
The TEXPower bundle

Creating dynamic online presentations with LATEX

Full demo and documentation for TEXPower

v0.0.9d of May 15, 2003 (alpha)

Stephan Lehmke

mailto:Stephan.Lehmke@cs.uni-dortmund.de

May 16, 2003

mailto:Stephan.Lehmke@cs.uni-dortmund.de

This document is a demonstration and manual for the

TEXPower bundle which allows to create dynamic

presentations in a very flexible way.

The heart of the bundle is the package texpower which

implements some commands for presentation effects.

This includes setting page transitions, color

highlighting and displaying pages incrementally.

All features of texpower are implemented entirely using

TEX and LATEX; they are meant for ‘online’

presentation with Adobe Acrobat r© Reader and work

with all ways of pdf creation. The combination of

LATEX + dvips + Acrobat Distiller / ps2pdf is possible

as well as pdfLATEX and other pdf creation methods.

Disclaimer

This is a alpha release of the TEXPower bundle.

During the subsequent error correction and extension

of the functionality, the syntax and implementation of

the macros described here are liable to change.

So far, the texpower package itself contains only scarce

inline documentation, as the code is too much of a

moving target to make rigorous documentation a

sensible endeavour. As soon as the texpower package is

ready for beta release, it will be made into a fully

documented dtx file.

Credits

I am indepted to Klaus Guntermann. His package

texpause from the Pdf Presentation Post Processor

PPower4 bundle is the basis for the code of texpower.

Further thanks go to Marc van Dongen for allowing me

to include his code for page transitions and to Martin

Schröder for permission to use his everyshi code.

Useful hints for error corrections and improvements of

code have been provided by Marc van Dongen,

Friedrich Eisenbrand, Thomas Emmel, Ross Moore,

Heiko Oberdiek, Heiner Richter, and Robert J.

Vanderbei.

mailto:guntermann@iti.informatik.tu-darmstadt.de
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/pp4sty.zip
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/
mailto:dongen@cs.ucc.ie
mailto:Martin.Schroeder@ACM.org
mailto:Martin.Schroeder@ACM.org

Contents

1 Examples 7

1.1 Some examples for \pause 8

1.2 \stepwise Example: A Picture 9

1.3 \stepwise Example: A Tabular 10

1.4 \stepwise Example: An Aligned Equation 11

1.5 \stepwise Example: Inside A Paragraph 12

1.6 \stepwise Example: Writing Backwards 14

1.7 \stepwise Example: Highlighting Text . 15

1.8 \stepwise Example: Fooling Around . . 17

2 Documentation 18

2.1 Usage and general options 21

2.2 The \pause command 47

2.3 The \stepwise command 51

2.4 Page transitions and automatic advancing 88

2.5 Color management, color emphasis and

highlighting 96

2.6 Structured page backgrounds and panels 142

2.7 Index . 172

1 Examples

First, two simple examples for the \pause command.

All other examples are meant to illustrate the

expressive power of the \stepwise command.

Looking at the code for the examples will probably be

the best way of understanding how certain effects can

be achieved.

1.1 Some examples for \pause

a

1.1 Some examples for \pause

a

b

1.1 Some examples for \pause

a

b

c

1.1 Some examples for \pause

a

b

c

• foo

1.1 Some examples for \pause

a

b

c

• foo

• bar

1.1 Some examples for \pause

a

b

c

• foo

• bar

• baz

1.2 \stepwise Example: A Picture[{
{p1, p2}

}
, 1, ≥0.2

] [{
{¬p2, p1}

}
, 1, ≥0.1

]

1.2 \stepwise Example: A Picture[{
{p1, p2}

}
, 1, ≥0.2

] [{
{¬p2, p1}

}
, 1, ≥0.1

]
PPPPP

�����
(ass.)[{

{p1, , p2, }
}

, 2.2,
]

1.2 \stepwise Example: A Picture[{
{p1, p2}

}
, 1, ≥0.2

] [{
{¬p2, p1}

}
, 1, ≥0.1

]
PPPPP

�����
(ass.)[{

{p1, p1, p2,¬p2}
}

, 2.2, ≥0.1
]

1.2 \stepwise Example: A Picture[{
{p1, p2}

}
, 1, ≥0.2

] [{
{¬p2, p1}

}
, 1, ≥0.1

]
PPPPP

�����
(ass.)[{

{p1, p1, p2,¬p2}
}

, 2.2, ≥0.1
]

(removing)[{
{p1, p1}

}
, 1.2, ≥0.1

]

1.2 \stepwise Example: A Picture[{
{p1, p2}

}
, 1, ≥0.2

] [{
{¬p2, p1}

}
, 1, ≥0.1

]
PPPPP

�����
(ass.)[{

{p1, p1, p2,¬p2}
}

, 2.2, ≥0.1
]

(removing)[{
{p1, p1}

}
, 1.2, ≥0.1

][
¬p1, ≥0.4

]
```````̀

�����
(ass.)[{

{p1, p1,¬p1}
}

, 1.6, ≥0.1
]

(removing)[{
{p1}

}
, 0.6, ≥0.1

]



1.2 \stepwise Example: A Picture[{
{p1, p2}

}
, 1, ≥0.2

] [{
{¬p2, p1}

}
, 1, ≥0.1

]
PPPPP

�����
(ass.)[{

{p1, p1, p2,¬p2}
}

, 2.2, ≥0.1
]

(removing)[{
{p1, p1}

}
, 1.2, ≥0.1

][
¬p1, ≥0.4

]
```````̀

�����
(ass.)[{

{p1, p1,¬p1}
}

, 1.6, ≥0.1
]

