicated by storing a
special Lisp object, called the unbound marker and stored in the global variable Qunbound.
The unbound marker is of a special Lisp object type called symbol-value-magic Tt is
impossible for the Lisp programmer to directly create or access any object of this type.

You must not let any \symbol-value-magic" object escape to the Lisp level. Printing
any of these objects will cause the message ‘INTERNAL EMACS BUG’ to appear as part of the
print representation. (You may see this normally when you call debug_print() from the
debugger on a Lisp object.) If you let one of these objects escape to the Lisp level, you will
violate a number of assumptions contained in the C code and make the unbound marker
not function right.

When a symbol is created, its value field (and function field) are set to Qunbound. The
Lisp programmer can restore these conditions later using makunbound or fmakunbound, and
can query to see whether the value of function fields are bound (i.e. have a value other than
Qunbound) using boundp and fboundp. The fields are set to a normal Lisp object using set
(or setq) and fset.

Other symbol-value-magic objects are used as special markers to indicate variables that
have non-normal properties. This includes any variables that are tied into C variables
(setting the variable magically sets some global variable in the C code, and likewise for
retrieving the variable’s value), variables that magically tie into slots in the current buffer,
variables that are buffer-local, etc. The symbol-value-magic object is stored in the value cell
in place of a normal object, and the code to retrieve a symbol’s value (i.e. symbol-value)
knows how to do special things with them. This means that you should not just fetch the
value cell directly if you want a symbol’s value.

The exact workings of this are rather complex and involved and are well-documented in
comments in ‘buffer.c’, ‘symbols.c’, and ‘lisp.h’.

Chapter 19: Buffers and Textual Representation 123

19 Buers and Textual Representation

19.1 Introduction to Buffers

A buffer is logically just a Lisp object that holds some text. In this, it is like a string, but a
buffer is optimized for frequent insertion and deletion, while a string is not. Furthermore:

1. Buffers are permanent objects, i.e. once you create them, they remain around, and
need to be explicitly deleted before they go away.

2. Each buffer has a unique name, which is a string. Buffers are normally referred to by
name. In this respect, they are like symbols.

3. Buffers have a default insertion position, called point. Inserting text (unless you ex-
plicitly give a position) goes at point, and moves point forward past the text. This is
what is going on when you type text into Emacs.

4. Buffers have lots of extra properties associated with them.

5. Buffers can be displayed. What this means is that there exist a number of windows,
which are objects that correspond to some visible section of your display, and each
window has an associated buffer, and the current contents of the buffer are shown in
that section of the display. The redisplay mechanism (which takes care of doing this)
knows how to look at the text of a buffer and come up with some reasonable way of
displaying this. Many of the properties of a buffer control how the buffer’s text is
displayed.

6. One buffer is distinguished and called the current bu er . Tt is stored in the variable
current_buffer. Buffer operations operate on this buffer by default. When you are
typing text into a buffer, the buffer you are typing into is always current_buffer.
Switching to a different window changes the current buffer. Note that Lisp code can
temporarily change the current buffer using set-buffer (often enclosed in a save-
excursion so that the former current buffer gets restored when the code is finished).
However, calling set-buffer will NOT cause a permanent change in the current buffer.
The reason for this is that the top-level event loop sets current_buffer to the buffer
of the selected window, each time it finishes executing a user command.

Make sure you understand the distinction between current bu er and bu er of the se-
lected window, and the distinction between point of the current buffer and window-point
of the selected window. (This latter distinction is explained in detail in the section on
windows.)

19.2 The Text in a Buffer

The text in a buffer consists of a sequence of zero or more characters. A character is an
integer that logically represents a letter, number, space, or other unit of text. Most of
the characters that you will typically encounter belong to the ASCII set of characters, but
there are also characters for various sorts of accented letters, special symbols, Chinese and
Japanese ideograms (i.e. Kanji, Katakana, etc.), Cyrillic and Greek letters, etc. The actual
number of possible characters is quite large.

For now, we can view a character as some non-negative integer that has some shape
that defines how it typically appears (e.g. as an uppercase A). (The exact way in which a

124 XEmacs Internals Manual

character appears depends on the font used to display the character.) The internal type of
characters in the C code is an Ichar; this is just an int, but using a symbolic type makes
the code clearer.

Between every character in a buffer is a bu er position or character position. We can
speak of the character before or after a particular buffer position, and when you insert a
character at a particular position, all characters after that position end up at new positions.
When we speak of the character at a position, we really mean the character after the
position. (This schizophrenia between a buffer position being “between” two characters
and “on” a character is rampant in Emacs.)

Buffer positions are numbered starting at 1. This means that position 1 is before the
first character, and position 0 is not valid. If there are N characters in a buffer, then buffer
position N+1 is after the last one, and position N+2 is not valid.

The internal makeup of the Ichar integer varies depending on whether we have compiled
with MULE support. If not, the Ichar integer is an 8-bit integer with possible values from
0 - 255. 0 - 127 are the standard ASCII characters, while 128 - 255 are the characters from
the ISO-8859-1 character set. If we have compiled with MULE support, an Ichar is a 19-bit
integer, with the various bits having meanings according to a complex scheme that will be
detailed later. The characters numbered 0 - 255 still have the same meanings as for the
non-MULE case, though.

Internally, the text in a buffer is represented in a fairly simple fashion: as a contiguous
array of bytes, with a gap of some size in the middle. Although the gap is of some substantial
size in bytes, there is no text contained within it: From the perspective of the text in
the buffer, it does not exist. The gap logically sits at some buffer position, between two
characters (or possibly at the beginning or end of the buffer). Insertion of text in a buffer
at a particular position is always accomplished by first moving the gap to that position
(i.e. through some block moving of text), then writing the text into the beginning of the
gap, thereby shrinking the gap. If the gap shrinks down to nothing, a new gap is created.
(What actually happens is that a new gap is “created” at the end of the buffer’s text, which
requires nothing more than changing a couple of indices; then the gap is “moved” to the
position where the insertion needs to take place by moving up in memory all the text after
that position.) Similarly, deletion occurs by moving the gap to the place where the text is
to be deleted, and then simply expanding the gap to include the deleted text. (Expanding
and shrinking the gap as just described means just that the internal indices that keep track
of where the gap is located are changed.)

Note that the total amount of memory allocated for a buffer text never decreases while
the buffer is live. Therefore, if you load up a 20-megabyte file and then delete all but one
character, there will be a 20-megabyte gap, which won’t get any smaller (except by inserting
characters back again). Once the buffer is killed, the memory allocated for the buffer text
will be freed, but it will still be sitting on the heap, taking up virtual memory, and will
not be released back to the operating system. (However, if you have compiled XEmacs
with rel-alloc, the situation is different. In this case, the space will be released back to the
operating system. However, this tends to result in a noticeable speed penalty.)

Astute readers may notice that the text in a buffer is represented as an array of bytes,
while (at least in the MULE case) an Ichar is a 19-bit integer, which clearly cannot fit in a
byte. This means (of course) that the text in a buffer uses a different representation from

Chapter 19: Buffers and Textual Representation 125

an Ichar: specifically, the 19-bit Ichar becomes a series of one to four bytes. The conversion
between these two representations is complex and will be described later.

In the non-MULE case, everything is very simple: An Ichar is an 8-bit value, which fits
neatly into one byte.

If we are given a buffer position and want to retrieve the character at that position, we
need to follow these steps:

1. Pretend there’s no gap, and convert the buffer position into a byte index that indexes
to the appropriate byte in the buffer’s stream of textual bytes. By convention, byte
indices begin at 1, just like buffer positions. In the non-MULE case, byte indices and
buffer positions are identical, since one character equals one byte.

2. Convert the byte index into a memory index, which takes the gap into account. The
memory index is a direct index into the block of memory that stores the text of a buffer.
This basically just involves checking to see if the byte index is past the gap, and if so,
adding the size of the gap to it. By convention, memory indices begin at 1, just like
buffer positions and byte indices, and when referring to the position that is at the gap,
we always use the memory position at the beginning, not at the end, of the gap.

3. Fetch the appropriate bytes at the determined memory position.

4. Convert these bytes into an Ichar.

In the non-Mule case, (3) and (4) boil down to a simple one-byte memory access.
Note that we have defined three types of positions in a buffer:

1. bu er positions or character positions typedef Charbpos

2. byte indices, typedef Bytebpos

3. memory indices typedef Membpos

All three typedefs are just ints, but defining them this way makes things a lot clearer.

Most code works with buffer positions. In particular, all Lisp code that refers to text in
a buffer uses buffer positions. Lisp code does not know that byte indices or memory indices
exist.

Finally, we have a typedef for the bytes in a buffer. This is a Ibyte, which is an unsigned
char. Referring to them as Ibytes underscores the fact that we are working with a string of
bytes in the internal Emacs buffer representation rather than in one of a number of possible
alternative representations (e.g. EUC-encoded text, etc.).

19.3 Buffer Lists

Recall earlier that buffers are permanent objects, i.e. that they remain around until ex-
plicitly deleted. This entails that there is a list of all the buffers in existence. This list is
actually an assoc-list (mapping from the buffer’s name to the buffer) and is stored in the
global variable Vbuffer_alist.

The order of the buffers in the list is important: the buffers are ordered approximately
from most-recently-used to least-recently-used. Switching to a buffer using switch-to-
buffer, pop-to-buffer, etc. and switching windows using other-window, etc. usually
brings the new current buffer to the front of the list. switch-to-buffer, other-buffer,
etc. look at the beginning of the list to find an alternative buffer to suggest. You can also
explicitly move a buffer to the end of the list using bury-buffer.

126 XEmacs Internals Manual

In addition to the global ordering in Vbuffer_alist, each frame has its own ordering
of the list. These lists always contain the same elements as in Vbuffer_alist although
possibly in a different order. buffer-1ist normally returns the list for the selected frame.
This allows you to work in separate frames without things interfering with each other.

The standard way to look up a buffer given a name is get-buffer, and the standard
way to create a new buffer is get-buffer-create, which looks up a buffer with a given
name, creating a new one if necessary. These operations correspond exactly with the symbol
operations intern-soft and intern, respectively. You can also force a new buffer to be
created using generate-new-buffer, which takes a name and (if necessary) makes a unique
name from this by appending a number, and then creates the buffer. This is basically like
the symbol operation gensym.

19.4 Markers and Extents

Among the things associated with a buffer are things that are logically attached to certain
buffer positions. This can be used to keep track of a buffer position when text is inserted
and deleted, so that it remains at the same spot relative to the text around it; to assign
properties to particular sections of text; etc. There are two such objects that are useful in
this regard: they are markers and extents.

A marker is simply a flag placed at a particular buffer position, which is moved around
as text is inserted and deleted. Markers are used for all sorts of purposes, such as the mark
that is the other end of textual regions to be cut, copied, etc.

An extent is similar to two markers plus some associated properties, and is used to keep
track of regions in a buffer as text is inserted and deleted, and to add properties (e.g. fonts)
to particular regions of text. The external interface of extents is explained elsewhere.

The important thing here is that markers and extents simply contain buffer positions
in them as integers, and every time text is inserted or deleted, these positions must be
updated. In order to minimize the amount of shuffling that needs to be done, the positions
in markers and extents (there’s one per marker, two per extent) are stored in Membpos’s.
This means that they only need to be moved when the text is physically moved in memory;
since the gap structure tries to minimize this, it also minimizes the number of marker and
extent indices that need to be adjusted. Look in ‘insdel.c’ for the details of how this
works.

One other important distinction is that markers are temporary while extents are perma-
nent. This means that markers disappear as soon as there are no more pointers to them,
and correspondingly, there is no way to determine what markers are in a buffer if you are
just given the buffer. Extents remain in a buffer until they are detached (which could hap-
pen as a result of text being deleted) or the buffer is deleted, and primitives do exist to
enumerate the extents in a buffer.

