
SP L I N T

reference v e r s i o n1.1.0

SPLINT

Alex Shibakov October 11, 2020

1
Introduction

3a SPLinT 1) (Simple Parsing and Lexing in TEX, or, following the great GNU tradition of creating recursive
names, SPLinT Parses Languages in TEX) is a system (or rather a mélange of systems) designed to facilitate
the development of parsing macros in TEX and (to a lesser degree) to assist one in documenting parsers written
in other languages. As an application, parsers for bison and flex input file syntax have been developed,
along with a macro collection that makes it possible to design and pretty print 2) bison grammars and flex
automata using CWEB. The examples directory contains a few other parsers designed to pretty print various
languages (among them is ld, the language of the GNU linker).

3b CWEB and literate programming

Writing software in CWEB involves two programs. The first of these is CTANGLE that outputs the actual
code, intended to be in C. In reality, CTANGLE cares very little about the language it produces. Among the
exceptions are C comments and #line directives that might confuse lesser software but bison is all too happy
to swallow them (there are also some C specific constructs that CTANGLE tries to recognize). CTANGLE’s main
function is to rearrange the text of the program as written by the programmer (in a way that, hopefully,
emphasizes the internal logic of the code) into an appropriate sequence (e.g. all variable declaration must
textually precede their use). All that is required to adopt CTANGLE to produce bison output is some very
rudimentary post- and pre-processing.

Our main concern is thus CWEAVE that not only pretty prints the program but also creates an index,
cross-references all the sections, etc. Getting CWEAVE to pretty print a language other than C requires some
additional attention. A true digital warrior would probably try to decipher CWEAVE’s output ‘in the raw’ but,
alas, my WebFu is not that strong. The loophole comes in the form of a rarely (for a good reason) used CWEB
command: the verbatim (@=...@>) output. The material to be output by this construct undergoes minimal
processing and is put inside \vb{. . .}. All that is needed now is a way to process this virtually straight text
inside TEX.

This manual, as well as nearly every other document that accompanies SPLinT is itself a source for a
computer program (or, as is the case with this document, several programs) that is extracted using CTANGLE.
We refer an interested reader to [CWEB] for a detailed description of the syntax and use patterns of CWEB.
The following is merely a brief overview of the approach.

Every CWEB document is split into sections, each divided into three parts (any one of which can be empty):
the TEX part, the middle part, and the C part (which should more appropriately be called the code part).

1) I was tempted to call the package ParLALRgram which stands for Parsing LALR Grammars or PinT for ‘Parsing in TEX’ but
both sounded too generic. 2) The term pretty printing is used here in its technical sense as one might find that there is noth-
ing pretty about the output of the parsing routines presented in this document.

 CWEB AND LITERATE PROGRAMMING SPLINT 2
3

The code part of each 1) section carries a name for cross referencing purposes. The sections themselves are
automatically numbered by CWEAVE and their code parts may be referenced from other sections, as well as
included in other sections’ code parts using CWEB’s cross referencing syntax (such as 〈A production 8a 〉).
Using the same name for the C portion in several sections has the effect of merging the corresponding code
fragments. When the section with such a name is used (included) later, all of the concatenated fragments
are included as well, even the ones that appear after the point in the CWEB document where such inclusion
takes place.

The original CWEB macros (from cwebmac.tex) used the numbers generated by CWEAVE to refer to specific
sections. This was true for the table of contents, as well as the index entries. The macros used by SPLinT
adopt a different convention, proposed by N. Ramsey for his literate programming software, noweb. In the
new system (which will be referred to as the noweb style of cross referencing), each section is labelled by
the page number where it starts and an alphabetic character that indicates the order of appearance of the
section on the page. Also following noweb, the new macros display links beween the fragments of the same
section in the margins. This allows for quicker navigation between sections of the code and lets the reader
to get a quick overview of what gets ‘collected’ in a given section.

The top level (@**) sections, introducing major portions of the code have also been given more prominent
appearance and carry a chapter number in addition to the the noweb style section number (the latter is used
for cross references, as the chapter number gives no indication as to where the said chapter is located).
CWEB also generates an index of all the identifiers (with some exceptions, such as single letter names)

appearing in the C portion of each section, except those that appear inside the verbatim portions of the code
(i.e. between @= and @>). Since SPLinT uses the verbatim blocks extensively, additional indexing facilities
have been implemented to provide indexing for the non-C languages handled by various SPLinT parsers.

4a Pretty (and not so pretty) printing

Pretty-printing can be narrowly defined as a way to organize the presentation of the program’s text. The
range of visual devices used for this purpose is usually limited to indentation and discrete line skips, to
mimic the capabilities of an old computer terminal. Some authors (see [ACM]) have replaced the term
pretty printing with program visualization to refer to a much broader range of graphic tools for translating
the code (and its meaning) into a richer medium. This manual uses the terms pretty printing and program
visualization interchangeably.

Pretty printing in the broader sense above has been the subject of research for some time. The mono-
graph [ACM] develops a methodical (if not formalized) approach to the design of visualization frameworks
for programming languages (although the main focus is on procedural C-like languages).

A number of papers about pretty printing have appeared since, extending the research to new languages,
and suggesting new visualizatin rules. Unfortunately, most of this research is driven by rules of thumb
and anecdotes (the approach fully embraced by this manual), although there have been a few rigorous
studies investigating isolated visualization techniques (see, for example, the discussion of variable declaration
placement in [Jo]).

Perhaps the only firm conclusion one can draw from this discussion is that writing the code and reading
it are very different activities so facilitating the former may in turn make the latter more difficult and vice
versa. Some well known languages try to arrive at a compromise where the syntax forces a certain style
of presentation on the programmer. An example of a successful language in this group is Python with
its meaningful white space. The author does not share the enthusiasm some programmers express for this
approach.

On the other hand, a language like C does not enforce any presentation format 2). The authors of C even
remarked that semicolons and braces were merely a nod to the compiler (or, one might add, static analysis
software, see [KR]). It may thus seem reasonable that such redundant syntax elements may be replaced by
different typographic devices (such as judicially chosen skips and indentation, or the choice of fonts) when
(pretty) printing the code.

1) With the exception of the nameless @c sections. 2) The ‘feature’ so masterfully exploited by the International Obfuscated
C Code Contest (IOCCC) participants.

3
4 SPLINT PRETTY (AND NOT SO PRETTY) PRINTING

Even the critics of pretty printing usually concede that well indented code is easier to read. The practice
of using different typefaces to distinguish between various syntactic elements (such as reserved words and
general identifiers) is a subject of some controversy, although not as pronounced as some of the more drastic
approaches (such as completely replacing the brace pairs with indentation as practiced by SPLinT for bison
input or by the authors of [ACM] for the control statements in C).

The goal of SPLinT was not to force any parcticular ‘pretty printing philosophy’ on the programmer
(although, if one uses the macros ‘as is’, some form of quiet approval is assumed . . .) but rather to provide
one with the tools necessary to implement one’s own vision of making the code readable.

One tacit assumption made by the author is that an integral part of any pretty printing strategy is
extracting (some) meaning from the raw text. This is done by parsing the program, the subject we discuss
next. It should be said that it is the parser design in TEX that SPLinT aims to facilitate, with pretty printing
being merely an important application.

5a Parsing and parsers

At an abstract level, a parser is just a routine that transforms text. Naturally, not every possible tranforma-
tion is beneficial, so, informally, the value of a parser lies in its ability to expose some meaning in the text.
If valid texts are reduced to a small finite set (while each text can be arbitrarily long) one can concievably
write a primitive string matching algorithm that recognizes whether any given input is an element of such
set, and if it is, which one. Such ‘parsers’ would be rather limited and are only mentioned to illustrate the
point that, in general, the texts being parsed are not required to follow any particular specifiction.

In practice, however, real world parsers rely on the presence of some structure in the input to do their
work. The latter can be introduced by supplying a formal (computable) description of every valid input.
The ‘ridgidity’ of this specification directly affects the sophistication of the parsing algorithm required to
process a valid input (or reject an invalid one).

Parsing algorithms normally follow a model where the text is processed a few symbols at a time and the
information about the symbols already seen is carried in some easily accessible form. ‘A few symbols at a
time’ often translates to ‘at most one symbol’, while ‘easily accessible’ reduces to using a stack-like data
structure for bookkeeping.

A popular way of specifying structure is by using a formal grammar 1) that essentially expresses how some
(preferably meaningful) parts of the text relate to other parts. Keeping with the principle of making the
information about the seen portions of the input easily accessible, practical grammars are normally required
to express the meaning of a fragment in a manner that does not depend on the input that surrounds the
fragment (i.e. to be context-free). Real-world languages rarely satisfy this requirement 2) thus presenting a
challenge to parser generating software that assumes the language is context-free.

Even the task of parsing all context-free languages is too ambitious in most practical scenarios, so further
limitations on the grammar are normally imposed. One may require that the next action of the parsing
algorithm must depend exclusively on the next symbol seen and one of the finitely many states the parser
may be in. The action here simply refers to the choice of the next state, as well as the possible decision to
consume more input or output a portion of the abstract syntax tree which is discussed below.

The same language may have more than one grammar and the choice of the latter normally has a profound
effect on the selection of the parsing algorithm. Without getting too deep into the parsing theory, consider
the following simple sketch.

pexp : (pexp) | astring

astring : ◦ | * astring

Informally, the language consists of ‘strings of n *’s nested m parentheses deep’. After parsing such a string,
one might be interested in the values of m and n.

The three states the parser may be in are ‘start’, ‘parsing pexp’ and ‘parsing astring’. A quick glance at
the grammar above shows that switching between the states is straightforward (we omit the discussion of

1) While popular, formal grammars are not the only way of describing a language. For example, ‘powers of 2 presented in radix
3’ is a specification that cannot be defined by a context-free grammar, although it is possible to write a (very complex) gram-
mar for it. 2) Processing typedef ’s in C is a well known case of such a language defect.