(removing)[{
{p1}

}
, 0.6, ≥0.1

]
```````̀ (assembling)[{

{p1,¬p1}
}

, 1.0, ≥0.1
]

(removing)[
, ≥0.1

]



1.3 \stepwise Example: A Tabular



1.3 \stepwise Example: A Tabular

They can be built line by line



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like this.



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like this.

But



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like this.

But beware



1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like this.

But beware of cells growing horizontally!



1.4 \stepwise Example: An Aligned Equation

min

 ,

 (1)



1.4 \stepwise Example: An Aligned Equation

min

max

 ,...

,

 (1)



1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x), min

(
F1(x), G1(y)

))
,...

,

 (1)



1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x), min

(
F1(x), G1(y)

))
,...

min
(
F ′(x), min

(
Fn(x), Gn(y)

))
,

 (1)



1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x), min

(
F1(x), G1(y)

))
,...

min
(
F ′(x), min

(
Fn(x), Gn(y)

))
, min

(
Gi(y), Hi(z)

)
 (1)



1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x), min

(
F1(x), G1(y)

))
,...

min
(
F ′(x), min

(
Fn(x), Gn(y)

))
, min

(
Gi(y), Hi(z)

)
 (1)

= max


min

(
min

(
, min

( ))
, min

(
Gi(y), Hi(z)

))
,

...
min

(
min

(
, min

( ))
, min

(
Gi(y), Hi(z)

))
 (2)

= max


min

(
min

(
, min

(
, min

(
, Gi(y)

)))
, Hi(z)

)
,

...
min

(
min

(
, min

(
, min

(
, Gi(y)

)))
, Hi(z)

)
 (3)



1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x), min

(
F1(x), G1(y)

))
,...

min
(
F ′(x), min

(
Fn(x), Gn(y)

))
, min

(
Gi(y), Hi(z)

)
 (1)

= max


min

(
min

(
F ′(x), min

(
F1(x), G1(y)

))
, min

(
Gi(y), Hi(z)

))
,

...
min

(
min

(
F ′(x), min

(
Fn(x), Gn(y)

))
, min

(
Gi(y), Hi(z)

))
 (2)

= max


min

(
min

(
F ′(x), min

(
F1(x), min

(
G1(y), Gi(y)

)))
, Hi(z)

)
,

...
min

(
min

(
F ′(x), min

(
Fn(x), min

(
Gn(y), Gi(y)

)))
, Hi(z)

)
 (3)



1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x), min

(
F1(x), G1(y)

))
,...

min
(
F ′(x), min

(
Fn(x), Gn(y)

))
, min

(
Gi(y), Hi(z)

)
 (1)

= max


min

(
min

(
F ′(x), min

(
F1(x), G1(y)

))
, min

(
Gi(y), Hi(z)

))
,

...
min

(
min

(
F ′(x), min

(
Fn(x), Gn(y)

))
, min

(
Gi(y), Hi(z)

))
 (2)

= max


min

(
min

(
F ′(x), min

(
F1(x), min

(
G1(y), Gi(y)

)))
, Hi(z)

)
,

...
min

(
min

(
F ′(x), min

(
Fn(x), min

(
Gn(y), Gi(y)

)))
, Hi(z)

)
 (3)

= min

F
′
(x), min

max

min
(
F1(x), min

(
G1(y), Gi(y)

))
,

...
min

(
Fn(x), min

(
Gn(y), Gi(y)

))
 , Hi(z)


 (4)



1.5 \stepwise Example: Inside A Paragraph

We can a

which is then

in in

order!



1.5 \stepwise Example: Inside A Paragraph

We can create a

which is then

in in

order!



1.5 \stepwise Example: Inside A Paragraph

We can create a

fill-in-the-blanks

which is then

in in

order!



1.5 \stepwise Example: Inside A Paragraph

We can create a

fill-in-the-blanks

which is then

in in any

order!



1.5 \stepwise Example: Inside A Paragraph

We can create a

fill-in-the-blanks

which is then

filled in in any

order!



1.5 \stepwise Example: Inside A Paragraph

We can create a

fill-in-the-blanks

text which is then

filled in in any

order!



We can step

through a

of

line breaks!



We can step

through a paragraph

of

line breaks!



We can step

through a paragraph

of free text

line breaks!



We can step

through a paragraph

of free text without

disturbing line

breaks!



1.6 \stepwise Example: Writing Backwards



1.6 \stepwise Example: Writing Backwards

possible !



1.6 \stepwise Example: Writing Backwards

to possible !



1.6 \stepwise Example: Writing Backwards

write to possible !



1.6 \stepwise Example: Writing Backwards

backwards

write to possible !



1.6 \stepwise Example: Writing Backwards

it backwards

write to possible !



1.6 \stepwise Example: Writing Backwards

now it backwards

write to possible !



1.6 \stepwise Example: Writing Backwards

Is now it backwards

write to possible !



1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.



1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.



1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.



1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.



1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.



1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.



1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.



Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3



Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3



Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3



Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can

highlight text without influencing

line breaks.



Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can

highlight text without influencing

line breaks.



Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can

highlight text without influencing

line breaks.



Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can

highlight text without influencing

line breaks.



Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can

highlight text without influencing

line breaks.



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 5



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 6



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 7



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 8



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 9



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 5 10



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 11



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 4 6 12



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

13



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 7

14



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 5

15



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 8

16



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

17



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 6 9

18



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

19



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 5 10

20



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 7

21



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 11

22



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

23



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 4 6 8 12

24



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 5

25



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2

13

26



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 9

27



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 7

14

28



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

29



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 5 6 10

15

30



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

31



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 8

16

32



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 11

33



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2

17

34



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 5 7

35



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 4 6 9 12

18

36



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

37



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2

19

38



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3

13

39



1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 5 8 10

20

40



2 Documentation

The TEXPower bundle contains style and class files for

creating dynamic online presentations with LATEX.

The heart of the bundle is the package texpower.sty

which implements some commands for presentation

effects. This includes setting page transitions, color

highlighting and displaying pages incrementally.

For finding out how to achieve special effects (as

shown in the Examples), please look at the comments

inside the .tex files in the doc directory and read this

manual to find out what’s going on.



For your own first steps with TEXPower, the simple

demo file doc/simpledemo.tex is the best starting place.

There, some basic applications of the dynamic features

provided by the texpower package are demonstrated.

You can make your own dynamic presentations by

modifying that demo to your convenience.

doc/simpledemo.tex uses the article document class for

maximum compatibility. There are other simple demos

in the doc directory named slidesdemo.tex,

foilsdemo.tex, seminardemo.tex, pp4sldemo.tex,

pdfslidemo.tex, pdfscrdemo.tex, prosperdemo.tex, and

ifmslidemo.tex which demonstrate how to combine

TEXPower with the most popular presentation-making

document classes and packages.



The other, more sophisticated examples in the doc

directory are to demonstrate the expressive power of

the texpower package. Look at the commented code

of these examples to find out how to achieve special

effects and create your own presentation effects with

TEXPower.

For the first alpha release, this documentation will be

completed. For the first beta release, when the code is

a little more stable, the texpower package will be made

into a properly documented .dtx file.



2.1 Usage and general options

The texpower package is loaded by putting

\usepackage{texpower}

into the preamble of a document.

There are no specific restrictions as to which

document classes can be used.

It should be stressed that TEXPower is not (currently)

a complete presentation package. It just adds dynamic

presentation effects (and some other gimmicks

specifically interesting for dynamic presentations) and

should always be combined with a document class

dedicated to designing presentations (or a package like

pdfslide).

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/pdfslide.html


Some of the presentation effects created by texpower

require special capabilities of the viewer which is used

for presenting the resulting document. The target for

the development of texpower has so far been Adobe

Acrobat r© Reader, which means the document should

(finally) be produced in pdf format. The produced pdf

documents should display well in GSview also, but that

viewer doesn’t support page transitions and duration.

There are no specific restrictions as to which way the

pdf format is produced. All documents from the doc

directory have been tested with pdfLATEX and standard

LATEX, using dvips and Adobe Acrobat r© Distiller or

dvips and ps2pdf (from the Ghostscript suite) for

generating pdf.

http://www.adobe.com/products/acrobat/readermain.html
http://www.adobe.com/products/acrobat/readermain.html
http://www.cs.wisc.edu/~ghost/gsview/
http://www.adobe.com/products/acrobat/
http://www.ghostscript.com/


2.1.1 General options

option: display . Enable ‘dynamic’ features. If not

set, it is assumed that the document is to be

printed, and all commands for dynamic

presentations, like \pause or \stepwise have no

effect.

option: printout (default) . Disable ‘dynamic’

features. As this is the default behaviour, setting

this option explicitly is useful only if the option

display is set by default for instance in the

tpoptions.cfg file (see section 2.1.5).

option: verbose . Output some administrative info.

Some font options are listed in section 2.1.3.



2.1.2 Side effects of page contents duplication

In the implementation of the \pause and \stepwise

commands, it is neccessary to duplicate some material

on the page.

This way, not only ‘visible’ page contents will be

duplicated, but also some ‘invisible’ control code

stored in whatsits (see the TEXbook for an explanation

of this concept). Duplicating whatsits can lead to

undesirable side effects.

For instance, a \section command creates a whatsit

for writing the table of contents entry. Duplicating

this whatsit will also duplicate the toc entry.



So, whatsit items effecting file access are inhibited

when duplicating page material.

A second type of whatsits is created by TEX’s \special

command which is used for instance for color

management. Some drivers, like dvips and textures,

use a color stack which is controlled by \special items

included in the dvi file. When page contents are

duplicated, then these \specials are also duplicated,

which can seriously mess up the color stack.



texpower implements a ‘color stack correction’ method

by maintaining a stack of color corrections, which

should counteract this effect. Owing to potential

performance problems, this method is turned off by

default.

option: fixcolorstack switches on color stack

correction. Use it if you experience strange color

switches in your document.



2.1.3 Setting the base font

texpower offers two options for setting the base font of

the document to one that is ‘bolder’ than the default