19.5 Ibytes and Ichars
Not yet documented.

Chapter 19: Buffers and Textual Representation 127

19.6 The Buffer Object

Buffers contain fields not directly accessible by the Lisp programmer. We describe them
here, naming them by the names used in the C code. Many are accessible indirectly in Lisp
programs via Lisp primitives.

name The buffer name is a string that names the buffer. It is guaranteed to be unique.
See section “Buffer Names” in XEmacs Lisp Reference Manual

save_modified
This field contains the time when the buffer was last saved, as an integer. See
section “Buffer Modification” in XEmacs Lisp Reference Manual

modtime This field contains the modification time of the visited file. It is set when the
file is written or read. Every time the buffer is written to the file, this field is
compared to the modification time of the file. See section “Buffer Modification”
in XEmacs Lisp Reference Manual

auto_save_modified
This field contains the time when the buffer was last auto-saved.

last_window_start
This field contains the window-start position in the buffer as of the last time
the buffer was displayed in a window.

undo_list
This field points to the buffer’s undo list. See section “Undo” in XEmacs Lisp
Reference Manual

syntax_table_v
This field contains the syntax table for the buffer. See section “Syntax Tables”
in XEmacs Lisp Reference Manual

downcase_table
This field contains the conversion table for converting text to lower case. See
section “Case Tables” in XEmacs Lisp Reference Manual

upcase_table
This field contains the conversion table for converting text to upper case. See
section “Case Tables” in XEmacs Lisp Reference Manual

case_canon_table
This field contains the conversion table for canonicalizing text for case-folding
search. See section “Case Tables” in XEmacs Lisp Reference Manual

case_eqv_table
This field contains the equivalence table for case-folding search. See section
“Case Tables” in XEmacs Lisp Reference Manual

display_table
This field contains the buffer’s display table, or nil if it doesn’t have one. See
section “Display Tables” in XEmacs Lisp Reference Manual

markers This field contains the chain of all markers that currently point into the buffer.
Deletion of text in the buffer, and motion of the buffer’s gap, must check each

128 XEmacs Internals Manual

of these markers and perhaps update it. See section “Markers” in XEmacs Lisp
Reference Manual

backed_up
This field is a flag that tells whether a backup file has been made for the visited
file of this buffer.

mark This field contains the mark for the buffer. The mark is a marker, hence it

is also included on the list markers. See section “The Mark” in XEmacs Lisp
Reference Manual

mark_active
This field is non-nil if the buffer’s mark is active.

local_var_alist
This field contains the association list describing the variables local in this
buffer, and their values, with the exception of local variables that have special
slots in the buffer object. (Those slots are omitted from this table.) See section
“Buffer-Local Variables” in XEmacs Lisp Reference Manual

modeline_format
This field contains a Lisp object which controls how to display the mode line for
this buffer. See section “Modeline Format” in XEmacs Lisp Reference Manual

base_buffer
This field holds the buffer’s base buffer (if it is an indirect buffer), or nil.

19.7 Searching and Matching

Very incomplete, limited to a brief introduction.

People find the searching and matching code difficult to understand. And indeed, the
details are hard. However, the basic structures are not so complex. First, there’s a hard
question with a simple answer. What about Mule? The answer here is that it turns out that
Mule characters can be matched byte by byte, so neither the search code nor the regular
expression code need take much notice of it at alll Of course, we add some special features
(such as regular expressions that match only certain charsets), but these do not require
new concepts. The main exception is that wild-card matches in Mule have to be careful to
swallow whole characters. This is handled using the same basic macros that are used for
buffer and string movements.

The complex algorithms for searching are for simple string searches. In particular, the
algorithm used for fast string searching is Boyer-Moore. This algorithm is based on the
idea that if you have a mismatch at a given position, you can precompute where to restart
the search. This typically means that you can often make many fewer than N character
comparisons, where N is the position at which the match is found, or the size of the text if
it contains no match. That’s fast! But it’s not easy. You must “compile” the search string
into a jump table. See the source, ‘search.c’, for more information.

Emacs changes the basic algorithms somewhat in order to handle case-insensitive
searches without a full-blown regular expression.

Regular expressions, on the other hand, have a trivial search implementation: try a
match at each position. (Under POSIX rules, it’s a bit more complex, because POSIX

Chapter 19: Buffers and Textual Representation 129

requires that you find the longest match in the text. This means you keep a record of the
best match so far, and find all the matches.)

The matching code for regular expressions is quite complex. First, the regular expression
itself is compiled. There are two basic approaches that could be taken. The first is to
compile the expression into tables to drive a generic finite automaton emulator. This is the
approach given in many textbooks (Sedgewick’s Algorithms and Aho, Sethi, and Ullmann’s
Compilers: Principles, Techniques, and Tools, aka “The Dragon Book”) as well as being
used by the ‘lex’ family of lexical analysis engines.

Emacs uses a somewhat different technique. The expression is compiled into a form
of bytecode, which is interpreted by a special interpreter. The interpreter itself basically
amounts to an inline implementation of the finite automaton emulator. The advantage of
this technique is that it’s easier to add special features, such as control of case-sensitivity
via a global variable.

The compiler is not treated here. See the source, ‘regex.c’. The interpreter, although
it is divided into several functions, and looks fearsomely complex, is actually quite simple
in concept. However, basically what you're doing there is a strcmp on steroids, right?

int
strcmp (char *p, /* pattern pointer */
char *b) /* buffer pointer x*/
{
while (kp++ == *b++)
return *(--p) - *(--b); /* oops, we overshot */
}

Really, it’s no harder than that. (A bit of a white lie, OK?)
How does the regexp code generalize this?

1. Depending on the pattern, *b may have a general relationship to *p. ILe., direct
comparison against *p is generalized to include checks for set membership, and context
dependent properties. This depends on &*b. Of course that’s meaningless in C, so we
use b directly, instead.

2. Although to ensure the algorithm terminates, b must advance step by step, p can
branch and jump.

3. The information returned is much greater, including information about subexpressions.

We'll ignore (3). (2) is mostly interesting when compiling the regular expression. Now
we have

enum operator_t {
accept = 0,
exact,
any,
range,
group, /* actually, these are probably */
repeat, /* turned into conditional code */
/* etc */

130 XEmacs Internals Manual

enum status_t {
working = O,
matched,
mismatch,
end_of_buffer,
error

};

struct pattern {
enum operator_t operator;
char char_value;
boolean range_table[256];
/* etc, etc */

};

char *p, /* pattern pointer */
b; / buffer pointer */

enum status_t
match (struct pattern *p, char #*Db)
{

enum status_t done = working;

while (!(done = match_1_operator (p, b)))
{
struct pattern *pl = p;
p = next_p (p, b);
b = next_b (pl, b);
}
return done;

}
This format exposes the underlying finite automaton.

All of them have the following structure, except that the ‘next_*’ functions decide
where to jump (for ‘p’) and whether or not to increment (for ‘b’), rather than checking for
satisfaction of a matching condition.

enum status_t
match_1_operator (pattern *p, char *b)
{
if (! *b) return end_of_buffer;
switch (p->operator)
{
case accept:
return matched;
case exact:
if (*b != p->char_value) return mismatch; else break;

Chapter 19: Buffers and Textual Representation 131

case any:
break;
case range:
/* range_table is computed in the regexp_compile function */
if (! p->range_table[*b]) return mismatch;
/* etc, etc */
}
return working;

}

Grouping, repetition, and alternation are handled by compiling the subexpression and

calling match (p->subpattern, b) recursively.

In terms of reading the actual code, there are five optimizations (obfuscations, if you

like) that have been done.

1.
2.

An explicit "failure stack" has been substituted for recursion.

The match_1_operator, next_p, and next_b functions are actually inlined into the
match function for efficiency. Then the pointer movement is interspersed with the
matching operations.

If the operator uses buffer context, the buffer pointer movement is sometimes implicit
in the operations retrieving the context.

Some cases are combined into short preparation for individual cases, and a "fall-
through" into combined code for several cases.

The pattern type is not an explicit ‘struct’. Instead, the data (including, e.g.,
‘range_table’) is inlined into the compiled bytecode. This leads to bizarre code in
the interpreter like

case range:
p += x(p + 1); break;

in next_p, because the compiled pattern is laid out

., ’range’, count, first_8_flags, second_8_flags, ..., next_op,

But if you keep your eye on the "switch in a loop" structure, you should be able to

understand the parts you need.

132 XEmacs Internals Manual

Chapter 20: MULE Character Sets and Encodings 133

20 MULE Character Sets and Encodings

Recall that there are two primary ways that text is represented in XEmacs. The bu er
representation sees the text as a series of bytes (Ibytes), with a variable number of bytes used
per character. The character representation sees the text as a series of integers (Ichars), one
per character. The character representation is a cleaner representation from a theoretical
standpoint, and is thus used in many cases when lots of manipulations on a string need to
be done. However, the buffer representation is the standard representation used in both
Lisp strings and buffers, and because of this, it is the “default” representation that text
comes in. The reason for using this representation is that it’s compact and is compatible
with ASCII.

20.1 Character Sets

A character set (or charset) is an ordered set of characters. A particular character in a
charset is indexed using one or more position codes which are non-negative integers. The
number of position codes needed to identify a particular character in a charset is called the
dimensionof the charset. In XEmacs/Mule, all charsets have dimension 1 or 2, and the size
of all charsets (except for a few special cases) is either 94, 96, 94 by 94, or 96 by 96. The
range of position codes used to index characters from any of these types of character sets
is as follows:

Charset type Position code 1 Position code 2
94 33 - 126 N/A

96 32 - 127 N/A

94x94 33 - 126 33 - 126

96x96 32 - 127 32 - 127

Note that in the above cases position codes do not start at an expected value such as 0
or 1. The reason for this will become clear later.

For example, Latin-1 is a 96-character charset, and JISX0208 (the Japanese national
character set) is a 94x94-character charset.

[Note that, although the ranges above define the valid position codes for a charset, some
of the slots in a particular charset may in fact be empty. This is the case for JISX0208, for
example, where (e.g.) all the slots whose first position code is in the range 118 - 127 are
empty.]

There are three charsets that do not follow the above rules. All of them have one
dimension, and have ranges of position codes as follows:

Charset name Position code 1

ASCII 0 - 127

Control-1 0 - 31

Composite 0 - some large number

(The upper bound of the position code for composite characters has not yet been deter-
mined, but it will probably be at least 16,383).

ASCII is the union of two subsidiary character sets: Printing-ASCII (the printing ASCII
character set, consisting of position codes 33 - 126, like for a standard 94-character charset)

134 XEmacs Internals Manual

and Control-ASCII (the non-printing characters that would appear in a binary file with
codes 0 - 32 and 127).

Control-1 contains the non-printing characters that would appear in a binary file with
codes 128 - 159.

Composite contains characters that are generated by overstriking one or more characters
from other charsets.

Note that some characters in ASCII, and all characters in Control-1, are control (non-
printing) characters. These have no printed representation but instead control some other
function of the printing (e.g. TAB or 8 moves the current character position to the next
tab stop). All other characters in all charsets are graphic (printing) characters.

When a binary file is read in, the bytes in the file are assigned to character sets as follows:

Bytes Character set Range
0 - 127 ASCII 0 - 127
128 - 159 Control-1 0-231
160 - 255 Latin-1 32 - 127

This is a bit ad-hoc but gets the job done.

20.2 Encodings

An encoding is a way of numerically representing characters from one or more character
sets. If an encoding only encompasses one character set, then the position codes for the
characters in that character set could be used directly. This is not possible, however, if
more than one character set is to be used in the encoding.

For example, the conversion detailed above between bytes in a binary file and characters
is effectively an encoding that encompasses the three character sets ASCII, Control-1, and
Latin-1 in a stream of 8-bit bytes.

Thus, an encoding can be viewed as a way of encoding characters from a specified group
of character sets using a stream of bytes, each of which contains a fixed number of bits (but
not necessarily 8, as in the common usage of “byte”).

Here are descriptions of a couple of common encodings:

20.2.1 Japanese EUC (Extended Unix Code)

This encompasses the character sets Printing-ASCII, Japanese-JISX0201, and Japanese-
JISX0208-Kana (half-width katakana, the right half of JISX0201). It uses 8-bit bytes.

Note that Printing-ASCII and Japanese-JISX0201-Kana are 94-character charsets, while
Japanese-JISX0208 is a 94x94-character charset.

The encoding is as follows:

Character set Representation (PC=position-code)
Printing-ASCII PC1

Japanese-JISX0201-Kana Ox8E | PC1 + 0x80
Japanese-JISX0208 PC1 + 0x80 | PC2 + 0x80

Japanese-JISX0212 PC1 + 0x80 | PC2 + 0x80

Chapter 20: MULE Character Sets and Encodings 135

20.2.2 JIS7

This encompasses the character sets Printing-ASCII, Japanese-JISX0201-Roman (the left
half of JISX0201; this character set is very similar to Printing-ASCII and is a 94-character
charset), Japanese-JISX0208, and Japanese-JISX0201-Kana. It uses 7-bit bytes.

Unlike Japanese EUC, this is a modal encoding, which means that there are multiple
states that the encoding can be in, which affect how the bytes are to be interpreted. Special
sequences of bytes (called escape sequencesre used to change states.

The encoding is as follows:

Character set Representation (PC=position-code)
Printing-ASCII PC1

Japanese-JISX0201-Roman PC1

Japanese-JISX0201-Kana PC1

Japanese-JISX0208 PC1 PC2

Escape sequence ASCII equivalent Meaning

0x1B 0x28 0x4A ESC (J invoke Japanese-JISX0201-Roman
0x1B 0x28 0x49 ESC (I invoke Japanese-JISX0201-Kana
0x1B 0x24 0x42 ESC $ B invoke Japanese-JISX0208

0x1B 0x28 0x42 ESC (invoke Printing-ASCII

Initially, Printing-ASCII is invoked.

o5}

20.3 Internal Mule Encodings

In XEmacs/Mule, each character set is assigned a unique number, called a leading byte.
This is used in the encodings of a character. Leading bytes are in the range 0x80 - OxFF
(except for ASCII, which has a leading byte of 0), although some leading bytes are reserved.

Charsets whose leading byte is in the range 0x80 - 0x9F are called o cial and are used
for built-in charsets. Other charsets are called private and have leading bytes in the range
0xAO0 - OxFF; these are user-defined charsets.