 PARSING AND PARSERS SPLINT 4
6

the ‘start’ state for brevity): if the next symbol is (, parse the next pexp, otherwise, if the next symbol is
*, parse astring. Finally, if the next symbol is) and we are parsing pexp, finish parsing it and look for the
next input, otherwise, we are parsing astring, finish parsing it, make it a pexp, finish parsing a pexp started
by a parenthesis, and look for more input. This unnecessarily long (as well as incomplete and imprecise)
description serves to present a simple fact that the parsing states are most naturally represented by individual
functions resulting in what is known as a recursive descent parser in which the call stack is the ‘data structure’
responsible for keeping track of the parser’s state. One disadvantage of the algorithm above is that the
maximal depth of the call stack reaches m+ n which may present a problem for longer strings.

Computing m and n above now reduces to incrementing an appropriate variable upon exiting the corre-
sponding function. More important, however, is the observation that this parsing algorithm can be extracted
from the grammar in a very straightforward fashion. To better illustrate the rôle of the grammar in the
choice of the parsing algorithm, consider the following syntax for the same language:

pexp : (pexp) | astring

astring : ◦ | astring *

While the language is unchanged, so the algorithm above still works, the lookahead tokens are not immediately
apparent upon looking at the productions. Some preprocessing must take place before one can decide on
the choice of parser states and the appropriate lookahead tokens. Such algorithms indeed exist and result
in what is known as an LR parser for the fragment above (actually, a simpler LALR parser may be built for
this grammar 1)). One can see that some grammar types may make the selection of the parsing algorithm
more involved. Since SPLinT relies on bison for the generation of the parsing algorithm, one must ensure
that the grammar is LALR(1) 2).

6a Using the bison parser

The process of using SPLinT for writing parsing macros in TEX is treated in considerable detail later in this
document. A shorter (albeit somewhat outdated but still applicable) version of this process is outlined in
[Sh], included as part of SPLinT’s documentation. We begin, instead, by explaining how one such parser can
be used to pretty print a bison grammar. Following the convention mentioned above and putting all non-C
code inside CWEAVE’s verbatim blocks, consider the following (meaningless) code fragment 3). The fragment
contains a mixture of C and bison code, the former appears outside of the verbatim blocks.

@= non_terminal: @>
@= term.1 term.2 {@> a = b; @=}@>
@= | term.3 other_term {@> $$ = $1; @=}@>
@= | still more terms {@> f($1); @=}@>
@= ; @>

The fragment above will appear as (the output of CTANGLE can be examined in sill.y)
〈A silly example 6a 〉 = 7a

5
non terminal :

term1 term2 a⇐ b;
term3 other term Υ ⇐ Υ1 ;
still more terms f(Υ1);

See also sections 7a, 7c, and 8c.

This code is used in section 8f.

1) Both of these algorithms will use the parser stack more efficiently, effectively resolving the ‘call stack depth’ issue mentioned
earlier. 2) The newest versions of bison are capable of processing a much wider set of grammars, although SPLinT can on-
ly handle the bison output for LALR(1) parsers. 3) The software included in the package contains a number of preprocessing
scripts that reduce the necessity of using the verbatim blocks for every line of the bison code so the snippet above can instead
be presented without the distraction of @=...@>, looking more like the ‘native’ bison input

6
8 SPLINT USING THE BISON PARSER

7a . . . if the syntax is correct. In case it is a bit off (note the missing colon after whoops), the parser will give
up and you will see a different result. The code in the fragment below is easily recognizable, and some parts
of it (all of C code, in fact) are still pretty printed by CWEAVE. Only the verbatim portion is left unprocessed.
〈A silly example 6a 〉 + =

4
6a 7c
5

whoops

term.1 term.2 { a⇐ b; }
| term.3 other_term { Υ ⇐ Υ1 ; }
| still more terms { f(Υ1); }
;

7b The TEX header that makes such output possible is quite plain. In the case of this document it begins as

\input limbo.sty
\input frontmatter.sty
\def\optimization{5}
\input yy.sty

[more code . . .]

The first two lines are presented here merely for completeness: there is no parsing-relevant code in them.
The third line (\def\optimization{5}) may be ignored for now (we discuss some ways the parser code may
be sped up later. The line that follows loads the macros that implement the parsing and scanning machinery.

This is enough to set up all the basic mechanisms used by the parsing and lexing macros. The rest of the
header provides a few definitions to fine tune the typesetting of grammar productions. It starts with

\let\currentparsernamespace\parsernamespace
\let\parsernamespace\mainnamespace
\let\currenttokeneq\tokeneq

\def\tokeneq#1#2{\prettytoken{#1}}
\input bo.tok % re-use token equivalence table to set the

\let\tokeneq\currenttokeneq
\input btokenset.sty

[more code . . .]

We will have a chance to discuss all the \. . .namespace macros later, at this point it will suffice to say that
the lines above are responsible for controlling the typesetting of term names. The file bo.tok consists of a
number of lines like the ones below:

\tokeneq {STRING}{{34}{115}{116}{114}{105}{110}{103}{34}}
\tokeneq {PERCENT_TOKEN}{{34}{37}{116}{111}{107}{101}{110}{34}}

[more code . . .]

The cryptic looking sequences of integers above are strings of ASCII codes of the letters that form the
name that bison uses when it needs to refer to the corresponding token (thus, the second one is "%token"
which might help explain why such an indirect scheme has been chosen). The macro \tokeneq is defined
in yymisc.sty, which in turn is input by yy.sty but what about the token names themselves? In this
case they were extracted automatically from the CWEB source file by the bootstrapping parser during the
CWEAVE processing stage. All of these definitions can be overwritten to get the desired output (say, one
might want to typeset ID in a roman font, as ‘identifier’; all that needs to be done to make this possible
is a macro that says \prettywordpair{ID}{{\rm identifier}} in an appropriate namespace (usually
\hostparternamespace)). The file btokenset.sty input above contains a number of such definitions.

7c To round off this short overview, I must mention a caveat associated with using the macros in this collection:
while one of the greatest advantages of using CWEB is its ability to rearrange the code in a very flexible way,
the parser will either give up or produce unintended output if this feature is abused while describing the
grammar. For example, in the code below

 USING THE BISON PARSER SPLINT 8
14

〈A silly example 6a 〉 + =
4
7a 8c
5

next term :
stuff 〈Rest of line 8b 〉a⇐ f(x);

〈A production 8a 〉

8a the line titled 〈A production 8a 〉 is intended to be a rule defined later. Notice that while it seems that
the parser was able to recognize the first code fragment as a valid bison input, it misplaced the 〈Rest of
line 8b 〉, having erroneously assumed it to be a part of the action code for this grammar (later on we will
go into the details of why it is necessary to collect all the non-verbatim output of CWEAVE, even that which
contains no interesting C code; hint: it has something to do with money ($), also known as math and the
way CWEAVE processes the ‘gaps’ between verbatim sections). The production line that follows did not fare
as well: the parser gave up. There is simply no point in including such a small language fragment as a valid
input for the grammar the parser uses to process the verbatim output.
〈A production 8a 〉 = 8d

5
more stuff in this line {b⇐ g(y); }

See also section 8d.

This code is cited in sections 3b and 8a.

This code is used in sections 7c and 8c.

8b Finally, if you forget that only the verbatim part of the output is looked at by the parser you might get
something unrecognizable, such as
〈Rest of line 8b 〉 = 8e

5
but notall of it

See also section 8e.

This code is cited in section 8a.

This code is used in sections 7c and 8c.

8c To correct this, one can provide a more complete grammar fragment to allow the parser to complete its task
successfully. In some cases, this imposes too strict a constraint on the programmer. Instead, the parser that
pretty prints bison grammars allows one to add hidden context to the code fragments above. The context
is added inside \vb sections using CWEB’s @t. . .@> facility. The CTANGLE output is not affected by this while
the code above can now be typeset as:
〈A silly example 6a 〉 + =

4
7c

next term :
stuff 〈Rest of line 8b 〉 a⇐ f(x);

〈A production 8a 〉

8d . . . even a single line can now be displayed properly.
〈A production 8a 〉 + =

4
8a

more stuff in this line b⇐ g(y);

8e With enough hidden context, even a small rule fragment can be typeset as intended. The ‘action star’ was
inserted to reveal some of the context.
〈Rest of line 8b 〉 + =

4
8b

but not all of it ?

8f What makes all of this even more confusing is that CTANGLE will have no trouble outputting this as a(n almost,
due to the intentionally bad whoops production above) valid bison file (as can be checked by looking into
sill.y). The author happens to think that one should not fragment the software into pieces that are too
small: bison is not C so it makes sense to write bison code differently. However, if the logic behind your
code organization demands such fine fragmentation, hidden context provides you with a tool to show it off.
A look inside the source of this document shows that adding hidden context can be a bit ugly so it is not
recommended for routine use. The short example above is output in the file below.

14
16 SPLINT USING THE BISON PARSER

〈 sill.y 8f 〉 =
〈A silly example 6a 〉

9a On debugging

This concludes a short introduction to the bison grammar pretty printing using this macro collection. It
would be incomplete, however, without a short reference to debugging 1). There is a fair amount of debugging
information that the macros can output, unfortunately, very little of it is tailored to the use of the macros in
the bison parser. Most of it is designed to help build a new parser. If you find that the bison parser gives
up too often or even crashes (the latter is most certainly a bug in the SPLinT version of the bison parser
itself), the first approach is to make sure that your code compiles, i.e. forget about the printed output and
try to see if the ‘real’ bison accepts the code (just the syntax, no need to worry about conflicts and such).