computer modern roman (cmr). This might be

neccessary if readability is reduced by using e. g.

colored backgrounds.

Note that the support offered by texpower is rather

primitive. If you’re using a document class or package

which offers more sophisticated support for this kind

of thing, use that by all means.

Further, there are packages like cmbright or beton

which change the whole set of fonts to something less

fragile than cmr.



option: sans Make the sans serif font the basic text

font. By default, this is computer modern sans

serif (cmss). If you are using the package pslatex,

this is Helvetica. For other packages changing the

complete set of text fonts, this may be a different

font.

option: slifonts This option is now obsolete - use

the tpslifonts package in stead. Read more in

section 2.1.7. (Basically it changes the the text

and math fonts to use the “slifonts” collection by

L. Lamport.)



2.1.4 Switches

There are some boolean registers provided and set

automatically by texpower.

boolean: psspecialsallowed True if PostScript r©

specials may be used.

texpower tries to find out whether or not

PostScript r© specials may be used in the current

document. For instance, pdfLATEX can’t interpret

arbitrary specials. This switch is set automatically

and can be used inside a document to

enable/disable parts which need PostScript r©

specials.



boolean: display True if display option was given.

This switch indicates whether ‘dynamic’ features

of texpower are enabled. Use it inside your

document to distinguish between the ‘presented’

and the printed version of your document.

boolean: TPcolor True if any of the color

highlighting options (see section 2.5) were given,

or if the color package was loaded before texpower.

This switch indicates whether ‘color’ features of

texpower are enabled (compare section 2.5). You

can use it inside your document to distinguish

between a ‘colored’ and a ‘monochrome’ version

of your document.



2.1.5 Configuration files

texpower loads three configuration files (if present):

file: tpoptions.cfg is loaded before options are

processed. Can be used to set default options in a

system-specific way. See the comments inside the

file tpoptions.cfg which is part of the TEXPower

bundle for instructions.

file: tpsettings.cfg is loaded at the end of texpower.

Here, you can do some system-specific settings.

See the comments inside the file tpsettings.cfg

which is part of the TEXPower bundle for

instructions.

file: tpcolors.cfg is loaded if TPcolor is true. The



file defines the standard colors/colorsets (see

section 2.5). See the comments inside the file

tpcolors.cfg which is part of the TEXPower

bundle for instructions.



2.1.6 Dependencies on other packages

textpower always loads the packages ifthen and calc,

as the extended command syntax provided by these is

indispensable for the macros to work. They are in the

base and tools area of the LATEX distribution,

respectively, so I hope they are available on all systems.

Furthermore, texpower loads the package color if any

color-specific options are set (see section 2.5).

Further packages are not loaded automatically by

texpower to avoid incompatibilities, although some

features of texpower are enabled only if a certain

package is loaded. If you wish to use these features,

you are responsible for loading the respective package

yourself.



If some necessary package is not loaded, texpower will

issue a warning and disable the respective features.

The following packages are neccessary for certain

features of texpower:

package: hyperref is neccessary for page transition

effects to work (see section 2.4).

In particular, the \pageDuration (see section 2.4.2)

command only works if the version of hyperref

loaded is at least v6.70a (where the

pdfpageduration key was introduced).

Commands which work only when hyperref is

loaded are marked with h in the description.



package: soul is neccessary for the implementation

of the commands \hidetext and \highlighttext

(see section 2.3.5).

Commands which work only when soul is loaded

are marked with s in the description.



2.1.7 What else is part of the TEXPower bundle?

Besides the package texpower (which is described

here), there are two more packages, tpslifonts and

fixsemniar, and one document class, powersem, in the

TEXPower bundle which so far have no documentation

of their own. They will be described in this section

until they are turned into dtx files producing their own

documentation.

There is a doc directory in the TEXPower bundle which

contains (besides this documentation) some examples

and demos for TEXPower. See the file 00readme.txt

which is part of the TEXPower bundle for a short

description of all files.



The document class powersem

This is planned to provide a more ‘modern’ version of

seminar which can be used for creating dynamic

presentations.

Currently, this document class doesn’t do much more

than load seminar and apply some fixes, but it is

planned to add some presentation-specific features

(like navigation panels).



There are three new options which are specific for

powersem, all other options are passed to seminar:

option: display Turns off all features of seminar

(notes, vertical centering of slides) which can

disturb dynamic presentations.

option: calcdimensions seminar automatically

calculates the slide dimensions \slidewidth and

\slideheight only for the default letter and for its

own option a4. For all the other paper sizes which

are possible with the KOMA option, the slide

dimensions are not calculated automatically.

The calcdimensions option makes powersem

calculate the slide dimensions automatically from

paper size and margins.



option: KOMA Makes seminar load scrartcl (from the

KOMA-Script bundle) instead of article as its

base class. All new features of scrartcl are then

available also for slides.

option: UseBaseClass Makes seminar load the class

\baseclass (initially article) instead of article as

its base class.

option: reportclass Makes seminar load the class

\baseclass (initially report) instead of article.

option: bookclass Makes seminar load the class

\baseclass (initially book) instead of article.

There is one change in powersem which will lead to

incompatibilities with seminar. seminar has the



unfortunate custom of not exchanging \paperwidth and

\paperheight when making landscape slides, as for

instance typearea and geometry do.

This leads to problems with setting the paper size for

pdf files, as done for instance by the hyperref package.

powersem effectively turns off seminar’s papersize

management and leaves this to the base class (with

the pleasant side effect that you can use e. g.

\documentclass[KOMA,a0paper]{powersem} for making

posters).

In consequence, the portrait option of seminar is

turned on by powersem to avoid confusing seminar. You

have to explicitly use the landscape option (and a base

class or package which understands this option) to get



landscape slides with powersem.

The package fixseminar

Unfortunately, there are some fixes to seminar which

can not be applied in powersem because they have to be

applied after hyperref is loaded (if this package should

be loaded).

The package fixseminar applies these fixes, so this

package should be loaded after hyperref (if hyperref is

loaded at all, otherwise fixseminar can be loaded

anywhere in the preamble).



It applies two fixes:

• In case pdflatex is being run, the lengths

\pdfpageheight and \pdfpagewidth have to be set in

a ‘magnification-sensitive’ way.

• hyperref introduces some code at the beginning of

every page which can produce spurious vertical

space, which in turn disturbs building dynamic

pages. This code is ‘fixed’ so it cannot produce

vertical space.



The package tpslifonts

Changes the the text and math fonts to use the

“slifonts” collection by L. Lamport. The main text

font is then lcmss. Several other math fonts are

supported - see the list of options below.

The package takes the following options for

configuring different variations of math fonts:

option: scaleupmath/scaleuptt lcmss text fonts have

very high ‘small letters’, making normal-size fonts

look small and difficult to read. These options will

scale up math/typewriter fonts slightly so they

harmonize a little more with text fonts.

option: sansmath Sets sans serif math fonts as far as



possible (no free font for letters exists).

option: sansmathletters Works only in conjunction

with sansmath and sets sans serif math letters no

matter what (not typographically satisfying).

option: eulermathletters Works only in conjunction

with sansmath and sets euler math letters (not

typographically satisfying).

option: eulermath Sets euler math fonts (slightly

adapted from the eulervm package to match

lcmss better).

option: eulerdigits Works only in conjunction with

eulermath and sets the euler-digits option of the

eulervm package.



option: cmbrightmath Sets cmbright math fonts

(slightly adapted from the cm bright package to

match lcmss better).

option: lcmssops Works only in conjunction with

cmbrightmath and sets lcmss operator names,

digits and upper case greek letters.



The package automata

Experimental package for drawing automata in the

sense of theoretical computer science (using PSTricks)

and animating them with TeXPower. Only DFA and

Mealy automata are supported so far.



2.2 The \pause command

\pause is derived from the \pause command from the

package texpause which is part of the PPower4 suite

by Klaus Guntermann.

It will ship out the current page, start a new page and

copy whatever was on the current page onto the new

page, where typesetting is resumed.

This will create the effect of a pause in the

presentation, i. e. the presentation stops because the

current page ends at the point where the \pause

command occurred and is resumed at this point when

the presenter switches to the next page.

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/pp4sty.zip
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/
mailto:guntermann@iti.informatik.tu-darmstadt.de


Things to pay attention to

1. \pause should appear in vertical mode only, i. e.

between paragraphs or at places where ending the

current paragraph doesn’t hurt.

2. This means \pause is forbidden in all boxed

material (including tabular), headers/footers, and

floats.

3. \pause shouldn’t appear either in environments

which have to be closed to work properly, like

picture, tabbing, and (unfortunately)

environments for aligned math formulas.

4. \pause does work in all environments which mainly

influence paragraph formatting, like center, quote

or all list environments.



5. \pause doesn’t really have problems with

automatic page breaking, but beware of overfull

pages/slides. In this case, it may occur that only

the last page(s)/slide(s) of a sequence are

overfull, which changes vertical spacing, making

lines ‘wobble’ when switching to the last

page/slide of a sequence.



6. The duplication of page material done by \pause

can lead to unwanted side effects. See section

2.1.2 for further explanations. In particular, if you

should experience strange color switches when

using \pause (and you are not using pdftex), turn

on color stack correction with the option

fixcolorstack.

A lot of the restrictions for the use of pause can be

avoided by using \stepwise (see next section).



2.3 The \stepwise command

\stepwise{〈contents〉} is a command for displaying

some part of a LATEX document (which is contained in

〈contents〉) ‘step by step’. As of itself, \stepwise

doesn’t do very much. If 〈contents〉 contains one or

more constructs of the form \step{〈stepcontents〉} ,

the following happens:

1. The current contents of the page are saved (as

with \pause).

2. As many pages as there are \step commands in

〈contents〉 are produced.

Every page starts with what was on the current

page when \stepwise started.



The first page also contains everything in

〈contents〉 which is not in 〈stepcontents〉 for any

\step command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and so

on, until all 〈stepcontents〉 are displayed.

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the

current page).

This will create the effect that the \step commands

are executed ‘ ’.



The first page also contains everything in

〈contents〉 which is not in 〈stepcontents〉 for any

\step command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and so

on, until all 〈stepcontents〉 are displayed.

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the

current page).

This will create the effect that the \step commands

are executed ‘step ’.