More specifically:

Character set Leading byte
ASCII 0
Composite 0x80

Dimension-1 Official 0x81 - 0x8D
(0x8E is free)
Control-1 0x8F
Dimension-2 0fficial 0x90 - 0x99
(0x9A - 0x9D are free;
0x9E and 0x9F are reserved)
Dimension-1 Private 0xAO - OxEF
Dimension-2 Private 0xFO - OxFF

136 XEmacs Internals Manual

There are two internal encodings for characters in XEmacs/Mule. One is called string
encoding and is an 8-bit encoding that is used for representing characters in a buffer or
string. It uses 1 to 4 bytes per character. The other is called character encodingand is a
19-bit encoding that is used for representing characters individually in a variable.

(In the following descriptions, we’ll ignore composite characters for the moment. We
also give a general (structural) overview first, followed later by the exact details.)

20.3.1 Internal String Encoding

ASCII characters are encoded using their position code directly. Other characters are
encoded using their leading byte followed by their position code(s) with the high bit set.
Characters in private character sets have their leading byte prefixed with a leading byte
pre X , which is either 0x9E or 0x9F. (No character sets are ever assigned these leading
bytes.) Specifically:

Character set Encoding (PC=position-code, LB=leading-byte)
ASCII PC-1 |
Control-1 LB | PC1 + 0xAO |
Dimension-1 official LB | PC1l + 0x80 |
Dimension-1 private 0x9E | LB | PC1 + 0x80 |
Dimension-2 official LB | PC1 + 0x80 | PC2 + 0x80 |

|

LB | PC1 + 0x80 | PC2 + 0x80

The basic characteristic of this encoding is that the first byte of all characters is in the
range 0x00 - 0x9F, and the second and following bytes of all characters is in the range 0xA0
- OxFF. This means that it is impossible to get out of sync, or more specifically:

Dimension-2 private 0x9F

1. Given any byte position, the beginning of the character it is within can be determined
in constant time.

2. Given any byte position at the beginning of a character, the beginning of the next
character can be determined in constant time.

3. Given any byte position at the beginning of a character, the beginning of the previous
character can be determined in constant time.

4. Textual searches can simply treat encoded strings as if they were encoded in a one-
byte-per-character fashion rather than the actual multi-byte encoding.

None of the standard non-modal encodings meet all of these conditions. For example,
EUC satisfies only (2) and (3), while Shift-JIS and Bigh (not yet described) satisfy only
(2). (All non-modal encodings must satisfy (2), in order to be unambiguous.)

20.3.2 Internal Character Encoding

One 19-bit word represents a single character. The word is separated into three fields:
Bit number: 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Field: 1 2 3
Note that fields 2 and 3 hold 7 bits each, while field 1 holds 5 bits.
Character set Field 1 Field 2 Field 3

Chapter 20: MULE Character Sets and Encodings 137

ASCII 0 0 PC1

range: (00 - 7F)
Control-1 0 1 PC1

range: (00 - 1F)
Dimension-1 official 0 LB - 0x80 PC1

range: (01 - 0OD) (20 - 7F)
Dimension-1 private 0 LB - 0x80 PC1

range: (20 - 6F) (20 - 7F)
Dimension-2 official LB - O0x8F PC1 pPC2

range: (01 - 04) (20 - 7F) (20 - 7F)
Dimension-2 private LB - OxE1 PC1 PC2

range: (OF - 1E) (20 - 7F) (20 - 7F)
Composite Ox1F ? ?

Note that character codes 0 - 255 are the same as the “binary encoding” described above.

20.4 CCL
CCL PROGRAM SYNTAX:
CCL_PROGRAM := (CCL_MAIN_BLOCK
[CCL_EOF_BLOCK 1)

CCL_MAIN_BLOCK := CCL_BLOCK
CCL_EOF_BLOCK := CCL_BLOCK

CCL_BLOCK :
STATEMENT :

SET | IF | BRANCH | LOOP | REPEAT | BREAK

| READ | WRITE

SET := (REG = EXPRESSION) | (REG SELF_OP EXPRESSION)

| INT-OR-CHAR

EXPRESSION := ARG | (EXPRESSION OP ARG)

IF := (if EXPRESSION CCL_BLOCK CCL_BLOCK)

BRANCH := (branch EXPRESSION CCL_BLOCK [CCL_BLOCK ..

LOOP := (loop STATEMENT [STATEMENT ...])
BREAK := (break)
REPEAT := (repeat)

STATEMENT | (STATEMENT [STATEMENT ...

P

| (write-repeat [REG | INT-OR-CHAR | string])
| (write-read-repeat REG [INT-OR-CHAR | string | ARRAY1?)
READ := (read REG) | (read REG REG)
| (read-if REG ARITH_OP ARG CCL_BLOCK CCL_BLOCK)
| (read-branch REG CCL_BLOCK [CCL_BLOCK ...1)
WRITE := (write REG) | (write REG REG)
| (write INT-OR-CHAR) | (write STRING) | STRING
| (write REG ARRAY)

138

XEmacs Internals Manual

END := (end)

REG :=r0 | r1 | r2 | r3 | r4 | r5 | r6 | 7

ARG := REG | INT-OR-CHAR

0P := + | = | x|/ 1Al &l |~ <<|>]|<8]>81]//
[< I > ==1<x=1|>] 1=

SELF_QOP :=
t= | == | x=| /= | Y= 1 & | ?[= | "= | <<= | >>=

ARRAY := ’[’> INT-OR-CHAR ... ’]’

INT-OR-CHAR := INT | CHAR
MACHINE CODE:

The machine code consists of a vector of 32-bit words.

The first such word specifies the start of the EOF section of the code;
this is the code executed to handle any stuff that needs to be done
(e.g. designating back to ASCII and left-to-right mode) after all
other encoded/decoded data has been written out. This is not used for
charset CCL programs.

REGISTER: 0..7 -- referred by RRR or rrr

OPERATOR BIT FIELD (27-bit): XXXXXXXXXXXXXXX RRR TTTTT
TTTTT (5-bit): operator type
RRR (3-bit): register number
XXXXXXXXXXXXXXXX (15-bit):
CCCCCCCCCCCCCCC: constant or address
000000000000rrr: register number

AAAA: 00000 +
00001 -
00010 =*
00011 /
00100 %
00101 &
00110 |
00111 ~

01000 <<
01001 >>
01010 <8
01011 >8
01100 //
01101 not used
01110 not used
01111 not used

Chapter 20: MULE Character Sets and Encodings 139

10000 <
10001 >
10010 ==
10011 <=
10100 >=
10101 !=
OPERATORS: TTTTT RRR XX..
SetCS: 00000 RRR C...C RRR = C..
SetCL: 00001 RRR RRR = c...c
Coviniiiieen, c
SetR: 00010 RRR ..rrr RRR = rrr
SetA: 00011 RRR ..rrr RRR = arrayl[rrr]
Covvvinnn, C size of array = C...C
Covinini e C contents = c...c
Jump: 00100 000 c...c jump to c...c
JumpCond : 00101 RRR c...c if (!RRR) jump to c...c
WriteJump: 00110 RRR c...c Writel RRR, jump to c...c
WriteReadJump: 00111 RRR c...c Writel, Readl RRR, jump to c...c
WriteCJump: 01000 000 c...c Writel C...C, jump to c...c
Cc...C
WriteCReadJump: 01001 RRR c...c Writel C...C, Readl RRR,
Covvvinnnn, C and jump to c...c
WriteSJump: 01010 000 c...c WriteS, jump to c...c
Covvvnnt, C
Sl S
WriteSReadJump: 01011 RRR c...c WriteS, Readl RRR, jump to c...c
Covvvvit, C
S S
WriteAReadJump: 01100 RRR c...c WriteA, Readl RRR, jump to c...c
Covivin, C size of array = C...C
Coviniii i C contents = c...c
Branch: 01101 RRR C...C if (RRR >= 0 &% RRR < C..)
Covvnininenns c branch to (RRR+1)th address
Readl: 01110 RRR ... read 1-byte to RRR
Read2: 01111 RRR ..rrr read 2-byte to RRR and rrr
ReadBranch: 10000 RRR C...C Readl and Branch
Coviniiiiieen c
Writel: 10001 RRR write 1-byte RRR
Write2: 10010 RRR ..rrr write 2-byte RRR and rrr

WriteC: 10011 000 write 1-char C...CC

140 XEmacs Internals Manual

Covivvvnt C

WriteS: 10100 000 write C..-byte of string
Covviniit C
Sl S

WriteA: 10101 RRR write array[RRR]
Covvvinnn, C size of array = C...C
Covniiiiiienn C contents = c...c

End: 10110 000 terminate the execution

SetSelfCS: 10111 RRR C...C RRR AAAAA= C...C
.......... AAAAA

SetSelfCL: 11000 RRR RRR AAAAA= c...c
Coviniiiienens c
.......... AAAAA

SetSelfR: 11001 RRR . .Rrr RRR AAAAA= rrr
.......... AAAAA

SetExprCL: 11010 RRR . .Rrr RRR = rrr AAAAA c...c
Coviniiiieeens c
.......... AAAAA

SetExprR: 11011 RRR ..rrr RRR = rrr AAAAA Rrr
............ Rrr
.......... AAAAA

JumpCondC: 11100 RRR c...c if !'(RRR AAAAA C..) jump to c...c
Covvvvnit C
.......... AAAAA

JumpCondR : 11101 RRR c...c if !'(RRR AAAAA rrr) jump to c...c
............ rrr
.......... AAAAA

ReadJumpCondC: 11110 RRR c...c Readl and JumpCondC
Covvvniit C
.......... AAAAA

ReadJumpCondR: 11111 RRR c...c Readl and JumpCondR
............ rrr

Chapter 21: The Lisp Reader and Compiler 141

21 The Lisp Reader and Compiler

Not yet documented.

142 XEmacs Internals Manual

Chapter 22: Lstreams 143

22 Lstreams

An Istream is an internal Lisp object that provides a generic buffering stream implementa-
tion. Conceptually, you send data to the stream or read data from the stream, not caring
what’s on the other end of the stream. The other end could be another stream, a file de-
scriptor, a stdio stream, a fixed block of memory, a reallocating block of memory, etc. The
main purpose of the stream is to provide a standard interface and to do buffering. Macros
are defined to read or write characters, so the calling functions do not have to worry about
blocking data together in order to achieve efficiency.

22.1 Creating an Lstream

Lstreams come in different types, depending on what is being interfaced to. Although
the primitive for creating new lstreams is Lstream_new(), generally you do not call this
directly. Instead, you call some type-specific creation function, which creates the Istream
and initializes it as appropriate for the particular type.

All Istream creation functions take a mode argument, specifying what mode the Istream
should be opened as. This controls whether the Istream is for input and output, and
optionally whether data should be blocked up in units of MULE characters. Note that
some types of Istreams can only be opened for input; others only for output; and others
can be opened either way. #### Richard Mlynarik thinks that there should be a strict
separation between input and output streams, and he’s probably right.

mode is a string, one of

"t Open for reading.

ta Open for writing.

"rc" Open for reading, but “read” never returns partial MULE characters.
"wc Open for writing, but never writes partial MULE characters.

22.2 Lstream Types
stdio

filedesc
lisp-string

fixed-buffer
resizing-buffer
dynarr

lisp-buffer
print
decoding

encoding

144 XEmacs Internals Manual

22.3 Lstream Functions

Lstream * Lstream_new (Lstream_implementation *imp, const char [Function]
*mode

Allocate and return a new Lstream. This function is not really meant to be called

directly; rather, each stream type should provide its own stream creation function,

which creates the stream and does any other necessary creation stuff (e.g. opening a
file).

void Lstream_set_buffering (Lstream *Istr , Lstream_bu ering [Function]
buffering , int buffering_size)
Change the buffering of a stream. See ‘lstream.h’. By default the buffering is
STREAM_BLOCK_BUFFERED.

int Lstream_flush (Lstream *Istr) [Function]
Flush out any pending unwritten data in the stream. Clear any buffered input data.
Returns 0 on success, -1 on error.

int Lstream_putc (Lstream *stream, int C) [Macro]
Write out one byte to the stream. This is a macro and so it is very efficient. The
C argument is only evaluated once but the stream argument is evaluated more than
once. Returns 0 on success, -1 on error.

int Lstream_getc (Lstream *stream) [Macro]
Read one byte from the stream. This is a macro and so it is very efficient. The stream
argument is evaluated more than once. Return value is -1 for EOF or error.

void Lstream_ungetc (Lstream *stream, int C) [Macro]
Push one byte back onto the input queue. This will be the next byte read from the
stream. Any number of bytes can be pushed back and will be read in the reverse order
they were pushed back—most recent first. (This is necessary for consistency—if there
are a number of bytes that have been unread and I read and unread a byte, it needs
to be the first to be read again.) This is a macro and so it is very efficient. The
C argument is only evaluated once but the stream argument is evaluated more than

once.
int Lstream_fputc (Lstream *stream, int C) [Function]
int Lstream_fgetc (Lstream *stream) [Function]
void Lstream_fungetc (Lstream *stream, int C) [Function]
Function equivalents of the above macros.
Bytecount Lstream_read (Lstream *stream, void *data, Bytecount [Function]
size)

Read size bytes of data from the stream. Return the number of bytes read. 0 means
EOQOF. -1 means an error occurred and no bytes were read.