If this does not shed any light on why the macros seem to fail, turn on the debugging output by saying
\trace. . .true to activate the appropriate trace macros. This may produce a lot of output, even for small
fragments, so turn it on for only a section at a time. If you need still more details of the inner workings of the
parser and the lexer, various other debugging conditionals are available. For example, \yyflexdebugtrue
turns on the debugging output for the scanner. There are a number of such conditionals that are discussed in
the commentary for the appropriate TEX macros. Most of these conditionals are documented in yydebug.sty,
which provides a number of handy shortcuts for a few commonly encountered situations, as well.

Remember, what you are seeing at this point is the parsing process of the bison input file, not the one
for your grammar (which might not even be complete at this point). However, if all of the above fails, you
are on your own: drop me a line if you figure out how to fix any bugs you find.

1) Here we are talking about debugging the output produced by CWEAVE when the included bison parser is used, not debug-
ging parsers written with the help of this software: the latter topic is covered in more detail later on

 TERMINOLOGY SPLINT 16
16

2
Terminology

11a This short chapter is an informal listing of a few loose definitions of the concepts used repeatedly in this
documentation. Most of this terminology is rather standard. Formal precision is not the goal here, instead,
intuitive explanations are substituted whenever possible.

bison (as well as flex) parser(s): while, strictly speaking, not a formally defined term, this combination
will always stand for one of the parsers generated by this package designed to parse a subset of the ‘official’
grammar for bison or flex input files. All of these parsers are described later in this documentation. The
term main parser will be used as a substitute in example documentation for the same purpose.
driver: a generic but poorly defined concept. In this documentation it is used predominantly to mean both
the C code and the resulting executable that outputs the TEX macros that contain the parser tables, token
values, etc., for the parsers built by the user. It is understood that the C code of the ‘driver’ is unchanged
and the information about the parser itself is obtained by including the C file produced by bison in the
‘driver’ (see the examples supplied with the package).
lexer: a synonym for scanner, a subroutine that performs the lexical analysis phase of the parsing process,
i.e. groups various characters from the input stream into parser tokens.
namespace: this is an overused bit of terminology meaning a set of names grouped together according
to some relatively well defined principle. In a language without a well developed type system (such as
TEX) it is usually accompanied by a specially designed naming scheme. Parser namespaces are commonly
used in this documentation to mean a collection of all the data structures describing a parser and its state,
including tables, stacks, etc., named by using the ‘root’ name (say \yytable) and adding the name of
the parser (for example, [main]). To support this naming scheme, a number of macros work in unison to
create and rename the ‘data macros’ accordingly 1).
parser stack: a collection of parsers, usually derived from a common set of productions, and sharing a
common lexer. As the name suggests, the parsers in the collection are tried in order until the input is
parsed successfully or every parser has been tried. This terminology may be the source of some confusion,
since each parsing algorithm used by bison maintains several stacks. We will always refer to them by
naming a specific task the stack is used for (such as the value stack or the state stack, etc.).
pretty printing or program visualization: The terms above are used interchangeably in this manual to
mean typesetting the program code in a way that emphasizes its meaning as seen by the author of the
program 2). It is usually assumed that such meaning is extracted by the software (a specially designed
parser) and translated into a suitable visual representation.

1) To be precise, the namespaces in this manual, would more appropriately be referred to as named scopes. The tag names-
pace in C is an example of a (built-in) language namespace where the grammatical rôle of the identifier determines its associa-
tion with the appropriate set. 2) Or the person typesetting the code.

 TERMINOLOGY SPLINT 16
17

symbolic switch: a macro (or an associative array of macros) that let the TEX parser generated by the
package associate symbolic term names (called named references in the official bison documentation)
with the terms. Unlike the ‘real’ parser, the parser created with this suite requires some extra setup as
explained in the included examples (one can also consult the source for this documentation which creates
but does not use a symbolic switch).
symbolic term name: (also refered to as a named reference in the bison manual): a (relatively new) way
to refer to stack values in bison. In addition to using the ‘positional’ names such as $n to refer to term
values, one can utilize the new syntax: $[name] (or even $name when the name has a tame enough
syntax). The ‘name ’ can be assigned by the user or can be the name of the nonterminal or token used in
the productions.
term: in a narrow sense, an ‘element’ of a grammar. Instead of a long winded definition, an example,
such as ýidentifierþ should suffice. Terms are further classified into terminals (tokens) and nonterminals
(which can be intuitively thought of as composite terms).
token: in short, an element of a set. Usually encoded as an integer by most parsers, a token is an indivisible
term produced for the parser by the scanner. TEX’s scanner uses a more sophisticated token classification,
for example, (character code, character category) pairs, etc.

3
Languages, scanners, parsers, and TEX

13a Tokens and tables keep macros in check.
Make ’em with bison, use WEAVE as a tool.
Add TEX and CTANGLE, and C to the pool.
Reduce ’em with actions, look forward, not back.
Macros, productions, recursion and stack!

Computer generated (most likely)

In order to understand the parsing routines in this collection, it would help to gain some familiarity with
the internals of the parsers produced by bison for its intended target: C. A person looking inside a parser
delivered by bison would quickly discover that the parsing procedure itself (yyparse) occupies a rather small
portion of the file. If (s)he were to further reduce the size of the file by removing all the preprocessor directives
intended to anticipate every conceivable combination of the operating system, compiler, and C dialect, and
various reporting and error logging functions it would become very clear that the most valuable product
of bison’s labor is a collection of integer tables that control the actions of the parser routine. Moreover,
the routine itself is an extremely concise and well-structured loop composed of goto’s and a number of
numerical conditionals. If one could think of a way of accessing arrays and processing conditionals in the
language of one’s choice, once the tables produced by bison have been converted into a form suitable for
the consumption by the appropriate language engine, the parser implementation becomes straightforward.
Or nearly so.

The scanning (or lexing) step of this process—a way to convert a stream of symbols into a stream of
integers, deserves some attention, as well. There are a number of excellent programs written to automate
this step in much the same fashion as bison automates the generation of parsers. One such tool, flex,
though (in the opinion of this author) slightly lacking in the simplicity and elegance as compared to bison,
was used to implement the lexer for this software suite. Lexing in TEX will be discussed in considerable
detail later in this manual.

The language of interest in our case is, of course, TEX, so our future discussion will revolve around the
five elements mentioned above: (1)data structures (mainly arrays and stacks), (2)converting bison’s output
into a form suitable for TEX’s consumption, (3)processing raw streams of TEX’s tokens and converting them
into streams of parser tokens, (4)the implementation of bison’s yyparse in TEX, and, finally, (5)producing
TEX output via syntax-directed translation (which requires an appropriate abstraction to represent bison’s
actions inside TEX). We shall begin by discussing the parsing process itself.

 ARRAYS, STACKS AND THE PARSER SPLINT 18
18

14a Arrays, stacks and the parser

Let us briefly examine the programming environment offered by TEX. Designed for typesetting, TEX’s
remarkable language provides a layer of macro processing atop of a set of commands that produce the
output fulfilling its primary mission: delivering page layouts. In The TEXbook, the macro expansion is
likened to mastication, whereas TEX’s main product, the typographic output is the result of its ‘digestion’
process. Not everything that goes through TEX’s digestive tract ends up leaving a trace on the final page: a
file full of \relax’s will produce no output, even though \relax is not a macro, and thus would have to be
processed by TEX at the lowest level.

It is time to describe the details of defining suitable data structures in TEX. At first glance, TEX provides
rather standard means of organizing and using the memory. At the core of its generic programming
environment is an array of \count n registers, which may be viewed as general purpose integer variables
that are randomly accessible by their indices. The integer arithmetic machinery offered by TEX is spartan
but is very adequate for the sort of operations a parser would perform: mostly additions and comparisons.

Is the \count array a good way to store tables in TEX? Probably not. The first factor is the size of
this array: only 256 \count registers exist in a standard TEX (the actual number of such registers on a
typical machine running TEX is significantly higher but this author is a great believer in standards, and to
his knowledge, none of the standardization efforts in the TEX world has resulted in anything even close to
the definitive masterpiece that is The TEXbook). The issue of size can be mitigated to some extent by using
a number of other similar arrays used by TEX (\catcode, \uccode, \dimen, \sfcode and others can be
used for this purpose as long as one takes care to restore the ‘sane’ values before the control is handed off
to TEX’s typesetting mechanisms). If a table has to span several such arrays, however, the complexity of
accessing code would have to increase significantly, and the issue of size would still haunt the programmer.

The second factor is the utilization of several registers by TEX for special purposes (in addition, some
of these registers can only store a limited range of values). Thus, the first 10 \count registers are used
by the plain TEX for (well, intended for, anyway) the purposes of page accounting: their values would
have to be carefully saved and restored before and after each parsing call, respectively. Other registers
(\catcode in particular) have even more disrupting effects on TEX’s internal mechanisms. While all of this
can be managed (after all, using TEX as an arithmetic engine such as a parser suspends the need for any
typographic or other specialized functions controlled by these arrays), the added complexity of using several
memory banks simultaneously and the speed penalty caused by the need to save and restore register values
make this approach much less attractive.

What other means of storing arrays are provided by TEX? Essentially, only three options remain: \token
registers, macros holding whole arrays, and associative arrays accessed through \csname . . . \endcsname. In
the first two cases if care is taken to store such arrays in an appropriate form one can use TEX’s \ifcase
primitive to access individual elements. The trade-off is the speed of such access: it is linear in the size of
the array for most operations, and worse than that for others, such as removing the last item of an array.
Using clever ways of organizing such arrays, one can improve the linear access time to O(log n) by simply
modifying the access macros but at the moment, a straightforward \ifcase is used after expanding a list
macro or the contents of a \token n register in an unoptimized parser. An optimized parser uses associative
arrays.