The first page also contains everything in

〈contents〉 which is not in 〈stepcontents〉 for any

\step command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and so

on, until all 〈stepcontents〉 are displayed.

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the

current page).

This will create the effect that the \step commands

are executed ‘step by ’.



The first page also contains everything in

〈contents〉 which is not in 〈stepcontents〉 for any

\step command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and so

on, until all 〈stepcontents〉 are displayed.

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the

current page).

This will create the effect that the \step commands

are executed ‘step by step’.



Things to pay attention to

1. \stepwise should appear in vertical mode only, i. e.

between paragraphs, just like \pause.

2. Don’t put \pause or nested occurrences of

\stepwise into 〈contents〉.

3. Structures where \pause does not work (like

tabular or aligned equations) can go completely

into 〈contents〉, where \step can be used freely

(see Examples).

4. As 〈contents〉 is read as a macro argument,

constructs involving catcode changes (like \verb

or language switches) won’t work in 〈contents〉.
Using a suggestion by Ross Moore, I hope to



remedy this until the alpha release.



5. Several instances of \stepwise may occur on one

page, also combined with \pause (outside of

〈contents〉).

But beware of page breaks in 〈contents〉. This will

really mess things up.

Overfull pages/slides are also a problem, just like

with \pause. See the description of \pause (section

2.2) concerning this and also concerning side

effects of duplicating page material.

6. \step can go in 〈stepcontents〉. The order of

execution of \step commands is just the order in

which they appear in 〈contents〉, independent of

nesting within each other.



7. As 〈contents〉 is executed several times, LATEX

constructs changing global counters, accessing

files etc. are problematic. This concerns sections,

numbered equations, labels, hyperlinks and the

like.

Counters are taken care of explicitly by \stepwise,

so equation numbers are no problem.

Commands accessing toc files and such (like

\section) are taken care of by the whatsit

suppression mechanism (compare section 2.1.2).

Labels and hyperlinks work sort of (giving a lot of

warnings though).

I will try to remedy remaining problems until the

first alpha release.



2.3.1 \boxedsteps and \nonboxedsteps

By default, 〈stepcontents〉 belonging to a \step which

is not yet ‘active’ are ignored altogether. This makes

it possible to include e. g. tabulators & or line breaks

into 〈stepcontents〉 without breaking anything.

Sometimes, however, this behaviour is undesirable, for

instance when stepping through an equation ‘from

outer to inner’, or when filling in blanks in a

paragraph. Then, the desired behaviour of a \step

which is not yet ‘active’ is to create an appropriate

amount of blank space where 〈stepcontents〉 can go as

soon as it is activated.



The simplest and most robust way of doing this is to

create an empty box (aka \phantom) with the same

dimensions as the text to be hidden.

This behaviour is toggled by the following commands.

See section 2.3.5 for more sophisticated (albeit more

fragile) variants.

\boxedsteps makes \step create a blank box the size

of 〈stepcontents〉 when inactive and put

〈stepcontents〉 into a box when active.

\nonboxedsteps makes \step ignore 〈stepcontents〉
when inactive and leave 〈stepcontents〉 alone when

active (default).



Things to pay attention to

1. The settings effected by \boxedsteps and

\nonboxedsteps are local, i. e. whenever a group

closes, the setting is restored to its previous value.

2. Putting stuff into boxes can break things like

tabulators (&). It can also mess up math spacing,

which then has to be corrected manually.

Compare the following examples:(
a + b

c

) (
a

c

) (
a

c

)



Things to pay attention to

1. The settings effected by \boxedsteps and

\nonboxedsteps are local, i. e. whenever a group

closes, the setting is restored to its previous value.

2. Putting stuff into boxes can break things like

tabulators (&). It can also mess up math spacing,

which then has to be corrected manually.

Compare the following examples:(
a + b

c

) (
a+b

c

) (
a + b

c

)



2.3.2 Custom versions of \stepwise

Sometimes, it might happen that vertical spacing is

different on every page of a sequence generated by

\stepwise, making lines ‘wobble’.

This is caused by interactions between different ways

vertical spacing is added to the page. Hopefully,

problems caused this way can be reduced until the first

alpha release.



There are two custom versions of \stepwise which

should produce better vertical spacing.

\liststepwise{〈contents〉} works exactly like

\stepwise, but adds an ‘invisible rule’ before

〈contents〉. Use for list environments and aligned

equations.

\parstepwise{〈contents〉} works like \liststepwise,

but \boxedsteps is turned on by default. Use for

texts where \steps are to be filled into blank

spaces.



2.3.3 Starred versions of \stepwise commands

Usually, the first page of a sequence produced contains

only material which is not part of any 〈stepcontents〉.
The first 〈stepcontents〉 are displayed on the second

page of the sequence.

For special effects (see example 1.7), it might be

desirable to have the first 〈stepcontents〉 active even

on the first page of the sequence.

All variants of \stepwise have a starred version (e. g.

\stepwise*) which does exactly that.



2.3.4 The optional argument of \stepwise

Every variant of \stepwise takes an optional argument,

like this

\stepwise[〈settings〉]{〈contents〉} .

〈settings〉 will be placed right before the internal loop

which produces the sequence of pages. It can contain

settings of parameters which modify the behaviour of

\stepwise or \step. 〈settings〉 is placed inside a group

so all changes are local to this call of \stepwise.

Some internal macros and counters which can be

adjusted are explained in the following.



2.3.5 Customizing the way 〈stepcontents〉 is

diplayed

Internally, there are three macros (taking one

argument each) which control how 〈stepcontents〉 is

displayed: \displaystepcontents, \hidestepcontents,

and \activatestep. Virtually, every

\step{〈stepcontents〉} is replaced by

\hidestepcontents{〈stepcontents〉}
when this step is not yet active.

\displaystepcontents{\activatestep{〈stepcontents〉}}
when this step is activated for the first time.

\displaystepcontents{〈stepcontents〉}
when this step has been activated before.



By redefining these macros, the behaviour of \step is

changed accordingly. You can redefine them inside

〈contents〉 to provide a change affecting one \step

only, or in the optional argument of \stepwise to

provide a change for all \steps inside 〈contents〉.

In the Examples, it is demonstrated how special effects

can be achieved by redefining these macros.

\activatestep is set to \displayidentical by default,

the default settings of \hidestepcontents and

\displaystepcontents depend on whether \boxedsteps

or \nonboxedsteps (default) is used.



texpower offers nine standard definitions.

For interpreting \displaystepcontents:

\displayidentical Simply expands to its argument.

The same as LATEXs \@ident. Used by

\nonboxedsteps (default).

\displayboxed Expands to an \mbox containing its

argument. Used by \boxedsteps.



For interpreting \hidestepcontents:

\hideignore Expands to nothing. The same as LATEXs

\@gobble. Used by \nonboxedsteps (default).

\hidephantom Expands to a \phantom containing its

argument. Used by \boxedsteps.

\hidevanish In a colored document, makes its

argument ‘vanish’ by setting all colors to

\vanishcolor (defaults to pagecolor; compare

section 2.5.7). Note that this will give weird

results with structures backgrounds.

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.



s \hidetext Produces blank space of the same

dimensions as the space that would be occupied if

its argument would be typeset in the current

paragraph. Respects automatic hyphenation and

line breaks.

This command needs the soul package to work,

which is not loaded by texpower itself. Consult the

documentation of soul concerning restrictions on

commands implemented using soul. If you don’t

load the soul package yourself, there is no useful

definition for this command, so it defaults to

\hidephantom.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html


\hidedimmed In a colored document, displays its

argument with dimmed colors (compare section

2.5.8). Note that this doesn’t make the argument

completely invisible.

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.



For interpreting \activatestep:

\highlightboxed If the colorhighlight option (see

section 2.5) is set, expands to a

box with colored background containing its

argument. Otherwise, expands to an \fbox

containing its argument. It is made sure that the

resulting box has the same dimensions as the

argument (the outer frame may overlap

surrounding text).

There is a new length register \highlightboxsep

which acts like \fboxsep for the resulting box and

defaults to 0.5\fboxsep.



s \highlighttext If the colorhighlight option (see

section 2.5) is set, puts its argument on colored

background. Otherwise, underlines its argument.

It is made sure that the resulting text has the

same dimensions as the argument (the outer

frame may overlap surrounding text).

\highlightboxsep is used to determine the extent

of the coloured box(es) used as background.

This command needs the soul package to work

(compare the description of \hidetext). If you

don’t load the soul package yourself, there is no

useful definition for this command, so it is

disabled.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html


\highlightenhanced In a colored document, displays

its argument with enhanced colors (compare

section 2.5.8).

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.



2.3.6 Variants of \step

There are a couple of custom versions of \step which

make it easier to achieve special effects needed

frequently.

\bstep Like \step, but is always boxed (see section

2.3.1). \bstep{〈stepcontents〉} is implemented in

principle as {\boxedsteps\step{〈stepcontents〉}}.

In aligned equations where \stepwise is used for

being able to put tabulators into 〈stepcontents〉,
but where nested occurrences of \step should be

boxed to assure correct sizes of growing braces or

such, this variant of \step is more convenient than

using \boxedsteps for every nested occurrence of

\step.



\switch{〈ifinactive〉}{〈ifactive〉} is a variant of

\step which, instead of making its argument

appear, switches between 〈ifinactive〉 and

〈ifactive〉 when activated.

In fact, \step{〈stepcontents〉} is in principle

implemented by

\switch{\hidestepcontents{〈stepcontents〉}}
{\displaystepcontents{〈stepcontents〉}}

This command can be used, for instance, to add

an \underbrace to a formula, which is difficult

using \step.

Beware of problems when 〈ifinactive〉 and

〈ifactive〉 have different dimensions.



\dstep A variant of \step which takes no argument,

but simply switches colors to ‘dimmed’ (compare

section 2.5.8) if not active. Not that the scope of

this color change will last until the next outer

group closes. This command does nothing in a

monochrome document.

\vstep A variant of \step which takes no argument,

but simply switches all colors to \vanishcolor

(defaults to pagecolor; compare section 2.5.7) if

not active. Not that the scope of this color

change will last until the next outer group closes.

This command does nothing in a monochrome

document.

\steponce Like \step, but goes inactive again in the



subsequent step.

\multistep is a shorthand macro for executing several

steps successively. In fact, it would better be

called \multiswitch, because it’s functionality is

based on \switch, it only acts like a (simplified)

\step command which is executed ‘several times’.

The syntax is

\multistep[〈activatefirst〉]{〈n〉}{〈stepcontents〉}

where 〈n〉 is the number of steps. Only one

instance of 〈stepcontents〉 is displayed at a time.

Inside 〈stepcontents〉, a counter substep can be

evaluated which tells the number of the current

instance. In the starred form the last instance of

〈stepcontents〉 stays visible.



\movie works like \multistep, but between \steps,

pages are advanced automatically every 〈dur〉
seconds. The syntax is

\movie{〈n〉}{〈dur〉}[〈stop〉]{〈stepcontents〉}
where 〈n〉 is the number of steps. The additional

optional argument 〈stop〉 gives the code (default:

\stopAdvancing) which stops the animation.

(\movie accepts the same first optional argument