Bytecount Lstream_write (Lstream *stream, void *data, Bytecount [Function]
size)
Write size bytes of data to the stream. Return the number of bytes written. -1 means
an error occurred and no bytes were written.

Chapter 22: Lstreams 145

void Lstream_unread (Lstream *stream, void *data, Bytecount Size) [Function]
Push back size bytes of data onto the input queue. The next call to Lstream_read ()
with the same size will read the same bytes back. Note that this will be the case even
if there is other pending unread data.

int Lstream_close (Lstream *stream) [Function]
Close the stream. All data will be flushed out.

void Lstream_reopen (Lstream *stream) [Function]
Reopen a closed stream. This enables I/O on it again. This is not meant to be called
except from a wrapper routine that reinitializes variables and such—the close routine
may well have freed some necessary storage structures, for example.

void Lstream_rewind (Lstream *stream) [Function]
Rewind the stream to the beginning.

22.4 Lstream Methods

Bytecount reader (Lstream *stream, unsigned char "data, [Lstream Method]
Bytecount size)

Read some data from the stream’s end and store it into data, which can hold size
bytes. Return the number of bytes read. A return value of 0 means no bytes can be
read at this time. This may be because of an EOF, or because there is a granularity
greater than one byte that the stream imposes on the returned data, and size is less
than this granularity. (This will happen frequently for streams that need to return
whole characters, because Lstream_read() calls the reader function repeatedly until
it has the number of bytes it wants or until 0 is returned.) The Istream functions do
not treat a 0 return as EOF or do anything special; however, the calling function will
interpret any 0 it gets back as EOF. This will normally not happen unless the caller
calls Lstream_read() with a very small size.

This function can be NULL if the stream is output-only.

Bytecount writer (Lstream *stream, const unsigned char [Lstream Method]
*data, Bytecount size)

Send some data to the stream’s end. Data to be sent is in data and is Size bytes.
Return the number of bytes sent. This function can send and return fewer bytes than
is passed in; in that case, the function will just be called again until there is no data
left or 0 is returned. A return value of 0 means that no more data can be currently
stored, but there is no error; the data will be squirreled away until the writer can
accept data. (This is useful, e.g., if you're dealing with a non-blocking file descriptor
and are getting EWOULDBLOCK errors.) This function can be NULL if the stream is
input-only.

int rewinder (Lstream *stream) [Lstream Method]
Rewind the stream. If this is NULL, the stream is not seekable.

int seekable_p (Lstream *stream) [Lstream Method]
Indicate whether this stream is seekable—i.e. it can be rewound. This method is
ignored if the stream does not have a rewind method. If this method is not present,
the result is determined by whether a rewind method is present.

146 XEmacs Internals Manual

int flusher (Lstream *stream) [Lstream Method]
Perform any additional operations necessary to flush the data in this stream.

int pseudo_closer (Lstream *stream) [Lstream Method]

int closer (Lstream *stream) [Lstream Method]

Perform any additional operations necessary to close this stream down. May be
NULL. This function is called when Lstream_close() is called or when the stream is
garbage-collected. When this function is called, all pending data in the stream will
already have been written out.

Lisp_Object marker (Lisp_Object Istream , void (*markfun) [Lstream Method]
(Lisp_Object))
Mark this object for garbage collection. Same semantics as a standard Lisp_Object
marker. This function can be NULL.

Chapter 23: Consoles; Devices; Frames; Windows 147

23 Consoles; Devices; Frames:; Windows

23.1 Introduction to Consoles; Devices; Frames; Windows

A window-system window that you see on the screen is called a frame in Emacs terminology.
Each frame is subdivided into one or more non-overlapping panes, called (confusingly)
windows. Each window displays the text of a buffer in it. (See above on Buffers.) Note that
buffers and windows are independent entities: Two or more windows can be displaying the
same buffer (potentially in different locations), and a buffer can be displayed in no windows.

A single display screen that contains one or more frames is called a display. Under most
circumstances, there is only one display. However, more than one display can exist, for
example if you have a multi-headed console, i.e. one with a single keyboard but multiple
displays. (Typically in such a situation, the various displays act like one large display, in
that the mouse is only in one of them at a time, and moving the mouse off of one moves it
into another.) In some cases, the different displays will have different characteristics, e.g.
one color and one mono.

XEmacs can display frames on multiple displays. It can even deal simultaneously with
frames on multiple keyboards (called consolesin XEmacs terminology). Here is one case
where this might be useful: You are using XEmacs on your workstation at work, and leave it
running. Then you go home and dial in on a TTY line, and you can use the already-running
XEmacs process to display another frame on your local T'TY.

Thus, there is a hierarchy console -> display -> frame -> window. There is a separate
Lisp object type for each of these four concepts. Furthermore, there is logically a selected
console selected display selected frame and selected window Each of these objects is
distinguished in various ways, such as being the default object for various functions that
act on objects of that type. Note that every containing object remembers the “selected”
object among the objects that it contains: e.g. not only is there a selected window, but
every frame remembers the last window in it that was selected, and changing the selected
frame causes the remembered window within it to become the selected window. Similar
relationships apply for consoles to devices and devices to frames.

23.2 Point

Recall that every buffer has a current insertion position, called point. Now, two or more
windows may be displaying the same buffer, and the text cursor in the two windows (i.e.
point) can be in two different places. You may ask, how can that be, since each buffer has
only one value of point? The answer is that each window also has a value of point that is
squirreled away in it. There is only one selected window, and the value of “point” in that
buffer corresponds to that window. When the selected window is changed from one window
to another displaying the same buffer, the old value of point is stored into the old window’s
“point” and the value of point from the new window is retrieved and made the value of
point in the buffer. This means that window-point for the selected window is potentially
inaccurate, and if you want to retrieve the correct value of point for a window, you must
special-case on the selected window and retrieve the buffer’s point instead. This is related
to why save-window-excursion does not save the selected window’s value of point.

148 XEmacs Internals Manual

23.3 Window Hierarchy

If a frame contains multiple windows (panes), they are always created by splitting an existing
window along the horizontal or vertical axis. Terminology is a bit confusing here: to split
a window horizontally means to create two side-by-side windows, i.e. to make a vertical
cut in a window. Likewise, to split a window vertically means to create two windows, one
above the other, by making a horizontal cut.

If you split a window and then split again along the same axis, you will end up with a
number of panes all arranged along the same axis. The precise way in which the splits were
made should not be important, and this is reflected internally. Internally, all windows are
arranged in a tree, consisting of two types of windows, combination windows (which have
children, and are covered completely by those children) and leaf windows, which have no
children and are visible. Every combination window has two or more children, all arranged
along the same axis. There are (logically) two subtypes of windows, depending on whether
their children are horizontally or vertically arrayed. There is always one root window, which
is either a leaf window (if the frame contains only one window) or a combination window (if
the frame contains more than one window). In the latter case, the root window will have
two or more children, either horizontally or vertically arrayed, and each of those children
will be either a leaf window or another combination window.

Here are some rules:

1. Horizontal combination windows can never have children that are horizontal combina-
tion windows; same for vertical.

2. Only leaf windows can be split (obviously) and this splitting does one of two things:
(a) turns the leaf window into a combination window and creates two new leaf children,
or (b) turns the leaf window into one of the two new leaves and creates the other leaf.
Rule (1) dictates which of these two outcomes happens.

3. Every combination window must have at least two children.

4. Leaf windows can never become combination windows. They can be deleted, however.
If this results in a violation of (3), the parent combination window also gets deleted.

5. All functions that accept windows must be prepared to accept combination windows,
and do something sane (e.g. signal an error if so). Combination windows do escape to
the Lisp level.

6. All windows have three fields governing their contents: these are hchild (a list of
horizontally-arrayed children), vchild (a list of vertically-arrayed children), and bu er
(the buffer contained in a leaf window). Exactly one of these will be non-nil. Remem-
ber that horizontally-arrayed means “side-by-side” and vertically-arrayed means one
above the other

7. Leaf windows also have markers in their start (the first buffer position displayed in
the window) and pointm (the window’s stashed value of point—see above) fields, while
combination windows have nil in these fields.

8. The list of children for a window is threaded through the next and prev fields of each
child window.

9. Deleted windows can be undeleted This happens as a result of restoring a window
configuration, and is unlike frames, displays, and consoles, which, once deleted, can

Chapter 23: Consoles; Devices; Frames; Windows 149

never be restored. Deleting a window does nothing except set a special dead bit to 1
and clear out the next, prev, hchild, and vchild fields, for GC purposes.

10. Most frames actually have two top-level windows—one for the minibuffer and one (the
root) for everything else. The modeline (if present) separates these two. The next
field of the root points to the minibuffer, and the prev field of the minibuffer points
to the root. The other next and prev fields are nil, and the frame points to both of
these windows. Minibuffer-less frames have no minibuffer window, and the next and
prev of the root window are nil. Minibuffer-only frames have no root window, and
the next of the minibuffer window is nil but the prev points to itself. (###+# This
is an artifact that should be fixed.)

23.4 The Window Object

Windows have the following accessible fields:
frame The frame that this window is on.
mini_p Non-nil if this window is a minibuffer window.

buffer The buffer that the window is displaying. This may change often during the
life of the window.

dedicated
Non-nil if this window is dedicated to its buffer.

pointm This is the value of point in the current buffer when this window is selected;
when it is not selected, it retains its previous value.

start The position in the buffer that is the first character to be displayed in the
window.

force_start
If this flag is non-nil, it says that the window has been scrolled explicitly by
the Lisp program. This affects what the next redisplay does if point is off the
screen: instead of scrolling the window to show the text around point, it moves
point to a location that is on the screen.

last_modified
The modified field of the window’s buffer, as of the last time a redisplay com-
pleted in this window.

last_point
The buffer’s value of point, as of the last time a redisplay completed in this
window.

left This is the left-hand edge of the window, measured in columns. (The leftmost

column on the screen is column 0.)

top This is the top edge of the window, measured in lines. (The top line on the
screen is line 0.)

height The height of the window, measured in lines.

width The width of the window, measured in columns.

150

next

prev

parent

hscroll

use_time

XEmacs Internals Manual

This is the window that is the next in the chain of siblings. It is nil in a
window that is the rightmost or bottommost of a group of siblings.

This is the window that is the previous in the chain of siblings. It is nil in a
window that is the leftmost or topmost of a group of siblings.

Internally, XEmacs arranges windows in a tree; each group of siblings has a
parent window whose area includes all the siblings. This field points to a
window’s parent.

Parent windows do not display buffers, and play little role in display except to
shape their child windows. Emacs Lisp programs usually have no access to the
parent windows; they operate on the windows at the leaves of the tree, which
actually display buffers.

This is the number of columns that the display in the window is scrolled hori-
zontally to the left. Normally, this is 0.

This is the last time that the window was selected. The function get-lru-
window uses this field.

display_table

The window’s display table, or nil if none is specified for it.

update_mode_line

Non-nil means this window’s mode line needs to be updated.

base_line_number

The line number of a certain position in the buffer, or nil. This is used for
displaying the line number of point in the mode line.

base_line_pos

The position in the buffer for which the line number is known, or nil meaning
none is known.

region_showing

If the region (or part of it) is highlighted in this window, this field holds the
mark position that made one end of that region. Otherwise, this field is nil.

Chapter 24: The Redisplay Mechanism 151

24 The Redisplay Mechanism

The redisplay mechanism is one of the most complicated sections of XEmacs, especially
from a conceptual standpoint. This is doubly so because, unlike for the basic aspects of the
Lisp interpreter, the computer science theories of how to efficiently handle redisplay are not
well-developed.

When working with the redisplay mechanism, remember the Golden Rules of Redisplay:
1. It Is Better To Be Correct Than Fast.
2. Thou Shalt Not Run Elisp From Within Redisplay.
3. It Is Better To Be Fast Than Not To Be.

24.1 Critical Redisplay Sections

Within this section, we are defenseless and assume that the following cannot happen:
1. garbage collection
2. Lisp code evaluation

3. frame size changes

We ensure (3) by calling hold_frame_size_changes(), which will cause any pending
frame size changes to get put on hold till after the end of the critical section. (1) follows
automatically if (2) is met. #### Unfortunately, there are some places where Lisp code
can be called within this section. We need to remove them.

If Fsignal () is called during this critical section, we will abort ().

If garbage collection is called during this critical section, we simply return. #### We
should abort instead.

#H#44 If a frame-size change does occur we should probably actually be preempting
redisplay.

24.2 Line Start Cache

The traditional scrolling code in Emacs breaks in a variable height world. It depends on the
key assumption that the number of lines that can be displayed at any given time is fixed.
This led to a complete separation of the scrolling code from the redisplay code. In order
to fully support variable height lines, the scrolling code must actually be tightly integrated
with redisplay. Only redisplay can determine how many lines will be displayed on a screen
for any given starting point.