The array discussion above is just as applicable to stacks (indeed, an array is the most common form
of stack implementation). Since stacks pop up and disappear frequently (what else are stacks to do?), list
macros are usually used to store them. The optimized parser uses a separate \count register to keep track
of the top of the stack in the corresponding associative array.

Let us now switch our attention to the code that implements the parser and scanner functions. If one
has spent some time writing TEX macros of any sophistication (or any macros, for that matter) (s)he must
be familiar with the general feeling of frustration and the desire to ‘just call a function here and move on’.
Macros 1) produce tokens, however, and tokens must either expand to nothing or stay and be contributed to
your input, or worse, be out of place and produce an error. One way to sustain a stream of execution with
macros is tail recursion (i.e. always expanding the last token left standing).

1) Formally defined as ‘. . . special compile-time functions that consume and produce syntax objects’ in [DHB].

18
19 SPLINT ARRAYS, STACKS AND THE PARSER

As we have already discussed, bison’s yyparse () is a well laid out loop organized as a sequence of goto’s
(no reason to become religious about structured programming here). This fact, and the following well known
trick, make C to TEX translation nearly straightforward. The macro TEXniques employed by the sample
code below are further discussed elsewhere in this manual.

label A: ...
[more code . . .]

if(condition)
goto C;

[more code . . .]

label B: ...
[more code . . .]

goto A;
[more code . . .]

label C: ...
[more code . . .]

Given the code on the left (where goto’s are
\if(condition)

\let\next=\labelC
\else

\let\next=\labelAtail

the only means of branching but can appear
inside conditionals), one way to translate it
into TEX is to define a set of macros (call
them \labelA, \labelAtail and so forth for
clarity) that end in \next (a common name
for this purpose). Now, \labelA will imple-
ment the code that comes between label A: and goto C;, whereas \labelAtail
is responsible for the code after goto C; and before label B: (provided no other
goto’s intervene which can always be arranged). The conditional which precedes
goto C; can now be written in TEX as presented on the right, where (condition) is
an appropriate translation of the corresponding condition in the code being trans-
lated (usually, one of ‘=’ or ‘6=’). Further details can be extracted from the TEX
code that implements these functions where the corresponding C code is presented

alongside the macros that mimic its functionality 1). This concludes the overview of the general approach,
It is time to consider the way characters get consumed on the lower levels of the macro hierarchy and the
interaction between the different layers of the package.

15a TEX into tokens

Thus far we have covered the ideas behind items (1) and (4) on our list. It is time to discuss the lowest level
of processing performed by these macros: converting TEX’s tokens into the tokens consumed by the parser,
i.e. part (3) of the plan. Perhaps, it would be most appropriate to begin by reviewing the concept of a token.

As commonly defined, a token is simply an element of a set (see the section on terminology earlier in this
manual). Depending on how much structure the said set possesses, a token can be represented by an integer
or a more complicated data structure. In the discussion below, we will be dealing with two kinds of tokens:
the tokens consumed by the parsers and the TEX tokens seen by the input routines. The latter play the
rôle of characters that combine to become the former. Since bison’s internal representation for its tokens is
non-negative integers, this is what the scanner must produce.

TEX’s tokens are a good deal more sophisticated: they can be either pairs (cch, ccat), where cch is the
character code and ccat is TEX’s category code (1 and 2 for group characters, 5 for end of line, etc.), or
control sequences, such as \relax. Some of these tokens (control sequences and active, i.e. category 13
characters) can have complicated internal structure (expansion). The situation is further complicated by
TEX’s \let facility, which can create ‘character-like’ control sequences, and the lack of conditionals to
distinguish them from the ‘real’ characters. Finally, not all pairs can appear as part of the input (say, there
is no (n, 0) token for any n, in the terminology above).

The scanner expects to see characters in its input, which are represented by their ASCII codes, i.e. integers
between 0 and 255 (actually, a more general notion of the Unicode character is supported but we will
not discuss it further). Before character codes appear as the input to the scanner, however, and make its
integer table-driven mechanism ‘tick’, a lot of work must be done to collect and process the stream of TEX
tokens produced after CWEAVE is done with your input. This work becomes even more complicated when
the typesetting routines that interpret the parser’s output must sneak outside of the parsed stream of text
(which is structured by the parser) and insert the original TEX code produced by CWEAVE into the page.
SPLinT comes with a customizeable input routine of moderate complexity (\yyinput) that classifies all

TEX tokens into seven categories: ‘normal’ spaces (i.e. category 10 tokens, skipped by TEX’s parameter
scanning mechanism), ‘explicit’ spaces (includes the control sequences \let to , as well as \), groups
(avoid using \bgroup and \egroup in your input but ‘real’, {. . .} groups are fine), active characters, normal

1) Running the risk of overloading the reader with details, the author would like to note that the actual implementation fol-
lows a slightly different route in order to avoid any \let assignments or changing the meaning of \next

 TEX INTO TOKENS SPLINT 19
19

characters (of all character categories that can appear in TEX input, including $, ^, #, a–Z, etc.), single letter
control sequences, and multi-letter control sequences. Each of these categories can be processed separately
to ‘fine-tune’ the input routine to the problem at hand. The input routine is not very fast, instead, flexibility
was the main goal. Therefore, if speed is desirable, a customized input routine is a great place to start. As
an example, a minimalistic \yyinputtrivial macro is included.

When \yyinput ‘returns’ by calling \yyreturn (which is a macro you design), your lexing routines have
access to three registers: \yycp@, that holds the character value of the character just consumed by \yyinput,
\yybyte, that most of the time holds the token just removed from the input, and \yybytepure, that
(again, with very few exceptions) holds a ‘normalized’ version of the read character (i.e. a character of the
same character code as \yycp@, and category 12 (to be even more precise (and to use nested parentheses),
‘normalized’ characters have the same category code as that of ‘.’ at the point where yyinput.sty is read)).

Most of the time it is the character code one needs (say, in the case of \{, \}, \& and so on) but under
some circumstances the distinction is important (outside of \vb{. . .}, the sequence \1 has nothing to do with
the digit ‘1’). This mechanism makes it easy to examine the consumed token. It also forms the foundation
of the ‘hidden context’ passing mechanism described later.

The remainder of this section discusses the internals of \yyinput and some of the design trade-offs one
has to make while working on processing general TEX token streams. It is typeset in ‘small print’ and can
be skipped if desired.

To examine every token in its path (including spaces that are
easy to skip), the input routine uses one of the two well-known
TEXnologies: \futurelet\next\examinenext or its equivalent
\afterassignment\examinenext\let\next= . Recursively in-
serting one of these sequences, \yyinput can go through any
list of tokens, as long as it knows where to stop (i.e. return
an end of file character). The signal to stop is provided by
the \yyeof sequence, which should not appear in any ‘ordi-
nary’ text presented for parsing, other than for the purpose of
providing such a stop signal. Even the dependence on \yyeof
can be eliminated if one is willing to invest the time in writ-
ing macros that juggle TEX’s \token registers and only limit
oneself to input from such registers (which is, aside from an ob-
vious efficiency hit, a strain on TEX’s memory, as you have to
store multiple (3 in the general case) copies of your input to be
able to back up when the lexer makes a wrong choice). Another
approach to avoid the use of stop tokens is to store the whole
input as a parameter for the appropriate macro. This scheme
is remarkably powerful and can produce expandable versions
of very complicated routines, although the amount of effort re-
quired to write such macros grows at a frightening rate. As
the text inside \vb{. . .} is nearly always well structured, the
care that \yyinput takes in processing such character lists is
an overkill. In a more ‘hostile’ environment (such as the one
encountered by the now obsolete \Tex macros), however, this
extra attention to detail pays off in the form of a more robust
input mechanism.
One subtlety deserves a special mention here, as it can be im-
portant to the designer of ‘higher-level’ scanning macros. Two
types of tokens are extremely difficult to deal with whenever
TEX’s own lexing mechanisms are used: (implicit) spaces and
even more so, braces. We will only discuss braces here, however,
almost everything that follows applies equally well to spaces
(category 10 tokens to be precise), with a few simplifications
(or complications, in a couple of places). To understand the
difficulty, let’s consider one of the approaches above:

\futurelet\next\examinenext.

The macro \examinenext usually looks at \next and inserts
another macro (usually also called \next) at the very end of
its expansion list. This macro usually takes one parameter,
to consume the next token. This mechanism works flawlessly,
until the lexer encounters a {br,sp}ace. The \next sequence,
seen by \examinenext contains a lot of information about the

brace ahead: it knows its category code (left brace, so 1),
its character code (in case there was, say a \catcode‘\[=1
earlier) but not whether it is a ‘real’ brace (i.e. a character {1)
or an implicit one (a \bgroup). There is no way to find that
out until the control sequence ‘launched’ by \examinenext sees
the token as a parameter.
If the next token is a ‘real’ brace, however, \examinenext’s suc-
cessor will never see the token itself: the braces are stripped by
TEX’s scanning mechanism. Even if it finds a \bgroup as the
parameter, there is no guarantee that the actual input was not
{\bgroup}. One way to handle this is by applying \string be-
fore consuming the next token. If prior to expanding \string
care has been taken to set the \escapechar appropriately (re-
member, we know the character code of the next token in ad-
vance), as soon as one sees a character with \escapechar’s
character code, (s)he knows that an implicit brace has just
been seen. One added complication to all this is that a very
determined programmer can insert an active character (using,
say, the \uccode mechanism) that has the same character code
as the brace token that it has been \let to! Even setting this
disturbing possibility aside, the \string mechanism (or, its
cousin, \meaning) is far from perfect: both produce a sequence
of category 12 and 10 tokens that are mixed into the original
input. If it is indeed a brace character that we just saw, we
can consume the next token and move on but what if this
was a control sequence? After all, just as easily as \string
makes a sequence into characters, \csname . . . \endcsname pair
will make any sequence of characters into a control sequence
so determining the end the character sequence produced by
\string may prove impossible. Huh . . .
What we need is a backup mechanism: keeping a copy of the
token sequence ahead, one can use \string to see whether
the next token is a real brace first, and if it is, consume it
and move on (the active character case can be handled as
the implicit case below, with one extra backup to count how
many tokens have been consumed). At this point the brace
has to be reinserted in case, at some point, a future ‘back up’
requires that the rest of the tokens are removed from the output
(to avoid ‘Too many }’s’ complaints from TEX). This can be
done by using the \iftrue{\else}\fi trick (and a generous
sprinkling of \expandafters). Of course, some bookkeeping
is needed to keep track of how deep inside the braced groups
we are. For an implicit brace, more work is needed: read all
the characters that \string produced (and maybe more), then