as \multistep but it was left out above.)

\overlays is another shorthand macro for executing

several steps successively. In contrast to

\multistep, it doesn’t print things after each

other, but over each other. The syntax is

\overlays[〈activatefirst〉]{〈n〉}{〈stepcontents〉}



where 〈n〉 is the number of steps. Inside

〈stepcontents〉, a counter substep can be evaluated

which tells the number of the current instance.



\restep , \rebstep , \reswitch , \redstep , \revstep .

Frequently, it is desirable for two or more steps to

appear at the same time, for instance to fill in

arguments at several places in a formula at once

(see example 1.4).

\restep{〈stepcontents〉} is identical with

\step{〈stepcontents〉}, but is activated at the

same time as the previous occurrence of \step.

\rebstep , \reswitch , \redstep , and \revstep do

the same for \bstep, \switch, \dstep, and \vstep.



2.3.7 Optional arguments of \step

Sometimes, letting two \steps appear at the same

time (with \restep) is not the only desirable

modification of the order in which \steps appear.

\step, \bstep and \switch take two optional arguments

for influencing the mode of activation, like this:

\step[〈activatefirst〉][〈whenactive〉]{〈stepcontents〉} .

Both 〈activatefirst〉 and 〈whenactive〉 should be

conditions in the syntax of the \ifthenelse command

(see the documentation of the ifthen package for

details).

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/ifthen.html


〈activatefirst〉 checks whether this \step is to be

activated for the first time. The default value is

\value{step}=\value{stepcommand} (see section 2.3.8

for a list of internal values). By using

\value{step}=〈n〉, this \step can be forced to appear

as the nth one. See example 1.5 for a demonstration

of how this can be used to make \steps appear in

arbitrary order.

〈whenactive〉 checks whether this \step is to be

considered active at all. The default behaviour is to

check whether this \step has been activated before

(this is saved internally for every step). See example

1.8 for a demonstration of how this can be used to

make \steps appear and disappear after a defined



fashion.

If you know what you’re doing. . .

Both optional arguments allow two syntctical forms:

1. enclosed in square brackets [] like explained

above.

2. enclosed in braces (). In this case, 〈activatefirst〉
and 〈whenactive〉 are not treated as conditions in

the sense of \ifthenelse, but as conditionals like

those used internally by LATEX. That means,

〈activatefirst〉 (when enclosed in braces) can

contain arbitrary TEX code which then takes two

arguments and expands to one of them,

depending on whether the condition is fulfilled or



not fulfilled. For instance,

\step[〈activatefirst〉]{〈stepcontents〉} could be

replaced by

\step(\ifthenelse{〈activatefirst〉}){〈stepcontents〉}.

See example 1.6 for a simple application of this

syntax.

Internally, the default for the treatment of 〈whenactive〉
is (\if@first@TP@true), where \if@first@TP@true is an

internal condition checking whether this \step has

been activated before.



2.3.8 Finding out what’s going on

Inside 〈settings〉 and 〈contents〉, you can refer to the

following internal state variables which provide

information about the current state of the process

executed by \stepwise:

counter: firststep The number from which to start

counting steps (see counter step below). Is 0 by

default and 1 for starred versions (section 2.3.3)

of \stepwise. You can set this in 〈settings〉 for

special effects (see example 1.6).

counter: totalsteps The total number of \step

commands occurring in 〈contents〉.



counter: step The number of the current iteration,

i. e. the number of the current page in the

sequence of pages produced by \stepwise. Runs

from \value{firststep} to \value{totalsteps}.

counter: stepcommand The number of the \step

command currently being executed.

boolean: firstactivation true if this \step is active

for the first time, false otherwise.

boolean: active true if this \step is currently active,

false otherwise.

stepcommand, firstactivation, and active are useful

only inside 〈stepcontents〉.



2.3.9 \afterstep

It might be neccessary to set some parameters which

affect the appearance of the page (like page

transitions) inside 〈stepcontents〉. However, the \step

commands are usually placed deeply inside some

structure, so that all local settings are likely to be

undone by groups closing before the page is

completed.

\afterstep{〈settings〉} puts 〈settings〉 right before

the end of the page, after the current step is

performed.



Things to pay attention to

1. There can be only one effective value for

〈settings〉. Every occurrence of \afterstep

overwrites this value globally.

2. \afterstep will not be executed in 〈stepcontents〉 if

the corresponding \step is not active, even if

〈stepcontents〉 is displayed owing to a redefinition

of \hidestepcontents, like in example 1.7.

3. As 〈settings〉 is put immediately before the page

break, there is no means of restoring the original

value of whatever has been set. So if you set

something via \afterstep and want it to be reset

in some later step, you have to reset it explicitly

with another call of \afterstep.



2.4 Page transitions and automatic advancing

2.4.1 Page transitions

I am indepted to Marc van Dongen for allowing me to

include a suite of commands written by him and

posted to the PPower4 mailing list which set page

transitions (using hyperrefs \hypersetup).

These commands work only if the hyperref package is

loaded.

mailto:dongen@cs.ucc.ie
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/hyperref.html


The following page transition commands are defined:



The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.



The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.



The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

h \pageTransitionSplitVO Split Vertically to the outside.



The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

h \pageTransitionSplitVO Split Vertically to the outside.

h \pageTransitionSplitVI Split Vertically to the inside.



The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

h \pageTransitionSplitVO Split Vertically to the outside.

h \pageTransitionSplitVI Split Vertically to the inside.

h \pageTransitionBlindsH Horizontal Blinds.



The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

h \pageTransitionSplitVO Split Vertically to the outside.

h \pageTransitionSplitVI Split Vertically to the inside.

h \pageTransitionBlindsH Horizontal Blinds.

h \pageTransitionBlindsV Vertical Blinds.



h \pageTransitionBoxO Growing Box.



h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.



h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0,



h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0, 90,



h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0, 90, 180,



h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0, 90, 180, 270 are

supported.



h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0, 90, 180, 270 are

supported.

h \pageTransitionDissolve Dissolve.



h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

glitter.

Apparently, only the values 0,



h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

glitter.

Apparently, only the values 0, 270,



h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

glitter.

Apparently, only the values 0, 270, 315 are

supported.



h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

glitter.

Apparently, only the values 0, 270, 315 are

supported.

h \pageTransitionReplace Simple Replace (the default).



Things to pay attention to

1. The setting of the page transition is a property of

the page, i. e. whatever page transition is in effect

when a page break occurs, will be assigned to the

corresponding pdf page.

2. The setting of the page transition is undone when

a group ends.

Make sure no LATEX environment is ended between

a \pageTransition setting and the next page break.

In particular, in 〈stepcontents〉, \afterstep should

be used (see example 1.2).



3. Setting page transitions works well with \pause.

Here, \pause acts as a page break, i. e. a different

page transition can be set before every occurrence

of \pause.



2.4.2 Automatic advancing of pages

If you have loaded a sufficiently new version of the

hyperref package (which allows to set

pdfpageduration), then the following command is

defined which enables automatic advancing of pdf

pages.

h \pageDuration{〈dur〉} causes pages to be advanced

automatically every 〈dur〉 seconds. 〈dur〉 should be a

non-negative fixed-point number.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/hyperref.html


2.4.2 Automatic advancing of pages

If you have loaded a sufficiently new version of the

hyperref package (which allows to set

pdfpageduration), then the following command is

defined which enables automatic advancing of pdf

pages.

h \pageDuration{〈dur〉} causes pages to be advanced

automatically every 〈dur〉 seconds. 〈dur〉 should be a

non-negative fixed-point number.

Depending on the pdf viewer, this will happen only in

full-screen mode.

See example 1.8 for a demonstration of this effect.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/hyperref.html


The same restrictions as for page transitions apply. In

particular, the page duration setting is undone by the

end of a group, i. e. it is useless to set the page

duration if a LATEX environment ends before the next

page break.

There is no ‘neutral’ value for 〈dur〉 (0 means advance

as fast as possible). You can make automatic

advancing stop by calling \pageDuration{}. texpower

offers the custom command

h \stopAdvancing

to do this.



2.5 Color management, color emphasis and

highlighting

TEXPower tries to find out whether you are making a

colored document. This is assumed if

• the color package has been loaded before the

texpower package or

• a color-related option (see sections 2.5.3 and

2.5.6) is given to the texpower package (in this

case, the color package is loaded automatically).

If this is the case, TEXPower installs an extensive color

management scheme on top of the kernel of the color

package.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/color.html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/color.html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/color.html


In the following, some new concepts established by

this management scheme are explained. Sections 2.5.3

and 2.5.6 list options for color activation, section 2.5.7

lists some new highlighting commands, and section

2.5.8 gives the names and meaning of TEXPower’s

predefined colors.

Note that parts of the kernel of the color package are

overloaded for special purposes (getting

driver-independent representations of defined colors to

be used by \colorbetween (2.5.5), for instance), so it is

recommended to execute color definition commands

like \definecolor after the texpower package has been

loaded (see also the next section on \defineTPcolor).

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/color.html


2.5.1 Standard colors

TEXPower maintains a list of standard colors which are

recognized and handled by TEXPower’s color

management. Some commands like \dimcolors (see

section 2.5.4) affect all standard colors. There are

some predefined colors which are in this list from the

outset (see section 2.5.8).

If colors defined by the user are to be recognized by

TEXPower, they have to be included in this list. The

easiest way is to use the following command for

defining them.



\defineTPcolor{〈name〉}{〈model〉}{〈def〉} acts like

\definecolor from the color package, but the color

〈name〉 is also added to the list of standard colors.

If you want to make a color a standard color which is

defined elsewhere (by a document class, say), you can

simply add it to the list of standard colors with the

command \addTPcolor{〈name〉} .



2.5.2 Color sets

Every standard color may be defined in one or several

color sets. There are two fundamentally different

types of color set:

The current color set. This contains the current

definition of every standard color which is actually

used at the moment. Every standard color should

be defined at least in the current color set. The

current color set is not distinguished by a special

name.



Named color sets. These are ‘containers’ for a full

set of color definitions (for the standard colors)

which can be activated by respective commands

(see below). The color sets are distinguished by

their names. Color definitions in a named color

set are not currently available, they have to be

made available by activating the named color set.

There are four predefined color sets named