What is ideally wanted is a complete list of the starting buffer position for every possible
display line of a buffer along with the height of that display line. Maintaining such a full list
would be very expensive. We settle for having it include information for all areas which we
happen to generate anyhow (i.e. the region currently being displayed) and for those areas
we need to work with.

In order to ensure that the cache accurately represents what redisplay would actually
show, it is necessary to invalidate it in many situations. If the buffer changes, the starting
positions may no longer be correct. If a face or an extent has changed then the line heights
may have altered. These events happen frequently enough that the cache can end up being

152 XEmacs Internals Manual

constantly disabled. With this potentially constant invalidation when is the cache ever
useful?

Even if the cache is invalidated before every single usage, it is necessary. Scrolling often
requires knowledge about display lines which are actually above or below the visible region.
The cache provides a convenient light-weight method of storing this information for multiple
display regions. This knowledge is necessary for the scrolling code to always obey the First
Golden Rule of Redisplay.

If the cache already contains all of the information that the scrolling routines happen
to need so that it doesn’t have to go generate it, then we are able to obey the Third
Golden Rule of Redisplay. The first thing we do to help out the cache is to always add the
displayed region. This region had to be generated anyway, so the cache ends up getting
the information basically for free. In those cases where a user is simply scrolling around
viewing a buffer there is a high probability that this is sufficient to always provide the
needed information. The second thing we can do is be smart about invalidating the cache.

TODO—DBe smart about invalidating the cache. Potential places:

e Insertions at end-of-line which don’t cause line-wraps do not alter the starting positions
of any display lines. These types of buffer modifications should not invalidate the cache.
This is actually a large optimization for redisplay speed as well.

e Buffer modifications frequently only affect the display of lines at and below where they
occur. In these situations we should only invalidate the part of the cache starting at
where the modification occurs.

In case you're wondering, the Second Golden Rule of Redisplay is not applicable.

24.3 Redisplay Piece by Piece
As you can begin to see redisplay is complex and also not well documented. Chuck no
longer works on XEmacs so this section is my take on the workings of redisplay.
Redisplay happens in three phases:
1. Determine desired display in area that needs redisplay. Implemented by redisplay.c
2. Compare desired display with current display Implemented by redisplay-output.c
3. Output changes Implemented by redisplay-output.c, redisplay-x.c, redisplay-
msw.c and redisplay-tty.c
Steps 1 and 2 are device-independent and relatively complex. Step 3 is mostly device-
dependent.
Determining the desired display

Display attributes are stored in display_line structures. Each display_line consists
of a set of display_block’s and each display_block contains a number of rune’s. Gener-
ally dynarr’s of display_line’s are held by each window representing the current display
and the desired display.

The display_line structures are tightly tied to buffers which presents a problem for
redisplay as this connection is bogus for the modeline. Hence the display_line generation
routines are duplicated for generating the modeline. This means that the modeline display
code has many bugs that the standard redisplay code does not.

Chapter 24: The Redisplay Mechanism 153

The guts of display_line generation are in create_text_block, which creates a single
display line for the desired locale. This incrementally parses the characters on the current
line and generates redisplay structures for each.

Gutter redisplay is different. Because the data to display is stored in a string we cannot
use create_text_block. Instead we use create_text_string_block which performs the
same function as create_text_block but for strings. Many of the complexities of create_
text_block to do with cursor handling and selective display have been removed.

154 XEmacs Internals Manual

Chapter 25: Extents 155

25 Extents

25.1 Introduction to Extents

Extents are regions over a buffer, with a start and an end position denoting the region of
the buffer included in the extent. In addition, either end can be closed or open, meaning
that the endpoint is or is not logically included in the extent. Insertion of a character at a
closed endpoint causes the character to go inside the extent; insertion at an open endpoint
causes the character to go outside.

Extent endpoints are stored using memory indices (see ‘insdel.c’), to minimize the
amount of adjusting that needs to be done when characters are inserted or deleted.

(Formerly, extent endpoints at the gap could be either before or after the gap, depending
on the open/closedness of the endpoint. The intent of this was to make it so that insertions
would automatically go inside or out of extents as necessary with no further work needing
to be done. It didn’t work out that way, however, and just ended up complexifying and
buggifying all the rest of the code.)

25.2 Extent Ordering

Extents are compared using memory indices. There are two orderings for extents and both
orders are kept current at all times. The normal or display order is as follows:

Extent A is ‘‘less than’’ extent B,
that is, earlier in the display order,
if: A-start < B-start,
or if: A-start = B-start, and A-end > B-end

So if two extents begin at the same position, the larger of them is the earlier one in the
display order (EXTENT_LESS is true).

For the e-order, the same thing holds:

Extent A is ‘‘less than’’ extent B in e-order,
that is, later in the buffer,
if: A-end < B-end,
or if: A-end = B-end, and A-start > B-start
So if two extents end at the same position, the smaller of them is the earlier one in the
e-order (EXTENT_E_LESS is true).

The display order and the e-order are complementary orders: any theorem about the
display order also applies to the e-order if you swap all occurrences of “display order” and
“e-order”, “less than” and “greater than”, and “extent start” and “extent end”.

25.3 Format of the Extent Info

An extent-info structure consists of a list of the buffer or string’s extents and a stack of
extents that lists all of the extents over a particular position. The stack-of-extents info is
used for optimization purposes—it basically caches some info that might be expensive to
compute. Certain otherwise hard computations are easy given the stack of extents over a
particular position, and if the stack of extents over a nearby position is known (because it

156 XEmacs Internals Manual

was calculated at some prior point in time), it’s easy to move the stack of extents to the
proper position.

Given that the stack of extents is an optimization, and given that it requires memory, a
string’s stack of extents is wiped out each time a garbage collection occurs. Therefore, any
time you retrieve the stack of extents, it might not be there. If you need it to be there, use
the _force version.

Similarly, a string may or may not have an extent_info structure. (Generally it won’t if
there haven’t been any extents added to the string.) So use the _force version if you need
the extent_info structure to be there.

A list of extents is maintained as a double gap array. One gap array is ordered by start
index (the display order) and the other is ordered by end index (the e-order). Note that
positions in an extent list should logically be conceived of as referring to a particular extent
(as is the norm in programs) rather than sitting between two extents. Note also that callers
of these functions should not be aware of the fact that the extent list is implemented as an
array, except for the fact that positions are integers (this should be generalized to handle
integers and linked list equally well).

A gap array is the same structure used by buffer text: an array of elements with a
"gap" somewhere in the middle. Insertion and deletion happens by moving the gap to the
insertion/deletion point, and then expanding/contracting as necessary. Gap arrays have a
number of useful properties:

1. They are space efficient, as there is no need for next/previous pointers.
2. If the items in them are sorted, locating an item is fast — O(logN).

3. Insertion and deletion is very fast (constant time, essentially) if the gap is near (which
favors localized operations, as will usually be the case). Even if not, it requires only
a block move of memory, which is generally a highly optimized operation on modern
processors.

4. Code to manipulate them is relatively simple to write.

An alternative would be balanced binary trees, which have guaranteed O(logN) time
for all operations (although the constant factors are not as good, and repeated localized
operations will be slower than for a gap array). Such code is quite tricky to write, however.

25.4 Zero-Length Extents

Extents can be zero-length, and will end up that way if their endpoints are explicitly set
that way or if their detachable property is nil and all the text in the extent is deleted. (The
exception is open-open zero-length extents, which are barred from existing because there
is no sensible way to define their properties. Deletion of the text in an open-open extent
causes it to be converted into a closed-open extent.) Zero-length extents are primarily used
to represent annotations, and behave as follows:

1. Insertion at the position of a zero-length extent expands the extent if both endpoints
are closed; goes after the extent if it is closed-open; and goes before the extent if it is
open-closed.

2. Deletion of a character on a side of a zero-length extent whose corresponding endpoint
is closed causes the extent to be detached if it is detachable; if the extent is not

Chapter 25: Extents 157

detachable or the corresponding endpoint is open, the extent remains in the buffer,
moving as necessary.

Note that closed-open, non-detachable zero-length extents behave exactly like mark-
ers and that open-closed, non-detachable zero-length extents behave like the “point-type”
marker in Mule.

25.5 Mathematics of Extent Ordering

The extents in a buffer are ordered by “display order” because that is that order that the
redisplay mechanism needs to process them in. The e-order is an auxiliary ordering used
to facilitate operations over extents. The operations that can be performed on the ordered
list of extents in a buffer are

1. Locate where an extent would go if inserted into the list.

2. Insert an extent into the list.

3. Remove an extent from the list.

4. Map over all the extents that overlap a range.

(4) requires being able to determine the first and last extents that overlap a range.
NOTE: overlap is used as follows:

e two ranges overlap if they have at least one point in common. Whether the endpoints
are open or closed makes a difference here.

e a point overlaps a range if the point is contained within the range; this is equivalent to
treating a point P as the range [P, P].

e In the case of an extent overlapping a point or range, the extent is normally treated as
having closed endpoints. This applies consistently in the discussion of stacks of extents
and such below. Note that this definition of overlap is not necessarily consistent with
the extents that map-extents maps over, since map-extents sometimes pays attention
to whether the endpoints of an extents are open or closed. But for our purposes, it
greatly simplifies things to treat all extents as having closed endpoints.

First, define >, <, <=, etc. as applied to extents to mean comparison according to the
display order. Comparison between an extent £ and an index I means comparison between
E and the range [I, I].

Also define e >, e <, e <=, etc. to mean comparison according to the e-order.

For any range R, define R(0) to be the starting index of the range and R(1) to be the
ending index of the range.

For any extent E, define E(next) to be the extent directly following E, and E(prev) to
be the extent directly preceding E. Assume E(next) and E(prev) can be determined from
E in constant time. (This is because we store the extent list as a doubly linked list.)

Similarly, define E(e — next) and E(e — prev) to be the extents directly following and
preceding F in the e-order.

Now:

Let R be a range. Let F' be the first extent overlapping R. Let L be the last extent
overlapping R.

Theorem 1: R(1) lies between L and L(next), i.e. L <= R(1) < L(next).

158 XEmacs Internals Manual

This follows easily from the definition of display order. The basic reason that this
theorem applies is that the display order sorts by increasing starting index.

Therefore, we can determine L just by looking at where we would insert R(1) into the
list, and if we know F' and are moving forward over extents, we can easily determine when
we’ve hit L by comparing the extent we're at to R(1).

Theorem 2: F(e —prev) e < [1, R(0)] e<= F.

This is the analog of Theorem 1, and applies because the e-order sorts by increasing
ending index.

Therefore, F' can be found in the same amount of time as operation (1), i.e. the time
that it takes to locate where an extent would go if inserted into the e-order list. This is
O(logN), since we are using gap arrays to manage extents.

Define a stack of extents (or SOE) as the set of extents (ordered in display order and
e-order, just like for normal extent lists) that overlap an index I.

Now:
Let I be an index, let S be the stack of extents on I and let F' be the first extent in S.
Theorem 3: The first extent in S is the first extent that overlaps any range [I, J].

Proof: Any extent that overlaps [I,.J] but does not include I must have a start index
> I, and thus be greater than any extent in S.

Therefore, finding the first extent that overlaps a range R is the same as finding the first
extent that overlaps R(0).

Theorem 4: Let 12 be an index such that I2 > I, and let F'2 be the first extent that
overlaps I2. Then, either F2 is in S or F'2 is greater than any extent in S.

Proof: If F2 does not include I then its start index is greater than I and thus it is
greater than any extent in .S, including F'. Otherwise, F'2 includes I and thus is in .S, and
thus F2 >=F.

25.6 Extent Fragments

Imagine that the buffer is divided up into contiguous, non-overlapping runs of text such
that no extent starts or ends within a run (extents that abut the run don’t count).

An extent fragment is a structure that holds data about the run that contains a particular
buffer position (if the buffer position is at the junction of two runs, the run after the position
is used)—the beginning and end of the run, a list of all of the extents in that run, the merged
face that results from merging all of the faces corresponding to those extents, the begin and
end glyphs at the beginning of the run, etc. This is the information that redisplay needs in
order to display this run.

Extent fragments have to be very quick to update to a new buffer position when moving
linearly through the buffer. They rely on the stack-of-extents code, which does the heavy-
duty algorithmic work of determining which extents overly a particular position.

Chapter 26: Faces 159

26 Faces

Not yet documented.

160 XEmacs Internals Manual

Chapter 27: Glyphs 161

27 Glyphs

Glyphs are graphical elements that can be displayed in XEmacs buffers or gutters. We
use the term graphical element here in the broadest possible sense since glyphs can be as
mundane as text or as arcane as a native tab widget.

In XEmacs, glyphs represent the uninstantiated state of graphical elements, i.e. they
hold all the information necessary to produce an image on-screen but the image need not
exist at this stage, and multiple screen images can be instantiated from a single glyph.