19
20 SPLINT TEX INTO TOKENS

remember the number of characters consumed. Remove the
rest of the input using the method described above and restart
the scanning from the same point knowing that the next token
can be scanned as a parameter.
Another strategy is to design a general enough macro that
counts tokens in a token register and simply recount the tokens
after every brace was consumed.
Either way, it takes a lot of work. If anyone would like to pur-
sue the counting strategy, simple counting macros are provided
in /examples/count/count.sty. The macros in this example
supply a very general counting mechanism that does not de-
pend on \yyeof (or any other token) being ‘special’ and can
count the tokens in any token register, as long as none of those
tokens is an \outer control sequence. In other words, if the
macro is used immediately after the assignment to the token

register, it should always produce a correct count.
Needless to say, if such a general mechanism is desired, one
has to look elsewhere. The added complications of treating
spaces (TEX tends to ignore them most of the time) make this
a torturous exercise in TEX’s macro wizardry.
The included \yyinput has two ways of dealing with braces:
strip them or view the whole group as a token. Pick one or
write a different \yyinput. Spaces, implicit or explicit, are
reported as a specially selected character code and consumed
with a likeness of \afterassignment\moveon\let\next= . This
behavior can be adjusted if needed.
Now that a steady stream of character codes is arriving at
\yylex after \yyreturn the job of converting it into numerical
tokens is performed by the scanner (or lexer , or tokenizer , or
even tokener), discussed in the next section.

17a Lexing in TEX

In a typical system that uses a parser to process text, the parsing pass is usually split into several stages: the
raw input, the lexical analysis (or simply lexing), and the parsing proper. The lexing (also called scanning, we
use these terms interchangeably) clumps various sequences of characters into tokens to facilitate the parsing
stage. The reasons for this particular hierarchy are largely pragmatic and are partially historic (there is no
reason that parsing cannot be done in multiple phases, as well, although it usually isn’t).

If one recalls a few basic facts from the formal language theory, it becomes obvious that a lexer, that
parses regular languages, can (theoretically) be replaced by an LALR parser, that parses context-free ones
(or some subset thereof, which is still a super set of all regular languages). A common justification given for
creating specialized lexers is efficiency and speed. The reality is somewhat more subtle. While we do care
about the efficiency of parsing in TEX, having a specialized scanner is important for a number of different
reasons.

The real advantage of having a dedicated scanner is the ease with which it can match incomplete inputs
and back up. A parser can, of course, recognize any valid input that is also acceptable to a lexer, as well as
reject any input that does not form a valid token. Between those two extremes, however, lies a whole realm
of options that a traditional parser will have great difficulty exploring. Thus, to mention just one example, it
is relatively easy to set up a DFA 1) so that the longest matching input is accepted. The only straightforward
way to do this with a traditional parser is to parse longer and longer inputs again and again. While this
process can be optimized to a certain degree, the fact that a parser has a stack to maintain limits its ability
to back up.

As an aside, the mechanism by which CWEB assembles its ‘scraps’ into chunks of recognized code is
essentially iterative lexing, very similar to what a human does to make sense of complicated texts. Instead
of trying to match the longest running piece of text, CWEB simply looks for patterns to combine inputs into
larger chunks, which can later be further combined. Note that this is not quite the same as the approach
taken by, say GLR parsers, where the parser must match the whole input or declare a failure. Where a
CWEB-type parser may settle for the first available match (or the longest available) a GLR parser must try all
possible matches or use an algorithm to reject the majority of the ones that are bound to fail in the end.

This ‘CWEB way’ is also different from a traditional ‘strict’ LR parser/scanner approach and certainly
deserves serious consideration when the text to be parsed possesses some rigid structure but the parser is
only allowed to process it one small fragment at a time.

Returning to the present macro suite, the lexer produced by flex uses integer tables similar to those
employed by bison so the usual TEXniques used in implementing \yyparse are fully applicable to \yylex.

An additional advantage provided by having a flex scanner implemented as part of the suite is the
availability of the original bison scanner written in C for the use by the macro package.

This said, the code generated by flex contains a few idiosyncrasies not present in the bison output.
These ‘quirks’ mostly involve handling of end of input and error conditions. A quick glance at the \yylex
implementation will reveal a rather extensive collection of macros designed to deal with end of input actions.

1) Which stands for Deterministic Finite Automaton, a common (and mathematically unique) way of implementing a scanner
for regular languages. Incidentally LALR mentioned above is short for Look Ahead Left to Right.

 LEXING IN TEX SPLINT 20
20

Another difficulty one has to face in translating flex output into TEX is a somewhat unstructured
namespace delivered in the final output (this is partially due to the POSIX standard that flex strives
to follow). One consequence of this ‘messy’ approach is that the writer of a flex scanner targeted to TEX
has to declare flex ‘states’ (more properly called subautomata) twice: first for the benefit of flex itself,
and then again, in the C preamble portion of the code to output the states to be used by the action code
in the lexer. Define_State(. . .) macro is provided for this purpose. This macro can be used explicitly by
the programmer or be inserted by a specially designed parser. Using CWEB helps to keep these declarations
together.

The ‘hand-off’ from the scanner to the parser is implemented through a pair of registers: \yylval, a
token register containing the value of the returned token and \yychar, a \count register that contains the
numerical value of the token to be returned.

Upon matching a token, the scanner passes one crucial piece of information to the programmer: the
character sequence representing the token just matched (\yytext). This is not the whole story though
as there are three more token sequences that are made available to the parser writer whenever a token is
matched.

The first of these is simply a ‘normalized’ version of \yytext (called \yytextpure). In most cases it is
a sequence of TEX tokens with the same character codes as the one in \yytext but with their category
codes set to 12 (see the discussion of \yybytepure above). In cases when the tokens in \yytext are not
(cch, ccat) pairs, a few simple conventions are followed, some of which will be explained below. This sequence
is provided merely for convenience and its typical use is to generate a key for an associative array.

The other two sequences are special ‘stream pointers’ that provide access to the extended scanner mecha-
nism in order to implement the passing of the ‘formatting hints’ to the parser, as well as incorporate CWEAVE
formatted code into the input, without introducing any changes to the original grammar. As the mechanism
itself and the motivation behind it are somewhat subtle, let us spend a few moments discussing the range of
formatting options desirable in a generic pretty-printer.

Unlike strict parsers employed by most compilers, a parser designed for pretty printing cannot afford being
too picky about the structure of its input ([Go] calls such parsers ‘loose’). To provide a simple illustration,
an isolated identifier, such as ‘lg_integer’ can be a type name, a variable name, or a structure tag (in a
language like C for example). If one expects the pretty printer to typeset this identifier in a correct style,
some context must be supplied, as well. There are several strategies a pretty printer can employ to get a
hold of the necessary context. Perhaps the simplest way to handle this, and to reduce the complexity of the
pretty printing algorithm is to insist on the programmer providing enough context for the parser to do its
job. For short examples like the one above, this may be an acceptable strategy. Unfortunately, it is easy
to come up with longer snippets of grammatically deficient text that a pretty printer should be expected to
handle. Some pretty printers, such as the one employed by CWEB and its ilk (the original WEB, FWEB), use a
very flexible bottom-up technique that tries to make sense of as large a portion of the text as it can before
outputting the result (see also [Wo], which implements a similar algorithm in LATEX).

The expectation is that this algorithm will handle the majority (about 90%? it would be interesting to
carry out a study in the spirit of the ones discussed in [Jo] to find out) of the cases with the remaining few
left for the author to correct. The question is, how can such a correction be applied?
CWEB itself provides two rather different mechanisms for handling these exceptions. The first uses direct

typesetting commands (for example, @/ and @# for canceling and introducing a line break, resp.) to change
the typographic output.

The second (preferred) way is to supply hidden context to the pretty-printer. Two commands, @; and
@[. . .@] are used for this purpose. The former introduces a ‘virtual semicolon’ that acts in every way like a
real one except it is not typeset (it is not output in the source file generated by CTANGLE either but this has
nothing to do with pretty printing, so I will not mention CTANGLE anymore). For instance, from the parser’s
point of view, if the preceding text was parsed as a ‘scrap’ of type exp, the addition of @; will make it into a
‘scrap’ of type stmt in CWEB’s parlance. The second construct (@[. . .@]), is used to create an exp scrap out
of whatever happens to be inside the brackets.

This is a powerful tool at the author’s disposal. Stylistically, such context hints are the right way to
handle exceptions, since using them forces the writer to emphasize the logical structure of the formal text.

20
20 SPLINT LEXING IN TEX

If the pretty printing style is changed later on, the texts with such hidden contexts should be able to survive
intact in the final document (as an example, using a break after every statement in C may no longer be
considered appropriate, so any forced break introduced to support this convention would now have to be
removed, whereas @;’s would simply quietly disappear into the background).