whitebg, lightbg, darkbg, blackbg, each of which

contains a full set of (predefined) standard colors

customized for a white, light, dark, black

background color, respectively.



There are the following commands for manipulating

color sets:

\usecolorset{〈name〉} Make the color set named 〈name〉
the current color set. All standard colors in the

current color set which are also in color set 〈name〉
are overwritten.

The standard color textcolor is set automatically

after activating color set 〈name〉.

\dumpcolorset{〈name〉} Copy the definitions of all

standard colors in the current color set into color

set named 〈name〉. All standard colors in color set

〈name〉 will be overwritten.



Using \defineTPcolor{〈name〉} or \definecolor{〈name〉}
will define the color 〈name〉 in the current color set. To

define a color in color set 〈cset〉, use

\defineTPcolor[〈cset〉]{〈name〉} .



Things to pay attention to

1. Color sets are not really ‘TEX objects’, but are

distinguished by color name suffixes. This means,

a color named foo is automatically in the current

color set. Executing \defineTPcolor[〈cset〉]{foo}
means executing \definecolor for a specific color

the name of which is a combination of foo and

〈cset〉.

Consequently, \usecolorset and \dumpcolorset do

not copy color sets as composite objects, but

simply all colors the names of which are generated

from the list of standard colors.



2. The command \usecolorset{〈name〉} overwrites

only those colors which have been defined in color

set 〈name〉. If a standard color is defined in the

current color set, but not in color set 〈name〉, it is

preserved (but if \dumpcolorset{〈name〉} is executed

later, then it will also be copied back into the

color set 〈name〉).



2.5.3 Color Background Options

For activating the predefined color sets, there are

shorthands \whitebackground, \lightbackground,

\darkbackground, \blackbackground which execute

\usecolorset and additionally set the background color

to its current value.



When one of the following options is given, the

respective command is executed automatically at the

beginning of the document.

option: whitebackground (default) Set standard

colors to match a white background color.

option: lightbackground Set standard colors to

match a light (but not white) background color.

option: darkbackground Set standard colors to match

a dark (but not black) background color.

option: blackbackground Set standard colors to

match a black background color.



2.5.4 Color variants

In addition to color sets, TEXPower implements a

concept of color variant. Currently, every color has

three variants: normal, dimmed, and enhanced. The

normal variant is what is usually seen, text written in

the dimmed variant appears “faded into the

background” and text written in the enhanced variant

appears to “stick out”.



When switching variants, for every color one of two

cases can occur:

1. A designated color for this variant has been

defined.

For color 〈color〉 the designated name of the

dimmed variant is d〈color〉, the designated name

of the enhanced variant is e〈color〉.

If a color by that name exists at the time the

variant is switched to, then variant switching is

executed by replacing color 〈color〉 with the

designated color.



2. A designated color for this variant has not been

defined.

If a color by the designated name does not exist

at the time a color variant is switched to, then

variant switching is executed by automatically

calculating the color variant from the original

color.

The method for calculation depends on the

variant:



dimmed. The dimmed variant is calculated by

interpolating between pagecolor and the color

to be dimmed, using the \colorbetween

command (see 2.5.5).

There is a command \dimlevel which contains

the parameter 〈weight〉 given to \colorbetween

(default: 0.7). This default can be overridden

by either redefining \dimlevel or giving an

alternative 〈weight〉 as an optional argument to

the color dimming command (see below).



enhanced. The enhanced variant is calculated by

extrapolating the color to be enhanced

(relative to pagecolor).

There is a command \enhancelevel which

gives the extent of the extrapolation (default:

0.5). The same holds for overriding this

default as for \dimlevel.



The following commands switch color variants:

\dimcolor[〈level〉]{〈color〉} switches color 〈color〉 to

the dimmed variant. If given, 〈level〉 replaces the

value of \dimlevel in automatic calculation of the

dimmed variant (see above).

\dimcolors[〈level〉] switches all standard colors to

the dimmed variant. The optional argument

〈level〉 acts as for \dimcolor.



\enhancecolor[〈level〉]{〈color〉} switches color 〈color〉
to the enhanced variant. If given, 〈level〉 replaces

the value of \enhancelevel in automatic

calculation of the enhanced variant (see above).

\enhancecolors[〈level〉] switches all standard colors

to the enhanceed variant. The optional argument

〈level〉 acts as for \enhancecolor.



Things to pay attention to

1. While automatic calculation of a dimmed color

will almost always yield the desired result

(interpolating between colors by calculating a

weighted average is trivial), automatic calculation

of an enhanced color by ‘extrapolating’ is tricky at

best and will often lead to unsatisfactory results.

This is because the idea of making a color

‘stronger’ is very hard to formulate numerically.



The following effects of the current algorithm

should be kept in mind:

• if the background color is light, enhancing a

color will make it darker;

• if the background color is dark, enhancing a

color will make it lighter;

• sometimes, the numerical values describing an

enhanced color have to be bounded to avoid

exceeding the allowed range, diminishing the

enhancing effect. For instance, if the

background color is black and the color to be

enhanced is a ‘full-powered’ yellow, there is no

way of enhancing it by simple numeric

calculation.



As a conclusion, for best results it is

recommended to provide custom e variants of

colors to be enhanced. By default, TEXPower

does not provide dedicated enhanced colors, but

the file tpsettings.cfg contains complete sets of

enhanced variants for the standard colors in the

different color sets, which you can uncomment

and experiment with as convenient.



2. Currently, switching to a different color variant is

done by simply overwriting the current definitions

of all standard colors. This means

• there is no way of ‘undimming’ a color once it

has been dimmed,

• a dimmed color can not be enhanced and vice

versa.

Maybe this will be solved in a slightly more clever

way in subsequent releases of TEXPower.



Hence, it is recommended to

• restrict the scope of a global variant switching

command like \dimcolors, \enhancecolors or

\dstep by enlcosing it into a LATEX group (like

{...}) or

• use \dumpcolorset before the command to save

the current definitions of all colors, to be

restored with \usecolorset.

At the very beginning of a \stepwise

command, TEXPower executes

\dumpcolorset{stwcolors}, so you can restore

the colors anywhere in the argument of

\stepwise by saying \usecolorset{stwcolors}.



3. Some rudimentary attempts are made to keep

track of which color is in what variant, to the

effect that

• a color which is not in the normal variant will

neither be dimmed nor enhanced;

• when \usecolorset overwrites a color with its

normal variant, this is registered.

Still, it is easy to get in trouble by mixing variant

changes with color set changes (say, if not all

standard colors are defined in a color set, or if a

color set is dumped when not all colors are in

normal variant), so it is recommended not to use

or dump color sets when outside the normal

variant (unless for special applications like undoing



a variant change by \usecolorset{stwcolors}).



2.5.5 Miscellaneous color management

commands

\replacecolor[〈tset〉]{〈tcolor〉}[〈sset〉]{〈scolor〉}
makes 〈tcolor〉 have the same definition as

〈scolor〉 (if 〈scolor〉 is defined at all), where

〈tcolor〉 and 〈scolor〉 are color names as given in

the first argument of \definecolor. If (one of)

〈tset〉 and 〈sset〉 are given, the respective color is

taken from the respective color set, otherwise

from the current color set.

If 〈scolor〉 is not defined (in color set 〈sset〉),
〈tcolor〉 is left alone.



\colorbetween[〈weight〉]{〈src1〉}{〈src2〉}{〈target〉}
calculates a ‘weighted average’ between two

colors. 〈src1〉 and 〈src2〉 are the names of the two

colors. 〈weight〉 (default: 0.5) is a fixed-point

number between 0 and 1 giving the ‘weight’ for

the interpolation between 〈src1〉 and 〈src2〉.
〈target〉 is the name to be given to the resulting

mixed color.

If 〈weight〉 is 1, then 〈target〉 will be identical to

〈src1〉 (up to color model conversions, see below),

if 〈weight〉 is 0, then 〈target〉 will be identical to

〈src2〉, if 〈weight〉 is 0.5 (default), then 〈target〉 will

be exactly in the middle between 〈src1〉 and 〈src2〉.

\colorbetween supports the following color models:



rgb, RGB, gray, cmyk, hsb. If both colors are of the

same model, the resulting color is also of the

respective model. If 〈src1〉 and 〈src2〉 are from

different models, then 〈target〉 will always be an

rgb color. The only exception is the hsb color

model: As I don’t know how to convert hsb to

rgb, mixing hsb with another color model will

always raise an error.



\mkfactor{〈expr〉}{〈macroname〉} is a helper command

for automatically generating the fixed point

numbers between 0 and 1 which are employed by

the color calculation commands. 〈expr〉 can be

any expression which can stand behind * in

expressions allowed by the calc package (for

instance: \value{counter}/\value{maxcounter} or

\ratio or whatever). 〈macroname〉 should be a valid

macro name. 〈expr〉 is converted into a fixed-point

representation which is then assigned to

〈macroname〉.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/calc.html


\vanishcolors[〈color〉] is similar to the color variant

command \dimcolors, but instead of dimming

colors, all standard colors are replaced by a single

color given by the new command \vanishcolor

(default: pagecolor). Hence, the result of calling

\vanishcolors should be that all text vanishes, as

it is written in the background color (this doesn’t

work with structured backgrounds, of course).

For getting a color different from the default

pagecolor, you can either redefinine \vanishcolor

or give an alternative 〈color〉 as an optional

argument to \vanishcolors.

There is no dedicated command for making a

single color vanish. To achieve this, use



\replacecolor{〈color〉}{\vanishcolor}.

2.5.6 Color Emphasis and Highlighting

texpower offers some support for text emphasis and

highlighting with colors (instead of, say, font changes).

These features are enabled by the following options:

option: coloremph Make \em and \emph switch colors

instead of fonts.

option: colormath Color all mathematical formulae.

option: colorhighlight Make new highlighting and

emphasis commands defined by texpower use

colors.

Things to pay attention to



1. You need the color package to use any of the

color features.

2. To implement the options coloremph and

colormath, it is neccessary to redefine some LATEX

internals. This can lead to problems and

incompatibilities with other packages. Use with

caution.

3. If the colorhighlight option is not given, new

highlighting and emphasis commands defined by

texpower are realized otherwise. Sometimes,

however, there is no good alternative to colors, so

different emphasis commands can become

disabled or indistinguishable.



4. Because of font changes, emphasized or

highlighted text can have different dimensions

whether or not the options coloremph, colormath,

and colorhighlight are set. Prepare for different

line and page breaks when changing one of these

options.

5. Color emphasis and highlighting makes use of the

predefined standard colors described in section

2.5.8. See sections 2.5.1 to 2.5.3 for further

information on standard colors, color sets, and

customization.



2.5.7 New commands for emphasis and

highlighting elements

Some things like setting the page or text color,

making emphasised text or math colored are done

automatically when the respective options are set.

There are some additional new commands for creating

emphasis and highlighting elements.

Concerning math:

\origmath When the colormath option is given,

everything which appears in math mode is colored

accordingly. Sometimes, however, math mode is

used for something besides mathematical

formulae. Some LATEX commands which internally



use math mode (like tabular or \textsuperscript)

are redefined accordingly when the colormath