Glyphs are lazily instantiated by calling one of the glyph functions. This usually occurs
within redisplay when Fglyph_height is called. Instantiation causes an image-instance to
be created and cached. This cache is on a per-device basis for all glyphs except widget-
glyphs, and on a per-window basis for widgets-glyphs. The caching is done by image_
instantiate and is necessary because it is generally possible to display an image-instance
in multiple domains. For instance if we create a Pixmap, we can actually display this on
multiple windows - even though we only need a single Pixmap instance to do this. If caching
wasn’t done then it would be necessary to create image-instances for every displayable
occurrence of a glyph - and every usage - and this would be extremely memory and cpu
intensive.

Widget-glyphs (a.k.a native widgets) are not cached in this way. This is because widget-
glyph image-instances on screen are toolkit windows, and thus cannot be reused in multiple
XEmacs domains. Thus widget-glyphs are cached on an XEmacs window basis.

Any action on a glyph first consults the cache before actually instantiating a widget.

27.1 Glyph Instantiation

Glyph instantiation is a hairy topic and requires some explanation. The guts of glyph
instantiation is contained within image_instantiate. A glyph contains an image which is
a specifier. When a glyph function - for instance Fglyph_height - asks for a property of
the glyph that can only be determined from its instantiated state, then the glyph image is
instantiated and an image instance created. The instantiation process is governed by the
specifier code and goes through a series of steps:

e Validation. Instantiation of image instances happens dynamically - often within the
guts of redisplay. Thus it is often not feasible to catch instantiator errors at instanti-
ation time. Instead the instantiator is validated at the time it is added to the image
specifier. This function is defined by image_validate and at a simple level validates
keyword value pairs.

e Duplication. The specifier code by default takes a copy of the instantiator. This is
reasonable for most specifiers but in the case of widget-glyphs can be problematic,
since some of the properties in the instantiator - for instance callbacks - could cause
infinite recursion in the copying process. Thus the image code defines a function -
image_copy_instantiator - which will selectively copy values. This is controlled by
the way that a keyword is defined either using ITIFORMAT_VALID_KEYWORD or IIFORMAT_
VALID_NONCOPY_KEYWORD. Note that the image caching and redisplay code relies on
instantiator copying to ensure that current and new instantiators are actually different
rather than referring to the same thing.

162 XEmacs Internals Manual

e Normalization. Once the instantiator has been copied it must be converted into a form
that is viable at instantiation time. This can involve no changes at all, but typically
involves things like converting file names to the actual data. This function is defined
by image_going_to_add and normalize_image_instantiator.

e Instantiation. When an image instance is actually required for display it is instantiated
using image_instantiate. This involves calling instantiate methods that are specific
to the type of image being instantiated.

The final instantiation phase also involves a number of steps. In order to understand
these we need to describe a number of concepts.

An image is instantiated in a domain, where a domain can be any one of a device, frame,
window or image-instance. The domain gives the image-instance context and identity and
properties that affect the appearance of the image-instance may be different for the same
glyph instantiated in different domains. An example is the face used to display the image-
instance.

Although an image is instantiated in a particular domain the instantiation domain is not
necessarily the domain in which the image-instance is cached. For example a pixmap can be
instantiated in a window be actually be cached on a per-device basis. The domain in which
the image-instance is actually cached is called the governing-domain A governing-domain
is currently either a device or a window. Widget-glyphs and text-glyphs have a window
as a governing-domain, all other image-instances have a device as the governing-domain.
The governing domain for an image-instance is determined using the governing_domain
image-instance method.

27.2 Widget-Glyphs

27.3 Widget-Glyphs in the MS-Windows Environment
To Do

27.4 Widget-Glyphs in the X Environment

Widget-glyphs under X make heavy use of lwlib (see Section 31.1 [Lucid Widget Library],
page 171) for manipulating the native toolkit objects. This is primarily so that different
toolkits can be supported for widget-glyphs, just as they are supported for features such as
menubars etc.

Lwlib is extremely poorly documented and quite hairy so here is my understanding of
what goes on.

Lwlib maintains a set of widget_instances which mirror the hierarchical state of Xt
widgets. I think this is so that widgets can be updated and manipulated generically by
the lwlib library. For instance update_one_widget_instance can cope with multiple types of
widget and multiple types of toolkit. Each element in the widget hierarchy is updated from
its corresponding widget_instance by walking the widget_instance tree recursively.

This has desirable properties such as Iw_modify_all_widgets which is called from
‘glyphs-x.c’ and updates all the properties of a widget without having to know what the
widget is or what toolkit it is from. Unfortunately this also has hairy properties such as

Chapter 27: Glyphs 163

making the lwlib code quite complex. And of course lwlib has to know at some level what
the widget is and how to set its properties.

164 XEmacs Internals Manual

Chapter 28: Specifiers 165

28 Speciers

Not yet documented.

166 XEmacs Internals Manual

Chapter 29: Menus 167

29 Menus

A menu is set by setting the value of the variable current-menubar (which may be buffer-
local) and then calling set-menubar-dirty-flag to signal a change. This will cause the
menu to be redrawn at the next redisplay. The format of the data in current-menubar is
described in ‘menubar.c’.

Internally the data in current-menubar is parsed into a tree of widget_value’s (defined
in ‘lwlib.h’); this is accomplished by the recursive function menu_item_descriptor_to_
widget_value(), called by compute_menubar_data(). Such a tree is deallocated using
free_widget_value().

update_screen_menubars() is one of the external entry points. This checks to see, for
each screen, if that screen’s menubar needs to be updated. This is the case if

1. set-menubar-dirty-flag was called since the last redisplay. (This function sets the
C variable menubar_has_changed.)

2. The buffer displayed in the screen has changed.

3. The screen has no menubar currently displayed.

set_screen_menubar () is called for each such screen. This function calls compute_
menubar_data() to create the tree of widget_value’s, then calls lw_create_widget (),
lw_modify_all_widgets(), and/or lw_destroy_all_widgets() to create the X-Toolkit
widget associated with the menu.

update_psheets (), the other external entry point, actually changes the menus being
displayed. It uses the widgets fixed by update_screen_menubars() and calls various X
functions to ensure that the menus are displayed properly.

The menubar widget is set up so that pre_activate_callback() is called when the
menu is first selected (i.e. mouse button goes down), and menubar_selection_callback()
is called when an item is selected. pre_activate_callback() calls the function in activate-
menubar-hook, which can change the menubar (this is described in ‘menubar.c’). If the
menubar is changed, set_screen_menubars() is called. menubar_selection_callback()
enqueues a menu event, putting in it a function to call (either eval or call-interactively)
and its argument, which is the callback function or form given in the menu’s description.

168 XEmacs Internals Manual

Chapter 30: Subprocesses 169

30 Subprocesses

The fields of a process are:

name A string, the name of the process.

command A list containing the command arguments that were used to start this process.
filter A function used to accept output from the process instead of a buffer, or nil.

sentinel A function called whenever the process receives a signal, or nil.

buffer The associated buffer of the process.

pid An integer, the Unix process id.

childp A flag, non-nil if this is really a child process. It isnil for a network connection.
mark A marker indicating the position of the end of the last output from this process

inserted into the buffer. This is often but not always the end of the buffer.

kill_without_query
If this is non-nil, killing XEmacs while this process is still running does not
ask for confirmation about killing the process.

raw_status_low

raw_status_high
These two fields record 16 bits each of the process status returned by the wait
system call.

status The process status, as process-status should return it.

tick

update_tick
If these two fields are not equal, a change in the status of the process needs
to be reported, either by running the sentinel or by inserting a message in the
process buffer.

pty_flag Non-nil if communication with the subprocess uses a pty ; nil if it uses a pipe.

infd The file descriptor for input from the process.
outfd The file descriptor for output to the process.
subtty The file descriptor for the terminal that the subprocess is using. (On some

systems, there is no need to record this, so the value is -1.)

tty_name The name of the terminal that the subprocess is using, or nil if it is using
pipes.

170 XEmacs Internals Manual

Chapter 31: Interface to the X Window System 171

31 Interface to the X Window System
Mostly undocumented.

31.1 Lucid Widget Library

Lwlib is extremely poorly documented and quite hairy. The author(s) blame that on X,
Xt, and Motif, with some justice, but also sufficient hypocrisy to avoid drawing the obvious
conclusion about their own work.

The Lucid Widget Library is composed of two more or less independent pieces. The
first, as the name suggests, is a set of widgets. These widgets are intended to resemble and
improve on widgets provided in the Motif toolkit but not in the Athena widgets, including
menubars and scrollbars. Recent additions by Andy Piper integrate some “modern” wid-
gets by Edward Falk, including checkboxes, radio buttons, progress gauges, and index tab
controls (aka notebooks).

The second piece of the Lucid widget library is a generic interface to several toolkits for X
(including Xt, the Athena widget set, and Motif, as well as the Lucid widgets themselves)
so that core XEmacs code need not know which widget set has been used to build the
graphical user interface.

31.1.1 Generic Widget Interface

In general in any toolkit a widget may be a composite object. In Xt, all widgets have an
X window that they manage, but typically a complex widget will have widget children,
each of which manages a subwindow of the parent widget’s X window. These children may
themselves be composite widgets. Thus a widget is actually a tree or hierarchy of widgets.

For each toolkit widget, lwlib maintains a tree of widget_values which mirror the
hierarchical state of Xt widgets (including Motif, Athena, 3D Athena, and Falk’s widget
sets). Each widget_value has contents member, which points to the head of a linked list
of its children. The linked list of siblings is chained through the next member of widget_
value.

172 XEmacs Internals Manual

The widget_value hierarchy of a composite widget with two simple
children and one composite child.
The widget_instance structure maintains the inverse view of the tree. As for the
widget_value, siblings are chained through the next member. However, rather than nam-
ing children, the widget_instance tree links to parents.

pomm - +
| composite |
dmmm +
A
| parent
|
Fo————— + next +-————-- + next +-—————-- +
| child |----- >| child |----- >| child |
R + R + R +
A
| parent
|
t-——————————— + next +----—————---—- +
| grand child |----- >| grand child |
Fomm + domm +

The widget_value hierarchy of a composite widget with two simple
children and one composite child.

This permits widgets derived from different toolkits to be updated and manipulated
generically by the lwlib library. For instance update_one_widget_instance can cope with
multiple types of widget and multiple types of toolkit. Each element in the widget hierarchy
is updated from its corresponding widget_value by walking the widget_value tree. This
has desirable properties. For example, lw_modify_all_widgets is called from ‘glyphs-x.c’
and updates all the properties of a widget without having to know what the widget is or
what toolkit it is from. Unfortunately this also has its hairy properties; the lwlib code quite
complex. And of course Iwlib has to know at some level what the widget is and how to set
its properties.

The widget_instance structure also contains a pointer to the root of its tree. Widget
instances are further confi

31.1.2 Scrollbars

31.1.3 Menubars

31.1.4 Checkboxes and Radio Buttons
31.1.5 Progress Bars

31.1.6 Tab Controls

Chapter 31: Index

Index

A

allocation from frob blocks 95
allocation of objects in XEmacs Lisp 85
allocation, introductionto 85
allocation, low-level 98
Amdahl Corporationl 4
Andreessen, Marc.cooveiiiiniennnnn.. 4
ASSEIt . 57
asynchronous subprocesses.................. 77
B
bars, progress. ... 172
Baur, Steve 4,5
Benson, Ericcoiiiii 3
binding; the specbinding stack; unwind-protects,
dynamic ... 119
bindings, evaluation; stack frames; 117
bit vector 100
bridge, playing ... 9
Buchholz, Martin 4,5
buerlists ... 125
buer object, thel 127
buer,thetextina 123
bu ers and textual representation 123
bu ers, introductionto 123
build-time dependencies...................... 17
building, XEmacs from the perspective of 15
buttons, checkboxes and radio............... 172
byte positions, working with character and a7
Bytebpos. 46
Bytecount 46
bytecount _to_charcount 48

C

C code, rules when writing new 37
Cvs. LisSp.eei 11
callback routines, the event stream........... 115
caller-protects (GCPR@ile) 42
casetable........ ...l 75
catchand throw 119
CCL it 137
character and byte positions, working with a7
character encoding, internal 136
character sets..............ooiiiiiia 133
character sets and encodings, Mule........... 133
character-related data types 46
characters, integersand...................... 94
Charbpos ... 46
Charcount ...t 46
charcount_to_bytecount 48
CharXpos ... 46
Check-Error ... 57