The same hidden context idea has another important advantage: with careful grammar fragmenting
(facilitated by CWEB’s or any other literate programming tool’s ‘hypertext’ structure) and a more diverse
hidden context (or even arbitrary hidden text) mechanism, it is possible to use a strict parser to parse
incomplete language fragments. For example, the productions that are needed to parse C’s expressions form
a complete subset of the grammar. If the grammar’s ‘start’ symbol is changed to expression (instead of the
translation-unit as it is in the full C grammar), a variety of incomplete C fragments can now be parsed and
pretty-printed. Whenever such granularity is still too ‘coarse’, carefully supplied hidden context will give
the pretty printer enough information to adequately process each fragment. A number of such sub-parsers
can be tried on each fragment (this may sound computationally expensive, however, in practice, a carefully
chosen hierarchy of parsers will finish the job rather quickly) until a correct parser produced the desired
output (this approach is similar to, although not quite the same as the one employed by the General LR
parsers).

This somewhat lengthy discussion brings us to the question directly related to the tools described in this
manual: how does one provide typographical hints or hidden context to the parser?

One obvious solution is to build such hints directly into the grammar. The parser designer can, for instance,
add new tokens (say, BREAK_LINE) to the grammar and extend the production set to incorporate the new
additions. The risk of introducing new conflicts into the grammar is low (although not entirely non-existent,
due to the lookahead limitations of LR(1) grammars) and the changes required are easy, although very tedious,
to incorporate.

In addition to being labor intensive, this solution has two other significant shortcomings: it alters the
original grammar and hides its logical structure; it also ‘bakes in’ the pretty-printing conventions into the
language structure (making the ‘hidden’ context much less ‘stealthy’). It does avoid the ‘synchronicity
problem’ mentioned below.

A marginally better technique is to introduce a new regular expression recognizable by the scanner which
will then do all the necessary bookkeeping upon matching the sequence. All the difficulties with altering the
grammar mentioned above apply in this case, as well, only at the ‘lexical analysis level’. At a minimum, the
set of tokens matched by the scanner would have to be altered.

A much more satisfying approach involves inserting the hints at the input stage and passing this infor-
mation to the scanner and the parser as part of the token ‘values’. The hints themselves can masquerade
as characters ignored by the scanner (white space 1), for example) and preprocessed by a specially designed
input routine. The scanner then simply passes on the values to the parser. This makes hints, in effect,
invisible.

The difficulty now lies in synchronizing the token production with the parser. This subtle complication is
very familiar to anyone who has designed TEX’s output routines: the parser and the lexer are not synchronous,
in the sense that the scanner might be reading several (in the case of the general LR(n) parsers) tokens 2)
ahead of the parser before deciding on how to proceed (the same way TEX can consume a whole paragraph’s
worth of text before exercising its page builder).

If we simple-mindedly let the scanner return every hint it has encountered so far, we may end up feeding
the parser the hints meant for the token that appears after the fragment the parser is currently working on.
In other words, when the scanner ‘backs up’ it must correctly back up the hints as well.

This is exactly what the scanner produced by the tools in this package does: along with the main stream
of tokens meant for the parser, it produces two 3) hidden streams (called the \yyformat stream and the
\yystash stream) and provides the parser with two strings (currently only strings of digits are used although
arbitrary sequences of TEX tokens can be used as pointers) with the promise that all the ‘hints’ between the

1) Or even the ‘intercharacter space’, to make the hints truly invisible to the scanner. 2) Even if one were to somehow mit-
igate the effects of the lookahead in the parser , the scanner would still have to read the characters of the current token up
to (and, in some cases, beyond) the (token’s) boundary which, in most cases, is the whitespace, possibly hiding the next hint.
3) There would be no difficulty in splitting either of these streams into multiple ‘substreams’ by modifying the stream extrac-
tion macros accordingly.

 LEXING IN TEX SPLINT 20
21

beginning of the corresponding stream and the point labeled by the current stream pointer appeared among the
characters up to and, possibly, including the ones matched as the current token. The macros to extract the
relevant parts of the streams (\yyreadfifo and its cousins) are provided for the convenience of the parser
designer.

The \yystash stream collects all the typesetting commands inserted by CWEB to be possibly used in
displaying the action code in bison productions, for example. Because of this, it may appear in somewhat
unexpected places, introducing spaces where the programmer did not neccessarily intend (such as at the
beginning of the line, etc.). To mitigate this problem, the \yystash stream macros are implemented to be
entirely invisible to the lexer. Making them produce spaces is also possible, and some examples are provided
in symbols.sty. The interested reader can consult the input routine macros in yyinput.sty for the details
of the internal representation of the streams.

In the interest of full disclosure, let me point out that this simple technique introduces a significant strain
on TEX’s computational resources: the lowest level macros, the ones that handle character input and are
thus executed (sometimes multiple times), for every character in the input stream are rather complicated
and therefore, slow. Whenever the use of such streams is not desired a simpler input routine can be written
to speed up the process (see \yyinputtrivial for a working example of such macro).

Finally, while probably not directly related to the present discussion, this approach has one more interesting
feature: after the parser is finished, the parser output and the streams exist ‘statically’, fully available for
any last minute preprocessing or for debugging purposes, if necessary 1). Under most circumstances, the
parser output is ‘executed’ and the macros in the output are the ones reading the various streams using the
pointers supplied at the parsing stage (at least, this is the case for all the parsers supplied with the package).

20a Inside semantic actions: switch statements and ‘functions’ in TEX

So far we have looked at the lexer for your input, and a grammar ready to be put into action (we will talk
about actions a few moments later). It is time to discuss how the tables produced by bison get converted
into TEX macros that drive the parser in TEX.

The tables that drive the bison input parsers are collected in {b,d,f,g,n}yytab.tex and small_tab.tex.
Each one of these files contains the tables that implement a specific parser used during different stages of
processing. Their exact function is well explained in the source file produced by bison (how this is done
is detailed elsewhere, see [Ah] for a good reference). It would suffice to mention here that there are three
types of tables in this file: (1)numerical tables such as \yytable and \yycheck (both are either TEX’s token
registers in an unoptimized parser or associate arrays in an optimized version of such as discussed below),
(2)a string array \yytname, and (3)an action switch. The action switch is what gets called when the parser
does a reduction. It is easy to notice that the numerical tables come ‘premade’ whereas the string array
consisting of token names is difficult to recognize. This is intentional: this form of initialization is designed to
allow the widest range of characters to appear inside names. The macros that do this reside in yymisc.sty.
The generated table files also contain constant and token declarations used by the parser.

The description of the process used to output bison tables in an appropriate form continues in the section
about outputting TEX tables, we pick it up here with the description of the syntax-directed translation and
the actions. The line

\switchon\next\in\currentswitch

is responsible for calling an appropriate action in the current switch, as is easy to infer. A switch is also a
macro that consists of strings of TEX tokens intermixed with TEX macros inside braces. Each group of macros
gets executed whenever the character or the group of characters in \next matches a substring preceding
the braced group. If there are two different substrings that match, only the earliest group of macros gets
expanded. Before a state is used, a special control sequence, \setspecialcharsfrom\switchname can be
used to put the TEX tokens in a form suitable for the consumption by \switchon’s. The most important
step it performs is it turns every token in the list into a character with the same character code and category
12 . Thus \{ becomes {12. There are other ways of inserting tokens into a state: enclosing a token or a
string of tokens in \raw...\raw adds it to the state macro unchanged. If you have a sequence of category

1) One may think of the parser output as an executable abstract syntax tree (AST).

21
21 SPLINT INSIDE SEMANTIC ACTIONS: SWITCH STATEMENTS AND ‘FUNCTIONS’ IN TEX

12 characters you want to add to the state, put it after \classexpand (such sequences are usually prepared
by the \setspecialchars macro that uses the token tables generated by bison from your grammar).

You can give a case a readable label (say, brackets) and enclose this label in \raw. . .\raw. A word of
caution: an ‘a’ inside of \raw. . .\raw (which is most likely an a11 unless you played with the category codes
before loading the \switchon macros) and the one outside it are two different characters, as one is no longer
a letter (category 11) in the eyes of TEX whereas the other one still is. For this reason one should not use
characters other than letters in h{is,er} state names: the way a state picks an action does not distinguish
between, say, a ‘(’ in ‘(letter)’ and a stand alone ‘(’ and may pick an action that you did not intend 1).
This applies even if ‘(’ is not among the characters explicitly inserted in the state macro: if an action for a
given character is not found in the state macro, the \switchon macro will insert a current \default action
instead, which most often you would want to be \yylex or \yyinput (i.e. skip this token). If a single ‘(’ or
‘)’ matches the braced group that follows ‘(letter)’ chaos may ensue (most likely TEX will keep reading
past the \end or \yyeof that should have terminated the input). Make the names of character categories
as unique as possible: the \switchon is simply a string matching mechanism, with the added differentiation
between characters of different categories.

Finally, the construct \statecommentanything\statecomment allows you to insert comments in the state
sequence (note that the state name is put at the beginning of the state macro (by \setspecialcharsfrom)
in the form of a special control sequence that expands to nothing: this elaborate scheme is needed because
another control sequence can be \let to the state macro which makes the debugging information difficult to
decipher). The debugging mode for the lexer implemented with these macros is activated by \tracedfatrue.

The functionality of the \switchon (as well as the \switchonwithtype, which is capable of some rudi-
mentary type checking) macros (for ‘historical’ reasons, one can also use \action as a synonym for the
latter) has been implemented in a number of other macro packages (see [Fi] that discusses the well-known
and widely used \CASE and \FIND macros). The macros in this collection have the additional property that
the only assignments that persist after the \switchon completes are the ones performed by the user code
inside the selected case.