option is given (this is a potential source of

trouble; beware of problems. . . ).

If you need to use math mode for something

which is not to be colored (like a symbol for

itemize), you can use the \origmath command

which works exactly like \ensuremath but doesn’t

color its argument. If a nested use of math mode

should occur in the argument of \origmath, it will

again be colored.



Documenting TEX code:

\code Simple command for typesetting code (like shell

commands).

\macroname For \macro names. Like \code, but with a \

in front.

\commandapp[〈opt arg〉]{〈command〉}{〈arg〉} For TEX

commands. 〈arg〉 stands for the command

argument, 〈opt arg〉 for an optional argument.

\carg For 〈macro arguments〉.



Additional emphasis commands:

\underl Additional emphasis command. Can be used

like \emph. Defaults to bold face if the

colorhighlight option is not given.

\concept Additional emphasis command, especially

for new concepts. Can be augmented by things

like automatic index entry creation. Also defaults

to bold face if the colorhighlight option is not

given.

\inactive Additional emphasis command, this time

for ‘de-emphasising’. There is no sensible default

if the colorhighlight option is not given, as base

LATEX doesn’t offer an appropriate font. In this

case, \inactive defaults to \monochromeinactive,



which does nothing.

You can (re-)define \monochromeinactive to provide

some sensible behaviour in the absence of colors,

for instance striking out if you’re using the soul

package.

Color Highlighting:

\present Highlighting command which puts its

argument into a box with colored background .

Defaults to an \fbox if the colorhighlight option

is not given.

See section 2.3.5 for some further highlighting

commands.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html


2.5.8 Predefined standard colors

In previous subsections, it has been mentioned that

TEXPower predefines some standard colors which have

appropriate values in the predefined color sets whitebg,

lightbg, darkbg, and blackbg (see sections 2.5.1 to

2.5.3 for further information on standard colors, color

sets, and customization).

color: pagecolor Background color of the page. Is

set automatically at the beginning of the

document if color management is active.

color: textcolor Color of normal text. Is set

automatically at the beginning of the document if

color management is active.



color: emcolor Color used for emphasis if the

coloremph option is set.

color: altemcolor Color used for double emphasis if

the coloremph option is set.

color: mathcolor Color used for math a2 + b2 = c2 if

the colormath option is set.

color: codecolor Color used by the \code command if

the colorhighlight option is set.

color: underlcolor Color used by the \underl

command if the colorhighlight option is set.

color: conceptcolor Color used by the \concept

command if the colorhighlight option is set.



color: inactivecolor Color used by the \inactive

command if the colorhighlight option is set.

color: presentcolor Color used as background color

by the \present command if the colorhighlight

option is set.

color: highlightcolor Color used as background

color by the \highlightboxed and \highlighttext

commands (see section 2.3.5) if the

colorhighlight option is set.



Color tables

white background standard dimmed enhanced

textcolor

emcolor

altemcolor

mathcolor

codecolor

underlcolor

conceptcolor

inactivecolor

presentcolor

highlightcolor



light background standard dimmed enhanced

textcolor

emcolor

altemcolor

mathcolor

codecolor

underlcolor

conceptcolor

inactivecolor

presentcolor

highlightcolor



dark background standard dimmed enhanced

textcolor

emcolor

altemcolor

mathcolor

codecolor

underlcolor

conceptcolor

inactivecolor

presentcolor

highlightcolor



black background standard dimmed enhanced

textcolor

emcolor

altemcolor

mathcolor

codecolor

underlcolor

conceptcolor

inactivecolor

presentcolor

highlightcolor



2.6 Structured page backgrounds and panels

2.6.1 Structured page backgrounds

\backgroundstyle[〈options〉]{〈style〉} is the central

command for structured page backgrounds. It works

like \pagestyle and other commands of this type. This

means 〈style〉 is a symbolic name specifying the

general method by which the page background is

constructed.

The detailed construction is influenced by parameters

which can be set in 〈options〉. If given, the optional

parameter 〈options〉 should contain a list of settings in

“keyval” manner. The keyval method is based on

associating a symbolic name with every parameter.



〈options〉 is then a comma-separated list of parameter

settings of the form 〈name〉=〈value〉, where 〈name〉 is the

symbolic name of the parameter to be set and 〈value〉
is the value it is to be set to.

Not every 〈style〉 evaluates every parameter. In the

following, a description of all styles, together with lists

of the parameters employed, is given. It is followed by

a list of all parameters. Note that some parameter

names internally access the same parameter. For

instance, parameters startcolor and startcolordef

both set the start color of a color gradient. In case of

conflict, the last setting in the list 〈options〉 will

prevail. It is noted in the list of parameters which

other parameters are overwritten.



〈style〉 may have one of the following values:

Style: none No background. This means the page

background is whatever it would be if

\backgroundstyle wasn’t used at all (for instance,

a plain area of color pagecolor if one of the color

options has been given).

Parameters used: none.

Style: plain Plain background. This means the page

background is whatever it would be if

\backgroundstyle wasn’t used at all (as for no

background). In addition to background style

none, the background style plain does produce

panel backgrounds. The colors and dimensions of

a top panel, bottom panel, left panel, and right



panel can be specified.

Parameters used: hpanels, autopanels,

toppanelcolor, bottompanelcolor, leftpanelcolor,

rightpanelcolor, toppanelcolordef,

bottompanelcolordef, leftpanelcolordef,

rightpanelcolordef, toppanelheight,

bottompanelheight, leftpanelwidth,

rightpanelwidth.

Style: vgradient Vertical gradient. The page

background is constructed using the \vgradrule

command. In addition to the usual parameters of

gradient rules, the vgradient background style

allows to leave space for headers, footers, or

panels. The colors and dimensions of a top panel,



bottom panel, left panel, and right panel can be

specified. The gradient rule fills the rectangular

space left between the specified panels.

Parameters used: stripes, firstgradprogression,

startcolor, startcolordef, endcolor, endcolordef in

addition to the parameters used for style plain.

Style: hgradient Horizontal gradient. The page

background is constructed using the \hgradrule

command. See the description of \vgradient

concerning panels.

Parameters used: See list for style vgradient.

Style: doublevgradient Double vertical gradient. The

page background is constructed using the

\dblvgradrule command. See the description of



\vgradient concerning panels.

Parameters used: gradmidpoint,

secondgradprogression, midcolor, midcolordef in

addition to the parameters used for style vgradient

(and plain).

Style: doublehgradient Double horizontal gradient.

The page background is constructed using the

\dblhgradrule command. See the description of

\vgradient concerning panels.

Parameters used: See list for doublevgradient.

Now, a list of all parameters and their meaning. In the

following,

〈n〉 denotes a (calc expression for a) nonnegative



integer

〈i〉 denotes a (calc expression for an) integer

〈r〉 denotes a fixed-point number

〈l〉 denotes a (calc expression for a) length

〈c〉 denotes the name of a defined color

〈cm〉 denotes a valid color model name (in the sense of

the color package)

〈cd〉 denotes a valid color definition (in the sense of

the color package) wrt a given 〈cm〉 parameter

〈t〉 denotes a ‘truth value’ in the sense of the ifthen

package: either true or false. As usual for keyval,

if =〈t〉 is omitted, the default true is assumed.

Option: stripes=〈n〉 Set the 〈stripes〉 parameter of



gradient rules to 〈n〉.
Default: \bgndstripes.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient.

Option: gradmidpoint=〈r〉 Set the 〈midpoint〉
parameter of double gradient rules to 〈r〉.
Default: \bgndgradmidpoint

Used by: doublevgradient, doublehgradient

Option: firstgradprogression=〈i〉 Set the first

gradient progression of gradient rules to 〈i〉.
Default: \bgndfirstgradprogression

Used by: vgradient, hgradient, doublevgradient,

doublehgradient



Option: secondgradprogression=〈i〉 Set the second

gradient progression of double gradient rules to

〈i〉.
Default: \bgndsecondgradprogression

Used by: doublevgradient, doublehgradient

Option: startcolor=〈c〉 Set the 〈startcolor〉
parameter of gradient rules to 〈c〉.
Default: If neither startcolor nor startcolordef is

given, the color bgndstartcolor is used as

startcolor.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: startcolordef



Option: startcolordef={〈cm〉}{〈cd〉} Set the

〈startcolor〉 parameter of gradient rules to color

foo, which is obtained by

\definecolor{foo}{〈cm〉}{〈cd〉}. Note that the two

pairs of curly braces are mandatory.

Default: If neither startcolor nor startcolordef is

given, the color bgndstartcolor is used as

startcolor.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: startcolor

Option: endcolor=〈c〉 Set the 〈endcolor〉 parameter

of gradient rules to 〈c〉.
Default: If neither endcolor nor endcolordef is



given, the color bgndendcolor is used as endcolor.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: endcolordef

Option: endcolordef={〈cm〉}{〈cd〉} Set the 〈endcolor〉
parameter of gradient rules to color foo, which is

obtained by \definecolor{foo}{〈cm〉}{〈cd〉}. Note

that the two pairs of curly braces are mandatory.

Default: If neither endcolor nor endcolordef is

given, the color bgndendcolor is used as endcolor.

Used by: vgradient, hgradient, doublevgradient,

doublehgradient

Overwrites: endcolor

Option: midcolor=〈c〉 Set the 〈midcolor〉 parameter



of double gradient rules to 〈c〉.
Default: If neither midcolor nor midcolordef is

given, the color bgndmidcolor is used as midcolor.

Used by: doublevgradient, doublehgradient

Overwrites: midcolordef

Option: midcolordef={〈cm〉}{〈cd〉} Set the 〈midcolor〉
parameter of double gradient rules to color foo,

which is obtained by

\definecolor{foo}{〈cm〉}{〈cd〉}. Note that the two

pairs of curly braces are mandatory.

Default: If neither midcolor nor midcolordef is

given, the color bgndmidcolor is used as midcolor.

Used by: doublevgradient, doublehgradient

Overwrites: midcolor



Option: hpanels=〈t〉 Specifies the ‘direction’ of

panels produced. hpanels=true means the top and

bottom panel span the full width of the screen. In

the space left in the middle, the left panel, the

background itself, and the right panel are

displayed. hpanels=false means the left and right

panel span the full height of the screen. In the

space left in the middle, the top panel, the

background itself, and the bottom panel are

displayed.

Default: hpanels=true is the default for plain,

hgradient and doublehgradient. hpanels=false is

the default for vgradient and doublevgradient.

Used by: plain, vgradient, hgradient,



doublevgradient, doublehgradient

Option: autopanels=〈t〉 Specifies whether the default

values of the parameters toppanelheight,

bottompanelheight, leftpanelwidth,

rightpanelwidth should be calculated automatically

from the contents of declared panels. The

automatism used is analogous to that of

\DeclarePanel*. Note that for panel arrangement,

both the width and the height of all declared

panels are overwritten. If you don’t want this,

calculate the panel parameters yourself and set

autopanels=false. In this case, the current panel

dimensions of declared panels are used as defaults

for toppanelheight, bottompanelheight,



leftpanelwidth, rightpanelwidth.

Default: true.

Used by: plain, vgradient, hgradient,

doublevgradient, doublehgradient

Option: 〈pos〉panelheight=〈l〉 Set the height/width

of the space left for the top / bottom / left /

right panel to 〈l〉. Note that the remaining

dimensions of panels, for instance the width of the

top panel, are always calculated automatically,

depending on the setting of the hpanels

parameter.

Default: If a respective panel has been defined

using \DeclarePanel, the default used depends on

the setting of the autopanels parameter. If



autopanels=true, the correct dimension is

calculated from the contents of the panel. The