173
Check-Error-Messageccovivininn 57
Check-Message.cooiiiiiiiinan., 57
checkboxes and radio buttons................ 172
closer ... 146
ClosUre. ... e 23
code, an example of Mule-aware.............. 52
code, general guidelines for writing Mule-aware
.. 51
code, rules when writngnew C............... 37
coding conventions.cooviiiiiean... 37
codingforMule...............ociiiiiii, 45
coding rules, general..................oe 38
coding rules, naming................oooien.. 37
command builder, dispatching events; the 115
comments, writing good 43
CommON LiSP « oo 11
compact_string_chars 93
compiled functionl 101
compiler, the Lispreaderand................ 141
[0} 0 99
conservative garbage collection................ 88
consoles; devices; frames; windows. 147
consoles; devices; frames; windows, introduction to
....................................... 147
control ow modules, editor-level 69
conversion to and from external data 48
converting eventSovve i 115
COPY-ON-WIItE ..\ttt 39
creating Lisp objecttypes 56
critical redisplay sections 151
CVS techniques. ... 61
D
data dumping ... 106
data types, character-related 46
DEC_IBYTEPTR ...t 48
dependencies, build-time..................... 17
developers, techniques for XEmacs............ 53
devices; frames; windows, consoles;.......... 147
devices; frames; windows, introduction to consoles;
....................................... 147
Devin, Matthieu 3
dispatching events; the command builder 115
display order of extents 157

display-related Lisp objects, modules for other .. 72
displayable Lisp objects, modules for the basic.. 71

dumping ..o 103
dumping address allocation.................. 105
dumping and its justi cation, whatis 103
dumping data descriptions 103
dumping object inventory 104
dumping OVerviewc.oevuvennnn. 103
dumping phase.............cooiiiiiiiiin., 104

dumping,data ...t 106

174

dumping, leloading 106
dumping, object relocation 107
dumping, pointers ... 106

dumping, putting back the pdump _opaques... 107
dumping, putting back the pdump _root_objects

and pdump _weak object_chains.......... 107
dumping, putting back the

pdump _root _struct _ptrs................. 107
dumping, reloading phase 106
dumping, remaining iSSUES. 107
dumping, reorganize the hash tables.......... 107
dumping, the header........................ 106
dynamicC arrayc..oeiiiiiiii 65
dynamic binding; the specbinding stack;

unwind-protects ... 119
dynamic SCOPING......c.vieiieiii i, 11
dynamiC typesooviii i 11
E
editing operations, modules for standard 68
Emacs 19, GNU, 3
Emacs 20, GNU ... 4
Emacs, a history ofol 1
encoding, internal character 136
encoding, internal string 136
encodings, internal Mule 135
encodings, Mule.............l 134
encodings, Mule character setsand 133
Energize ... 2
Epoch.... ... 2,4
error checking........... ...l 53
EUC (Extended Unix Code), Japanese 134
evaluation........... ... i 117
evaluation; stack frames; bindings............ 117
event gathering mechanism, specics of the... 110
event loop functions, other 115
event loop, events and the................... 109
event stream callback routines, the 115
event, speci cs about the Lisp object 115
events and the event loop................... 109
events, converting.ooviiiiaiian.. 115
events, introductionto 109
events, main loop............. ..l 109
events; the command builder, dispatching.. ... 115
Exthyteo a7
Extended Unix Code, Japanese EUC......... 134
extent fragments.......... ...l 158
extent info, format ofthe 155
extent mathematics 157
extentordering................ooiiL. 155, 157
EXIENES . . 155
extents, display order 157
extents, introductionto 155
extents, markersand................ooinn... 126
extents, zero-length......................... 156
external data, conversion to and from 48

external widgetl 81

XEmacs Internals Manual

F
faces. ... 159
le system, modules for interfacing with the ... 74
flusher ... 146
fragments, extent 158
frames; windows, consoles; devices;.......... 147
frames; windows, introduction to consoles; devices;
....................................... 147
Free Software Foundation 1
frob blocks, allocation from 95
FSF o 1
FSFEmMacs. ... 3,4
function, compiledol 101
G
garbage collection............................ 86
garbage collection - step by step.............. 88
garbage collection protection 40, 86
garbage collection, conservative............... 88
garbage collection, invocation................. 88
garbage _collect 1l 89
OC SWEBP .ottt ee et e et e 92
GCPRY ..ot 86
global Lisp variables, adding 44
glyph instantiation, 161
glyphs .o 161
GNUEMacs 19.......cooiiiiiiiiiiiiaieans 3
GNUEmMacs 20........coiiii i 4
Gosling, James. ... 1, 11
Great Integral Type Renaming 31
Great Usenet Renaming....................... 1
H
Hackers (Steven Levy)coviinn. 1
header les, inline functions 55
hierarchy of windows 148
history of Emacs, a ... 1
I
Ibyte . 46
Ibytes and Icharsoooite. 126
Ichar ... 46
Ichars, lbytesand.....................co.. . 126
Ignore-Ebolal 58
lllinois, University of 4
INC_IBYTEPTR 48
inline functionsl 55
inline functions, headers...................... 55
inside, XEmacs fromthe 19
instantiation, glyph 161
integers and characters. 94
integral type renaming, great 31
interactivec i 69

interfacing with the le system, modules for ... 74

Chapter 31: Index

interfacing with the operating system, modules for

.. 77
interfacing with X Windows, modules for 80
internal character encoding 136
internal Mule encodings 135
internal string encoding 136
internationalization, modules for 81
iNterning ... 27
interpreter and object system, modules for other

aspectsof the Lisp....................... 75
itext ichar a7
itext _n_addr.......... .. . 48
ITS (Incompatible Timesharing System) 1
J
Japanese EUC (Extended Unix Code)........ 134
Java 11
Java vs. LiSp..oveii i 11
JIST 135
Jones, Kyle..........ooiii i 5
K
Kaplan, Simono, 4
Known-Bug-Expect-Failure 58
L
Levy, Steven. 1
library, Lucid Widget 171
line startcache...........................0. 151
Lisp interpreter and object system, modules for

other aspects of the...................... 75
Lisp language, the........................... 11
Lisp modules, basic.......................... 65
Lisp object types, creating 56
Lisp objects are represented in C, how......... 29
Lisp objects, allocation of in XEmacs 85

Lisp objects, modules for other display-related .. 72
Lisp objects, modules for the basic displayable.. 71

Lisp primitives, writing 40
Lisp reader and compiler, the 141
LiSpVvs. Coonr 11
Lispvs. Java.....coooiiiiiiiiiiiiiian. 11
low-level allocation........................... 98
low-level modules.................... ... 63
Irecords. ... 95
Istream ... 74
Istream functions 144
Istream methods............................ 145
Istream types. ...t 143
Istream, creatingan......................... 143
Lstream_close ..., 145
Lstream_fgetc ..., 144
Lstream flush 144
Lstream_fputc ..., 144

Lstream_fungetcol 144

175
Lstream_getccooviiiiiiiii i 144
Lstream_nNew...........c.cooviiiiiniiinnnn. 144
Lstream_putCc.oviiiiiiiiiiin 144
Lstream readccviiiiiiiinn.. 144
Lstream_reopen ..., 145
Lstream rewindcoiiean. 145
Lstream_set_buffering 144
Lstream_ungetc ..., 144
Lstream unreadccooan. 145
Lstream_write 144
Istreams 143
LUuCid EmMacsooviiiiiiiii i 2
Lucid INnC. ..o 2
Lucid Widget Library 171
M
macro hygiene.ccoiiiiiiann.. 54
main loop ... 109
major textual changes........................ 31
mark and sweep............oooiiiiiiiin 86
mark methodccooiiiii.... 76, 97
mark_object 91
marker 100
marker. 146
markers and extentso 126
matching ... 128
mathematics of extent ordering 157
MAX _ICHAR _LENoo.L. 47
menubars........... i 172
MENUS . . ettt 167
merging a branch into the trunk 61
merging attempts ... 5
MIT 1
Mlynarik, Richard 4

modules for interfacing with the le system 74
modules for interfacing with the operating system

.. 77
modules for interfacing with X Windows 80
modules for internationalization 81
modules for other aspects of the Lisp interpreter

and object system....................... 75
modules for other display-related Lisp objects .. 72
modules for regression testing................. 82
modules for standard editing operations 68
modules for the basic displayable Lisp objects.. 71
modules for the redisplay mechanism.......... 73
modules, a summary of the various XEmacs... 63
modules, basic Lisp..........c.cooiiiiii.. 65
modules, editor-level control ow 69
modules, low-level ..., 63
MS-Windows environment, widget-glyphs in the

....................................... 162
Mule character sets and encodings........... 133
Mule encodings. ... 134
Mule encodings, internal 135
MULE merged XEmacs appears 5
Mule, coding forl 45

176
Mule-aware code, an example of.............. 52
Mule-aware code, general guidelines for writing
.. 51
N
NAS 79
native soundo 79
network connections ...l 77
network sound. ...t 79
Niksic, Hrvoje ... 5
O
obarrays ... 121
object system (abstractly speaking), the XEmacs
.. 23
object system, modules for other aspects of the
Lisp interpreterand 75
object types, creating Lisp 56
object,the buer 127
object, the window 149
objects are represented in C, how Lisp......... 29
objects in XEmacs Lisp, allocation of 85

objects, modules for the basic displayable Lisp.. 71
operating system, modules for interfacing with the

.. 7
outside, XEmacs fromthe 9
P
PANE. . 72
permanent objects.......... ... 26
pi, calculating 9
POINt L 147
pointers dumpingoiiiii i 106
positions, working with character and byte a7
primitives, writing LispoooaaL 40
progress bars. ... 172
protection, garbage collection................. 86
pseudo_Closer ... 146
Purify .. 53
Q
Quantify ... 53
R
radio buttons, checkboxes and............... 172
read SYNtaXovvririiiiiiiiiiiis 26
read-eval-print i 9
reader ... 145
reader and compiler, the Lisp................ 141
reader'sguide. ... 37
redisplay mechanism, modules for the......... 73
redisplay mechanism, the.................... 151

redisplay piece by piece..................... 152

XEmacs Internals Manual

redisplay sections, critical 151
regression testing, modules for................ 82
reloading phase....................cooiat 106
relocating allocator 64
rename to XEmacs. ...t 5
renaming, integral types 31
renaming, text/char types 34
represented in C, how Lisp objects are......... 29
rewinder 145
RMS . 1

SCANNET. ..\ttt 76
scoping, dynamic ...t 11
scrollbars 172
searching.oovii i 128
seekable_p ... 145
selections. ... 80
setitext _ichar ... 47
Sexton, Harlancooiiiiint, 3
Skip-Test-Unless t 59
skipped-test-reasons o 59
sound, Nativettt 79
sound, network ... 79
SPARCWOIKS ...t 4
specbinding stack; unwind-protects, dynamic
binding;the, 119
special forms, simple........................ 119
SPECI IS .ttt 165
stack frames; bindings, evaluation; 117
Stallman, Richard 1
SHHNG e 100
string encoding, internal 136
SUDPrOCESSES ..\ v vt 169
subprocesses, asynchronous. 77
subprocesses, synchronous. 77
Sun MiCrosystems. ... 4
sweep_bit_vectors_1 ... 94
sweep_lcrecords_ 1 ... 93
sweep_Strings ... 94
SYMbOl. ..o 100
symbolvalues..............l 122
symbols and variables....................... 121
symbols, introductionto 121
synchronous subprocesses.................... 77

Chapter 31: Index

T
tabcontrols 172
taxes, doiNgooviiii 9
techniques for XEmacs developers............ 53
TECO ottt 1
temporary objects 26
test-emacs-test-filel 57
testing, regression. 57
textinabuer,the 123
Text/Char Type Renaming 34
textual changes, major 31
textual representation, buers and 123
Thompson, Chuck 4
throw, catchand 119
type renaming, integral 31
type renaming, text/char 34
types, dynamic ... 11
types, Istreamo i 143
types, proper use of unsigned................. 45
U
University of lllinois 4
unsigned types, properuse of................. 45
unwind-protects, dynamic binding; the specbinding
stack; 119
AV
values, symbol................ it 122
variables, adding global Lisp.................. 44
variables, symbolsand...................... 121
VECION oot 100
vector, bit 100
version 18, through 1
version 19, GNUEmacs....................... 3
version 20, GNUEmMacs...............cco.v.... 4

17
\%%
widget interface, generic..................... 171
widget library, Lucidl 171
widget-glyphs i 162
widget-glyphs in the MS-Windows environment
....................................... 162
widget-glyphs in the X environment 162
WIN-EMACSo 4
window (in EMacs)covviiinnann.n. 72
window hierarchy ool 148
window object, the 149
window point internals 149
windows, consoles; devices; frames;.......... 147
windows, introduction to consoles; devices; frames;
....................................... 147
Wing, Ben ... 4
WIEET 145
writing good comments ... 43
writing Lisp primitives, 40
writing Mule-aware code, general guidelines for
.. 51
writing new C code, rules when............... 37
X
X environment, widget-glyphs in the 162
X Window System, interface tothe 171
X Windows, modules for interfacing with 80
XEMACS. .ottt 4
XEmacs from the inside 19
XEmacs from the outside 9
XEmacs from the perspective of building 15
XEmacs goesitalone......................... 5
XEmacs object system (abstractly speaking), the
.. 23
Z
Zawinski, Jamie ... 3

zero-length extents.......................... 156

178 XEmacs Internals Manual

Short Contents

1 AHistoryof Emacs.....covviiiiiiiiiii .. 1
2 XEmacs From the Outsidet 9
3 The Lisp Languageo 11
4 XEmacs From the Perspective of Building.............. 15
5 Build-Time Dependencies, 17
6 XEmacs From the Insideo it 19
7 The XEmacs Object System (Abstractly Speaking) 23
8 How Lisp Objects Are Represented in C............... 29
9 Major Textual Changescvviuiiiiennnn... 31
10 Rules When Writing New C Codeooviiint s, 37
11 Regression Testing XEmacs o7
12 CVS Techniquesov v v i i e e s 61
13 A Summary of the Various XEmacs Modules............ 63
14 Allocation of Objects in XEmacs Lisp 85
15 Dumping .. vv v 103
16 Events and the Event Loop....................... 109
17 Evaluation; Stack Frames; Bindings 117
18 Symbols and Variables 121
19 Buffers and Textual Representation 123
20 MULE Character Sets and Encodings................ 133
21 The Lisp Reader and Compiler 141
22 LStreams ... v v i i i 143
23 Consoles; Devices; Frames; Windows 147
24 The Redisplay Mechanism........................ 151
25 Extents ... e 155
26 Faceso e 159
27 Glyphs. ..o e 161
28 Specifiers e 165
20 MenuUs « v v s 167
30 SUDPIOCESSES . v vttt e e 169
31 Interface to the X Window System.................. 171

Index . v et e e e e e 173

i

XEmacs Internals Manual

Table of Contents

1

10

A History of Emacs........................