This last property of the switch macros is implemented using another mechanism that is part of this macro
suite: the ‘subroutine-like’ macros, \begingroup. . .\tokreturn. For examples, an interested reader can take
a look at the macros included with the package. A typical use is \begingroup. . .\tokreturn{}{\toks0 }{}
which will preserve all the changes to \toks0 and have no other side effects (if, for example, in typical TEX
vernacular, \next is used to implement tail recursion inside the group, after the \tokreturn, \next will
still have the same value it had before the group was entered). This functionality comes at the expense of
some computational efficiency.

This covers most of the routine computations inside semantic actions, all that is left is a way to ‘tap’ into
the stack automaton built by bison using an interface similar to the special $n variables utilized by the
‘genuine’ bison parsers (i.e. written in C or any other target language supported by bison).

This rôle is played by the several varieties of \yy p command sequences (for the sake of completeness, p
stands for one of (n), [name],]name[or n, here n is a string of digits, and a ‘name’ is any name acceptable
as a symbolic name for a term in bison). Instead of going into the minutia of various flavors of \yy-macros,
let me just mention that one can get by with only two ‘idioms’ and still be able to write parsers of arbitrary
sophistication: \yy(n) can be treated as a token register containing the value of the n-th term of the rule’s
right hand side, n > 0. The left hand side of a production is accessed through \yyval. A convenient
shortcut is \yy0{TEX material} which will expand (as in \edef) the ‘TEX material’ inside the braces. Thus,
a simple way to concatenate the values of the first two production terms is \yy0{\the\yy(1)\the\yy(2)}.
The included bison parser can also be used to provide support for ‘symbolic names’, analogous to bison’s
$[name] but a bit more effort is required on the user’s part to initialize such support. Using symbolic names
can make the parser more readable and maintainable, however.

There is also a \bbn macro, that has no analogue in the ‘real’ bison parsers, and provides access to the
term values in the ‘natural order’ (e.g. \bb1 is the last term read). Its intended use is with the ‘inline’ rules
(see the main parser for such examples). As of version 3.0 bison no longer outputs yyrhs and yyprhs , which

1) One way to mitigate this is by putting such named states at the end of the switch, after the actions labelled by the stan-
dalone characters.

 INSIDE SEMANTIC ACTIONS: SWITCH STATEMENTS AND ‘FUNCTIONS’ IN TEX SPLINT 21
23

makes it impossible to produce the yyrthree array necessary for processing such rules in the ‘left to right’
order. One might also note that the new notation is better suited for the inline rules since the value that is
pushed on the stack is that of \bb0, i.e. the term implicitly inserted by bison. Be aware that there are no
\bb[·] or \bb(·) versions of these macros, for obvious reasons. A less obvious feature of this macro is its
‘nonexpandable’ nature. This means they cannot be used inside \edef. Thus, the most common use pattern
is \bbn{\toksm} with a subsequent expansion of \toksm. Making these macros expandable is certainly
possible but does not seem crucial for the intended limited use pattern.

Naturally, a parser writer may need a number of other data abstractions to complete the task. Since
these are highly dependent on the nature of the processing the parser is supposed to provide, we refer the
interested reader to the parsers included in the package as a source of examples of such specialized data
structures.

One last remark about the parser operation is worth making here: the parser automaton itself does not
make any \global assignments. This (along with some careful semantic action writing) can be used to
‘localize’ the effects of the parser operation and, most importantly, to create ‘reentrant’ parsers that can, e.g.
call themselves recursively.

22a ‘Optimization’

By default, the generated parser and scanner keep all of their tables in separate token registers. Each stack
is kept in a single macro (this description is further complicated by the support for parser namespaces that
exists even for unoptimized parsers but this subtlety will not be mentioned again—see the macros in the
package for further details). Thus, every time a table is accessed, it has to be expanded making the table
access latency linear in the size of the table. The same holds for stacks and the action ‘switches’, of course.
While keeping the parser tables (which are immutable) in token registers does not have any better rationale
than saving the control sequence memory (the most abundant memory in TEX), this way of storing stacks
does have an advantage when multiple parsers get to play simultaneously. All one has to do to switch from
one parser to another is to save the state by renaming the stack control sequences.

When the parser and scanner are ‘optimized’, all these control sequenced are ‘spread over’ appropriate
associative arrays. One caveat to be aware of: the action switches for both the parser and the scanner have to
be output differently (a command line option is used to control this) for optimized and unoptimized parsers.
While it is certainly possible to optimize only some of the parsers (if your document uses multiple) or even
only some parts of a given parser (or scanner), the details of how to do this are rather technical and are left
for the reader to discover by reading the examples supplied with the package. At least at the beginning it is
easier to simply set the highest optimization level and use it consistently throughout the document.

22b TEX with a different slant or do you C an escape?

Some TEX productions below probably look like alien script. The authors of [Er] cite a number of reasons to
view pretty printing of TEX in general as a nearly impossible task. The macros included with the package
follow a very straightforward strategy and do not try to be very comprehensive. Instead, the burden of
presenting TEX code in a readable form is placed on the programmer. Appropriate hints can be supplied
by means of indenting the code, using assignments (=) where appropriate, etc. If you would rather look at
straight TEX instead, the line \def\texnspace{other} at the beginning of this section can be uncommented
and nox•(Υ← 〈Υ1〉) becomes \noexpand \inmath { \yy 0{ \yy 1{ } } }. There is, however, more to this story.
A look at the actual file will reveal that the line above was typed as

TeX_("/noexpand/inmath{/yy0{/yy1{}}}");

The ‘escape character’ is leaning the other way! The lore of TEX is uncompromising: ‘\’ is the escape
character. What is the reason to avoid it in this case?

The mystery is not very deep: ‘/’ was chosen as an escape character by the parser macros (a quick glance
at ?yytab.tex will reveal as much). There is, of course, nothing sacred (other than tradition, which this
author is trying his hardest to follow) about what character code the escape character has. The reason to
look for an alternative is straightforward: ‘\’ is a special character in C, as well (also an ‘escape’, in fact).

23
24 SPLINT TEX WITH A DIFFERENT SLANT OR DO YOU C AN ESCAPE?

The line TeX_("..."); is a macro-call but . . . in C. This function simply prints out (almost ‘as-is’) the
line in parenthesis. An attempt at TeX_("\noexpand"); would result in

01 01

02 oexpand 02

Other escape combinations 1) are even worse: most are simply undefined. If anyone feels trapped without
an escape, however, the same line can be typed as

TeX_("\\noexpand\\inmath{\\yy0{\\yy1{}}}");

Twice the escape!
If one were to look even closer at the code, another oddity stands out: there are no $’s anywhere in sight.

The big money, $ is a beloved character in bison. It is used in action code to reference the values of the
appropriate terms in a production. If mathematics pays your bills, use \inmath instead.

1) Here is a full list of defined escaped characters in C: \a, \b, \f, \n, \r, \t, \v, \[octal digit], \’, \", \?, \\, \x, \u, \U. Note
that the last three combinations must be followed by a specific string of characters to appear in the input without generating
errors.

 THE BISON PARSER STACK SPLINT 24
24

4
The bison parser stack

25a The input language for bison loosely follows the BNF notation, with a few enhancements, such as the
syntax for actions, to implement the syntax-directed translation, as well as various declarations for tokens,
nonterminals, etc.

On the one hand, the language is relatively easy to handle, is nearly whitespace agnostic, on the other, a
primitive parser is required for some basic setup even at a very early stage, so the design must be carefully
thought out. This bootstrapping step is discussed in more details later on.

The path chosen here is by no means optimal. What it lacks in efficiency, though, it may amply gain
in practicality, as we reuse the original grammar used by bison to produce the parser(s) for both pretty
printing and bootstrapping. Some minor subtleties arising from this approach are explained in later sections.

As was described in the discussion of parser stacks above, to pretty print a variety of grammar fragments,
one may employ a parser stack derived from the original grammar. The most natural and common unit of a
bison grammar is a set of productions. It is thus natural to begin our discussion of the parsers in the bison
stack with the parser responsible for processing individual rules.

One should note that the productions below are not concerned with the typesetting of the grammar.
Instead this task is delegated to the macros in yyunion.sty and its companions. The first pass of the parser
merely constructs an ‘executable abstract syntax tree’ (or EAST 1)) which can serve very diverse purposes:
from collecting token declarations in the boostrapping pass to typesetting the grammar rules.

It would be impossible to completely avoid the question of the visual presentation of the bison input,
however. It has already been pointed out that the syntax adopted by bison is nearly insensitive to whitespace.
This makes writing bison grammars easier. On the other hand, presenting a grammar is best done using a
variety of typographic devices that take advantage of the meaningful positioning of text on the page: skips,
indents, etc. Therefore, the macros for bison pretty printing trade a number of bison syntax elements (such
as |, ;, action braces, etc.) for the careful placement of each fragment of the input on the page.

Let’s take a short break for a broad overview of the input file. The basic structure is that of an ordinary
bison file that produces plain C output. The C actions, however, are programmed to output TEX. The
bison sections (separated by %% (shown (pretty printed) as 〈%〉 below)) appear between the successive dotted
lines.
〈 bg.yy 25a 〉 =
···
〈Grammar parser C preamble 40b 〉
···

1) One may argue that EAST is still merely a syntactic construct requiring a proper macro framework for its execution and
should be called a ‘weak executable syntax tree’ or WEST. This acronym extravagnza is heading south so we shall stop here.