respective one of \toppanelheight,

\bottompanelheight, \leftpanelwidth,

\rightpanelwidth is overwritten with the result. If

autopanels=false, then the respective setting of

\toppanelheight, \bottompanelheight,

\leftpanelwidth, \rightpanelwidth is taken as the

default. If a panel has not been declared, the

appropriate one of \bgndtoppanelheight,

\bgndbottompanelheight, \bgndleftpanelwidth,

\bgndrightpanelwidth is used as default.

Used by: plain, vgradient, hgradient,

doublevgradient, doublehgradient



Option: 〈pos〉panelcolor=〈c〉 Set the color of the

space left for the top / bottom / left / right

panel to 〈c〉.
Default: The standard colors toppanelcolor,

bottompanelcolor, leftpanelcolor, rightpanelcolor

are used as defaults.

Used by: plain, vgradient, hgradient,

doublevgradient, doublehgradient

Overwrites: toppanelcolordef bottompanelcolordef

leftpanelcolordef rightpanelcolordef

Option: 〈pos〉panelcolordef={〈cm〉}{〈cd〉} Set the

color of the space left for the top / bottom / left

/ right panel to color foo, which is obtained by

\definecolor{foo}{〈cm〉}{〈cd〉}. Note that the two



pairs of curly braces are mandatory.

Default: See the description of

top/bottom/left/rightpanelcolor.

Used by: plain, vgradient, hgradient,

doublevgradient, doublehgradient

Overwrites: toppanelcolor bottompanelcolor

leftpanelcolor rightpanelcolor



2.6.2 Panel-specific user level commands

If you’re using a package that has it own panel (as

pdfscreen) don’t even consider using the following.

\DeclarePanel[〈name〉]{〈pos〉}{〈contents〉} declares the

contents 〈contents〉 of the panel at position 〈pos〉.
Afterwards, on every page the panel contents are set

in a parbox of dimensions and position specified by

〈pos〉panelwidth, 〈pos〉panelheight, \panelmargin and

〈pos〉panelshift for top and bottom panels and

〈pos〉panelraise for left and right panels. The parbox is

constructed anew on every page, so all changes

influencing panel contents or parameters (like a

\thepage in the panel contents) are respected.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/pdfscreen.html


The panel contents are set in color 〈pos〉paneltextcolor.

There is another standard color 〈pos〉panelcolor, which

is however not activated by \DeclarePanel but by

selecting an appropriate background style.

Note that \backgroundstyle must be called after the

panel declaration.



Pages are constructed as follows: first the page

background, then the panels, and then the page

contents. Hence, panels overwrite the background and

the page contents overwrite the panels. The user is

supposed to make sure themselves that there is

enough space left on the page for the panels

(document class specific settings). The panel

declaration is global. A panel can be ‘undeclared’ by

using \DeclarePanel{〈pos〉}{}.

If the optional argument 〈name〉 is given, the panel

contents and (calculated) size will also be stored under

the given name, to be restored later with

\restorepanels. This is nice for switching between

different sets of panels.



For an example look at the files simplepanel.tex and

panelexample.tex in the doc directory. A simple

example follows:

\DeclarePanel{left}{%

\textsf{Your Name}

\vfill

\button{\Acrobatmenu{PrevPage}}{Back}

\button{\Acrobatmenu{NextPage}}{Next} }



There is a starred version which will (try to)

automatically calculate the ‘flexible’ dimension of each

panel. For top and bottom panels this is the height,

for left and right panels this is the width. Make sure

the panel contents are ‘valid’ at the time

\DeclarePanel* is called so the calculation can be

carried out in a meaningful way.

While the automatic calculation of the height of top

and bottom panels is trivial (using \settoheight), there

is a sophisticated procedure for calculating a ‘good’

width for the parbox containing the panel. Owing to

limitations set by TeX, there are certain limits to the

sophistication of the procedure.



For instance, any ‘whatsits’ (specials (like color

changes), file accesses (like \label), or hyper anchors)

or rules which are inserted directly in the vertical list

of the parbox ‘block’ the analysis, so the procedure

can’t ‘see’ past them (starting at the bottom of the

box) when analysing the contents of the parbox.

The user should make sure such items are set in

horizontal mode (by using \leavevmode or enclosing

stuff in boxes). Furthermore, only overfull and

underfull hboxes which occur while setting the parbox

are considered when judging which width is ‘best’.

This will reliably make the width large enough to

contain ‘wide’ objects like tabulars, logos and buttons,

but might not give optimal results for justified text.



vboxes occurring directly in the vbox are ignored.



Note further that hboxes with fixed width (made by

\hbox to...) which occur directly in the vbox may

disturb the procedure, because the fixed width cannot

be recovered. These hboxes will be reformatted with

the width of the vbox, generating an extremely large

badness, unsettling the calculation of maximum

badness. To avoid this such hboxes should be either

contained in a vbox or set in horizontal mode with

appropriate glue at the end.



2.6.3 Navigation buttons

The following provides only the very basics for

navigation buttons. If you’re using a package that has

it’s own naviagtion buttons (as pdfscreen) don’t even

consider using the following.

\button{〈navcommand〉}{〈text〉} creates a button

labelled 〈text〉 which executes 〈navcommand〉 when

pressed. The command takes four optional arguments

(left out above): 〈width〉, 〈height〉, 〈depth〉 and

〈alignment〉 in that order. 〈navcommand〉 can be for

instance \Acrobatmenu{〈command〉} or

\hyperlink{〈target〉} (note that 〈navcommand〉 should

take one (more) argument specifying the sensitive area

which is provided by \button). If given, the optional

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/pdfscreen.html


parameters 〈width〉, 〈height〉, and 〈depth〉 give the

width, height and depth, respectively, of the framed

area comprising the button (excluding the shadow, but

including the frame). Default are the ‘real’ width,

height and depth, respectively, of 〈text〉, plus

allowance for the frame. If given, the optional

parameter 〈alignment〉 (one of l,c,r) gives the

alignment of 〈text〉 inside the button box (makes sense

only if 〈width〉 is given).

The button appearence is defined by some

configurable button parameters:

\buttonsep Space between button label and border.

(Default: \fboxsep)

\buttonrule Width of button frame. (Default: 0pt)



\buttonshadowhshift Horizontal displacement of

button shadow. (Default: 0.3\fboxsep)

\buttonshadowvshift Vertical displacement of button

shadow. (Default: 0.3\fboxsep)

A list of predefined buttons follows:

\backpagebutton[〈width〉] Last subpage of previous

page.

\backstepbutton[〈width〉] Previous step.

\gobackbutton[〈width〉] ‘Undo action’ (go back to

whatever was before last action).

\nextstepbutton[〈width〉] Next step.

\nextpagebutton[〈width〉] First subpage of next page.



\nextfullpagebutton[〈width〉] Last subpage of next

page.

\fullscreenbutton[〈width〉] Toggle fullscreen mode.



2.7 Index

\activatestep, 64

active, see \stepwise

\addTPcolor, 99

\afterstep, 86

altemcolor, 136

automata package, 46

\backgroundstyle, 142

\backgroundstyle macro options

doublehgradient, 147

doublevgradient, 146

hgradient, 146

none, 144

plain, 144



vgradient, 145

\backpagebutton, 170

\backstepbutton, 170

\blackbackground, 106

blackbackground, see texpower package options

blackbg, 101

bookclass, see powersem package options

\boxedsteps, 58

\bstep, 73

\button, 168

\buttonrule, 169

\buttonsep, 169

\buttonshadowhshift, 169

\buttonshadowvshift, 170



calcdimensions, see powersem package options

\carg, 132

cmbrightmath, see tpslifonts package options

\code, 132

codecolor, 136

\colorbetween, 123

coloremph, see texpower package options

colorhighlight, see texpower package options

colormath, see texpower package options

\commandapp, 132

\concept, 133

conceptcolor, 136

\darkbackground, 106

darkbackground, see texpower package options



darkbg, 101

\dblhgradrule, 147

\dblvgradrule, 146

\DeclarePanel, 160

\DeclarePanel*, 164

\defineTPcolor, 99

\dimcolor, 113

\dimcolors, 113

\dimlevel, 111

dimmed color variant, 109

display, see texpower package options, see texpower

package switches, see powersem package options

\displayboxed, 66

\displayidentical, 66

\displaystepcontents, 64



doublehgradient, see \backgroundstyle macro options

doublevgradient, see \backgroundstyle macro options

\dstep, 75

\dumpcolorset, 102

emcolor, 135

\enhancecolor, 114

\enhancecolors, 114

enhanced color variant, 109

\enhancelevel, 112

eulerdigits, see tpslifonts package options

eulermath, see tpslifonts package options

eulermathletters, see tpslifonts package options

firstactivation, see \stepwise

firststep, see \stepwise



fixcolorstack, see texpower package options

fixseminar package, 41

\fullscreenbutton, 171

\gobackbutton, 170

hgradient, see \backgroundstyle macro options

\hgradrule, 146

\hidedimmed, 69

\hideignore, 67

\hidephantom, 67

\hidestepcontents, 64

\hidetext, 68

\hidevanish, 67

\highlightboxed, 70

\highlightboxsep, 70



highlightcolor, 137

\highlightenhanced, 72

\highlighttext, 71

hyperref package, 34

\inactive, 133

inactivecolor, 137

KOMA, see powersem package options

lcmssops, see tpslifonts package options

\lightbackground, 106

lightbackground, see texpower package options

lightbg, 101

\liststepwise, 61

\macroname, 132



mathcolor, 136

\mkfactor, 125

\movie, 76

\multistep, 76

\nextfullpagebutton, 170

\nextpagebutton, 170

\nextstepbutton, 170

\nonboxedsteps, 58

none, see \backgroundstyle macro options

\origmath, 130

\overlays, 77

pagecolor, 135

\pageDuration, 94



\pageTransitionBlindsH, 89

\pageTransitionBlindsV, 89

\pageTransitionBoxI, 90

\pageTransitionBoxO, 90

\pageTransitionDissolve, 90

\pageTransitionGlitter, 91

\pageTransitionReplace, 91

\pageTransitionSplitHI, 89

\pageTransitionSplitHO, 89

\pageTransitionSplitVI, 89

\pageTransitionSplitVO, 89

\pageTransitionWipe, 90

\parstepwise, 61

\pause, 47

plain, see \backgroundstyle macro options



powersem class, 36

powersem package options

bookclass, 39

calcdimensions, 38

display, 38

KOMA, 39

reportclass, 39

UseBaseClass, 39

\present, 134

presentcolor, 137

printout, see texpower package options

psspecialsallowed, see texpower package switches

\rebstep, 79

\redstep, 79



reportclass, see powersem package options

\restep, 79

\reswitch, 79

\revstep, 79

sans, see texpower package options

sansmath, see tpslifonts package options

sansmathletters, see tpslifonts package options

scaleupmath, see tpslifonts package options

scaleuptt, see tpslifonts package options

slifonts, see texpower package options

soul package, 35

\step, 51

step, see \stepwise

stepcommand, see \stepwise



\steponce, 75

\stepwise, 51

active (boolean), 85

firstactivation (boolean), 85

firststep (counter), 84

step (counter), 85

stepcommand (counter), 85

totalsteps (counter), 84

\stopAdvancing, 77, 95

\switch, 73

texpower package options

blackbackground, 107

coloremph, 127

colorhighlight, 127



colormath, 127

darkbackground, 107

display, 23

fixcolorstack, 26

lightbackground, 107

printout, 23

sans, 28

slifonts, 28

verbose, 23

whitebackground, 107

texpower package switches

display, 30

psspecialsallowed, 29

TPcolor, 30

textcolor, 135



totalsteps, see \stepwise

TPcolor, see texpower package switches

tpcolors.cfg, 31

tpoptions.cfg, 31

tpsettings.cfg, 31

tpslifonts package, 43

tpslifonts package options

cmbrightmath, 44

eulerdigits, 44

eulermath, 44

eulermathletters, 44

lcmssops, 45

sansmath, 43

sansmathletters, 44

scaleupmath, 43



scaleuptt, 43

\underl, 133

underlcolor, 136

UseBaseClass, see powersem package options

\usecolorset, 102

\vanishcolors, 126

verbose, see texpower package options

vgradient, see \backgroundstyle macro options

\vgradrule, 145

\vstep, 75

\whitebackground, 106

whitebackground, see texpower package options

whitebg, 101


	Examples
	Some examples for codecolor\pause
	codecolor\stepwise Example: A Picture
	codecolor\stepwise Example: A Tabular
	codecolor\stepwise Example: An Aligned Equation
	codecolor\stepwise Example: Inside A Paragraph
	codecolor\stepwise Example: Writing Backwards
	codecolor\stepwise Example: Highlighting Text
	codecolor\stepwise Example: Fooling Around

	Documentation
	Usage and general options
	The codecolor\pause command
	The codecolor\stepwise command
	Page transitions and automatic advancing
	Color management, color emphasis and highlighting
	Structured page backgrounds and panels
	Index