1.1
1.2
1.3
1.4
1.5

Through Version 18. i
Lucid Emacs
GNU Emacs 19.o e
GNU Emacs 20. ... e e e
XEACS .« vt e

XEmacs From the Outside

The Lisp Language

XEmacs From the Perspective of Building. .

Build-Time Dependencies

XEmacs From the Inside

The XEmacs Object System (Abstractly
Speaking),

How Lisp Objects Are Represented in C ...

Major Textual Changes...................

9.1
9.2

Great Integral Type Renaming
Text/Char Type Renaming................................

Rules When Writing New C Code........

10.1
10.2
10.3
10.4
10.5
10.6
10.7

10.8

A Reader’s Guide to XEmacs Coding Conventions
General Coding Rules..............
Writing Lisp Primitives
Writing Good Comments.ooov ..
Adding Global Lisp Variables.............................
Proper Use of Unsigned Types............................
Coding for Mule.o .
10.7.1 Character-Related Data Types.....................
10.7.2 Working With Character and Byte Positions
10.7.3 Conversion to and from External Data..............
10.7.4 General Guidelines for Writing Mule-Aware Code. . ..
10.7.5 An Example of Mule-Aware Code
10.7.6 Mule-izing Code i
Techniques for XEmacs Developers

15

17

19

23
29
31

31
34

iv XEmacs Internals Manual

11 Regression Testing XEmacs 57
12 CVS Techniques......................... 61
12.1 Merging a Branch into the Trunk 61

13 A Summary of the Various XEmacs Modules

.. 63
13.1 Low-Level Modules 63
13.2 Basic Lisp Modules.......... ... 65
13.3 Modules for Standard Editing Operations 68
13.4 Editor-Level Control Flow Modules 69
13.5 Modules for the Basic Displayable Lisp Objects............ 71
13.6 Modules for other Display-Related Lisp Objects............ 72
13.7 Modules for the Redisplay Mechanism..................... 73
13.8 Modules for Interfacing with the File System 74
13.9 Modules for Other Aspects of the Lisp Interpreter and Object

SYSteIML . . oot 75
13.10 Modules for Interfacing with the Operating System 7
13.11 Modules for Interfacing with X Windows................. 80
13.12 Modules for Internationalization......................... 81
13.13 Modules for Regression Testing.......................... 82

14 Allocation of Objects in XEmacs Lisp..... 85
14.1 Introduction to Allocation................................ 85
14.2 Garbage Collection, 86
14.3 GCPROIIE. . . oot e ettt e e e e et e e e 86
14.4 Garbage Collection - Step by Step 88

14.4.1 TInvocation............, 88

14.4.2 garbage_collect_1.......... 89

14.4.3 mark_object i 91

1444 GC_SWEED ...t 92

14.4.5 sweep_lcrecords_1l...... ..., 93

14.4.6 compact_string_chars 93

1447 sweep_Stringsuiiiiiiiiiiiiaiiaa.. 94

14.4.8 sweep_bit_vectors_1............ 94
14.5 Integers and Characters...................iin... 94
14.6 Allocation from Frob Blocks.............................. 95
147 1recordS. .o oot 95
14.8 Low-level allocation. 98
14.9 COnS .ot 99
1410 VeCtor. ... 100
1411 Bit Vector 100
14.12 Symbol. 100
1413 MarKkero 100
1414 SErINg . oot 100

14.15 Compiled Function 101

15

16

17

18

Dumping.........ccooiiiiiiiiiiiiiin... 103

15.1 What is dumping and its justification.................... 103
152 OVeIVIEW ..ttt e e 103
15.3 Data descriptions. 103
15.4 Dumping phase 104
15.4.1 Object inventory ..., 104
15.4.2 Address allocation................. 105
15.4.3 Theheader......... i 106
1544 Datadumpingociiiiiiiii... 106
15.4.5 Pointers dumping 106
15.5 Reloading phase........ i 106
15.5.1 Fileloading...........co i 106
15.5.2 Putting back the pdump_opaques 107
15.5.3 Putting back the pdump_root_struct_ptrs.......... 107
15.5.4 Object relocation 107
15.5.5 Putting back the pdump_root_objects and
pdump_weak_object_chains........................... 107
15.5.6 Reorganize the hash tables........................ 107
15.6 Remaining iSsues........... ..., 107
Events and the Event Loop.............. 109
16.1 Introduction to Events..........., 109
16.2 Main Loop. ..o 109
16.3 Specifics of the Event Gathering Mechanism.............. 110
16.4 Specifics About the Emacs Event 115
16.5 The Event Stream Callback Routines 115
16.6 Other Event Loop Functions 115
16.7 Converting Events............ ... i 115
16.8 Dispatching Events; The Command Builder 115
Evaluation; Stack Frames; Bindings...... 117
17.1 Evaluation........... ... 117
17.2 Dynamic Binding; The specbinding Stack; Unwind-Protects
.. 119
17.3 Simple Special Forms 119
17.4 Catchand Throw........ i 119
Symbols and Variables.................. 121
18.1 Introduction to Symbols 121
18.2 ODATTAYS « v v et ettt e e e e e 121

18.3 Symbol Values 122

vi XEmacs Internals Manual

19 Buffers and Textual Representation...... 123
19.1 Introduction to Buffers 123
19.2 The Textina Buffer............ 123
19.3 Buffer ListS 125
19.4 Markers and Extents 126
19.5 Ibytes and Ichars........ 126
19.6 The Buffer Object i, 126
19.7 Searching and Matching 128

20 MULE Character Sets and Encodings.... 133

20.1 Character Setst 133

20.2 Encodings ... 134
20.2.1 Japanese EUC (Extended Unix Code) 134

20.2.2 JIST o 135

20.3 Internal Mule Encodings 135
20.3.1 Internal String Encoding....................... ... 136

20.3.2 Internal Character Encoding 136

204 CCL oot 137

21 The Lisp Reader and Compiler.......... 141
22 Lstreams.............cooiiiiiiiiiiiiin, 143
22.1 Creating an Lstream............. il 143

22.2 Lstream Types...... ..., 143

22.3 Lstream Functions. i 144

22.4 Lstream Methods............. 145

23 Consoles; Devices; Frames; Windows. 147
23.1 Introduction to Consoles; Devices; Frames; Windows 147

232 Point..... ... 147

23.3 Window Hierarchy......... 148

23.4 The Window Object........ ... 149

24 The Redisplay Mechanism 151
24.1 Critical Redisplay Sections 151

24.2 Line Start Cache i 151

24.3 Redisplay Piece by Piece......... 152

25 Extents............... ... 155
25.1 Imtroduction to Extents.............. 155

25.2 Extent Ordering............. ..., 155

25.3 Format of the Extent Info.............. 155

25.4 Zero-Length Extents............... 156

25.5 Mathematics of Extent Ordering......................... 157

25.6 Extent Fragments 158

Vil

26 Facesi 159
27 Glyphs............. 161
27.1 Glyph Instantiation............... 161

27.2 Widget-Glyphs 162

27.3 Widget-Glyphs in the MS-Windows Environment 162

27.4 Widget-Glyphs in the X Environment.................... 162

28 Specifiers ... 165
29 MenusScoii 167
30 Subprocesses.................c ... 169
31 Interface to the X Window System 171
31.1 Lucid Widget Library............. 171
31.1.1 Generic Widget Interface 171

31.1.2 Scrollbars.oi i 172

31.1.3 Menubars.o 172

31.1.4 Checkboxes and Radio Buttons 172

31.1.5 Progress Bars.......... i 172

31.1.6 Tab Controls 172

viil XEmacs Internals Manual

	A History of Emacs
	Through Version 18
	Lucid Emacs
	GNU Emacs 19
	GNU Emacs 20
	XEmacs

	XEmacs From the Outside
	The Lisp Language
	XEmacs From the Perspective of Building
	Build-Time Dependencies
	XEmacs From the Inside
	The XEmacs Object System (Abstractly Speaking)
	How Lisp Objects Are Represented in C
	Major Textual Changes
	Great Integral Type Renaming
	Text/Char Type Renaming

	Rules When Writing New C Code
	A Reader's Guide to XEmacs Coding Conventions
	General Coding Rules
	Writing Lisp Primitives
	Writing Good Comments
	Adding Global Lisp Variables
	Proper Use of Unsigned Types
	Coding for Mule
	Character-Related Data Types
	Working With Character and Byte Positions
	Conversion to and from External Data
	General Guidelines for Writing Mule-Aware Code
	An Example of Mule-Aware Code
	Mule-izing Code

	Techniques for XEmacs Developers

	Regression Testing XEmacs
	CVS Techniques
	Merging a Branch into the Trunk

	A Summary of the Various XEmacs Modules
	Low-Level Modules
	Basic Lisp Modules
	Modules for Standard Editing Operations
	Editor-Level Control Flow Modules
	Modules for the Basic Displayable Lisp Objects
	Modules for other Display-Related Lisp Objects
	Modules for the Redisplay Mechanism
	Modules for Interfacing with the File System
	Modules for Other Aspects of the Lisp Interpreter and Object System
	Modules for Interfacing with the Operating System
	Modules for Interfacing with X Windows
	Modules for Internationalization
	Modules for Regression Testing

	Allocation of Objects in XEmacs Lisp
	Introduction to Allocation
	Garbage Collection
	GCPROing
	Garbage Collection - Step by Step
	Invocation
	garbage_collect_1
	mark_object
	gc_sweep
	sweep_lcrecords_1
	compact_string_chars
	sweep_strings
	sweep_bit_vectors_1

	Integers and Characters
	Allocation from Frob Blocks
	lrecords
	Low-level allocation
	Cons
	Vector
	Bit Vector
	Symbol
	Marker
	String
	Compiled Function

	Dumping
	What is dumping and its justification
	Overview
	Data descriptions
	Dumping phase
	Object inventory
	Address allocation
	The header
	Data dumping
	Pointers dumping

	Reloading phase
	File loading
	Putting back the pdump_opaques
	Putting back the pdump_root_struct_ptrs
	Object relocation
	Putting back the pdump_root_objects and pdump_weak_object_chains
	Reorganize the hash tables

	Remaining issues

	Events and the Event Loop
	Introduction to Events
	Main Loop
	Specifics of the Event Gathering Mechanism
	Specifics About the Emacs Event
	The Event Stream Callback Routines
	Other Event Loop Functions
	Converting Events
	Dispatching Events; The Command Builder

	Evaluation; Stack Frames; Bindings
	Evaluation
	Dynamic Binding; The specbinding Stack; Unwind-Protects
	Simple Special Forms
	Catch and Throw

	Symbols and Variables
	Introduction to Symbols
	Obarrays
	Symbol Values

	Buffers and Textual Representation
	Introduction to Buffers
	The Text in a Buffer
	Buffer Lists
	Markers and Extents
	Ibytes and Ichars
	The Buffer Object
	Searching and Matching

	MULE Character Sets and Encodings
	Character Sets
	Encodings
	Japanese EUC (Extended Unix Code)
	JIS7

	Internal Mule Encodings
	Internal String Encoding
	Internal Character Encoding

	CCL

	The Lisp Reader and Compiler
	Lstreams
	Creating an Lstream
	Lstream Types
	Lstream Functions
	Lstream Methods

	Consoles; Devices; Frames; Windows
	Introduction to Consoles; Devices; Frames; Windows
	Point
	Window Hierarchy
	The Window Object

	The Redisplay Mechanism
	Critical Redisplay Sections
	Line Start Cache
	Redisplay Piece by Piece

	Extents
	Introduction to Extents
	Extent Ordering
	Format of the Extent Info
	Zero-Length Extents
	Mathematics of Extent Ordering
	Extent Fragments

	Faces
	Glyphs
	Glyph Instantiation
	Widget-Glyphs
	Widget-Glyphs in the MS-Windows Environment
	Widget-Glyphs in the X Environment

	Specifiers
	Menus
	Subprocesses
	Interface to the X Window System
	Lucid Widget Library
	Generic Widget Interface
	Scrollbars
	Menubars
	Checkboxes and Radio Buttons
	Progress Bars
	Tab Controls

	Index