 THE BISON PARSER STACK SPLINT 24
25

〈Grammar parser bison options 27c 〉
〈union〉 〈Union of grammar parser types 40g 〉
···
〈Grammar parser C postamble 40c 〉
···
〈Tokens and types for the grammar parser 28a 〉

〈Fake start symbol for rules only grammar 29a 〉
〈Parser common productions 31f 〉
〈Parser grammar productions 34b 〉

26a Bootstrap mode is next. The reason for a separate bootstrap parser is to collect the minimal amount of
information to ‘spool up’ the ‘production’ parsers. To understand the mechanics and the reasons behind it,
consider what happens following a declaration such as %token TOKEN "token" (or, as it would be typeset
by the macros in this package ‘〈token〉 TOKEN token’; see the index entries for more details). The two names
for the same token are treated very differently. TOKEN becomes an enum constant in the C parser generated
by bison. Even when that parser becomes part of the ‘driver’ program that outputs the TEX version of the
parser tables, there is no easy way to output the names of the appropriate enum constants. The other name
("token") becomes an entry in the yytname array. These names can be output by either the ‘driver’ or TEX
itself after the \yytname table has been input. The scanner, on the other hand, will use the first version
(TOKEN). Therefore, it is important to establish an equivalence between the two versions of the name. In the
‘real’ parser, the token values are output in a special header file. Hence, one has to either parse the header
file to establish the equivalences or find some other means to find out the numerical values of the tokens.

One approach is to parse the file containing the declarations and extract the equivalences between the
names from it. This is the function of the bootstrap parser. Since the lexer is reused, some token values
need to be known in advance (and the rest either ignored or replaced by some ‘made up’ values). These
tokens are ‘hard coded’ into the parser file generated by bison and output using a special function. The
switch ‘#define BISON_BOOTSTRAP_MODE’ tells the ‘driver’ program to output the hard coded token values.

Note that the equivalence of the two versions of token names would have to be established every time a
‘string version’ of a token is declared in the bison file and the ‘macro name version’ of the token is used
by the corresponding scanner. To establish this equivalence, however, the bootstrapping parser below is not
always necessary (see the xxpression example, specifically, the file xxpression.w in the examples directory
for an example of using a different parser for this purpose). The reason it is necessary here is that a parser
for an appropriate subset of the bison syntax is not yet available (indeed, any functional parser for a bison
syntax subset would have to use the same scanner (unless you want to write a custom scanner for it), which
would need to know how to output tokens, for which it would need a parser for a subset of bison syntax . . .
it is a genuine ‘chicken and egg’ problem). Hence the need for ‘bootstrap’. Once a functional parser for a
large enough subset of the bison input grammar is operational, it can be used to pair up the token names.

The second function of the bootstrap parser is to collect information about the scanner’s states. The
mechanism is slightly different for states. While the token equivalences are collected purely in ‘TEX mode’,
the bootstrap parser collects all the state names into a special C header file. The reason is simple: unlike
the token values, the numerical values of the scanner states are not passed to the ‘driver’ program in any
data structure and are instead defined as ordinary macros. The header file is the information the ‘driver’ file
needs to output the state values.

An additional subtlety in the case of the state value output is that the main lexer for the bison grammar
utilizes states extensively and thus cannot be easily used with the bootstrap parser before the state values
are known. The solution is to substitute a very simple scanner barely capable of lexing state declarations.
Such a scanner is implemented in ssffo.w (the somewhat cryptic name stands for ‘simple scanner for flex
options’).
〈 bb.yy 26a 〉 =
···
〈Grammar parser C preamble 40b 〉
define BISON_BOOTSTRAP_MODE

25
28 SPLINT THE BISON PARSER STACK

···
〈Grammar parser bison options 27c 〉
〈union〉 〈Union of grammar parser types 40g 〉
···
〈Bootstrap parser C postamble 40d 〉
···
〈Tokens and types for the grammar parser 28a 〉

〈Fake start symbol for bootstrap grammar 29b 〉
〈Parser bootstrap productions 33a 〉
〈 flex options parser productions 31b 〉
〈List of symbols 33d 〉
〈Definition of symbol 39c 〉

This code is cited in section 29d.

27a The prologue parser is responsible for parsing various grammar declarations as well as parser options.
〈 bd.yy 27a 〉 =
···
〈Grammar parser C preamble 40b 〉
···
〈Grammar parser bison options 27c 〉
〈union〉 〈Union of grammar parser types 40g 〉
···
〈Grammar parser C postamble 40c 〉
···
〈Tokens and types for the grammar parser 28a 〉

〈Fake start symbol for prologue grammar 29d 〉
〈Parser common productions 31f 〉
〈Parser prologue productions 29e 〉

27b The full bison input parser is used when a complete bison file is expected. It is also capable of parsing a
‘skeleton’ of such a file, similar to the one that follows this paragraph.
〈 bf.yy 27b 〉 =
···
〈Grammar parser C preamble 40b 〉
···
〈Grammar parser bison options 27c 〉
〈union〉 〈Union of grammar parser types 40g 〉
···
〈Grammar parser C postamble 40c 〉
···
〈Tokens and types for the grammar parser 28a 〉

〈Parser common productions 31f 〉
〈Parser prologue productions 29e 〉
〈Parser grammar productions 34b 〉
〈Parser full productions 28d 〉

27c The first two options below are essential for the parser operation as each of them makes bison produce
additional tables (arrays) used in the operation (or bootstrapping) of bison parsers. The start symbol
can be set implicitly by listing the appropriate production first. Modern bison also allows specifying the
kind of parsing algorithm to be used (provided the supplied grammar is in the appropriate class): LALR(n),
LR(n), GLR, etc. The default is to use the LALR(1) algorithm (with the corresponding assumption about the
grammar) which can also be set explicitly by putting

 THE BISON PARSER STACK SPLINT 28
32

〈define〉 lr.type canonical-lr

in with the rest of the options. Using other types of grammars will wreak havoc on the parsing algorithm
hardcoded into SPLinT (see yyparse.sty) as well as on the production of \stashed and \format streams.
〈Grammar parser bison options 27c 〉 =
〈token table〉 ?
〈parse.trace〉 ? (set as 〈debug〉)
〈start〉 input

This code is used in sections 25a, 26a, 27a, and 27b.

28a Token declarations

Most of the original comments present in the grammar file used by bison itself have been preserved and
appear in italics at the beginning of the appropriate section.

To facilitate the bootstrapping of the parser (see above), some declarations have been separated into their
own sections. Also, a number of new rules have been introduced to create a hierarchy of ‘subparsers’ that
parse subsets of the grammar. We begin by listing most of the tokens used by the grammar. Only the string
versions are kept in the yytname array, which, in part is the reason for a special bootstrapping parser as
explained earlier.
〈Tokens and types for the grammar parser 28a 〉 = 28c

5
"end of file"m ýstringþ 〈token〉 〈nterm〉
〈type〉 〈destructor〉 〈printer〉 〈left〉
〈right〉 〈nonassoc〉 〈precedence〉 〈prec〉
〈dprec〉 〈merge〉
〈Global Declarations 28b 〉

See also sections 28c, 32b, and 36c.

This code is used in sections 25a, 26a, 27a, and 27b.

28b We continue with the list of tokens below, following the layout of the original parser.
〈Global Declarations 28b 〉 =
〈code〉 〈default-prec〉 〈define〉 〈defines〉
〈error-verbose〉 〈expect〉 〈expect-rr〉 〈<flag>〉
〈file-prefix〉 〈glr-parser〉 〈initial-action〉 〈language〉
〈name-prefix〉 〈no-default-prec〉 〈no-lines〉 〈nondet. parser〉
〈output〉 〈require〉 〈skeleton〉 〈start〉
〈token-table〉 〈verbose〉 〈yacc〉 "{...}"m

"%?{...}"m "[identifier]"m char epilogue

"="m ýidentifierþ ýidentifier: þ 〈%〉
"|"m "%{...%}"m ";"m <tag>
"<*>"m "<>"m int 〈param〉

This code is used in section 28a.

28c Extra tokens for typesetting flex state declarations and options are declared in addition to the ones that
a standard bison parser recognizes. This extension of the original grammar has become unnecessary with
the addition of the flex input parser(s) but is left as part of the extended grammar for convenience and
‘historical’ reasons.
〈Tokens and types for the grammar parser 28a 〉 + =

4
28a 32b

5
〈option〉f 〈state-x〉f 〈state-s〉f

28d Grammar productions

We are ready to describe the top levels of the parse tree. The first ‘sub parser’ we consider is a ‘full’ parser,
that is the parser that expects a full grammar file, complete with the prologue, declarations, etc. This parser
can be used to extract information from the grammar that is otherwise absent from the executable code
generated by bison. This includes, for example, the ‘name’ part of $[name]. This parser is therefore used

32
37 SPLINT GRAMMAR PRODUCTIONS

to generate the ‘symbolic switch’ to provide support for symbolic term names similar to the ‘genuine’ bison’s
$[. . .] syntax.

The action of the parser in this case is simply to separate the accumulated ‘parse tree’ from the auxiliary
information carried by the parser on the stack.
〈Parser full productions 28d 〉 =
input : prologue declarations 〈%〉 grammar epilogueopt π2(Υ3) 7→ Ω

This code is used in section 27b.

29a Another subgrammar deals with the syntax of isolated bison rules. This is the most commonly used
‘subparser’ since a rules cluster is the most natural ‘unit’ to include in a CWEB file.
〈Fake start symbol for rules only grammar 29a 〉 =
input : grammar epilogueopt π2(Υ1) 7→ Ω

This code is used in section 25a.

29b The bootstrap parser has a very narrow set of goals: it is concerned with 〈token〉 declarations only in order to
supply the token information to the lexer (since, as noted above, such information is not kept in the yytname
array). The parser can also parse 〈nterm〉 declarations but the bootstrap lexer ignores the 〈nterm〉 token,
since the bison grammar does not use one. It also extends the syntax of a grammar declaration by allowing
a declaration with or without a semicolon at the end (the latter is only allowed in the prologue). This works
since the token declarations have been carefully separated from the rest of the grammar in different CWEB
sections. The range of tokens output by the bootstrap lexer is limited, hence most of the other rules are
ignored.
〈Fake start symbol for bootstrap grammar 29b 〉 =
input : grammar declarations Ω = Υ1

grammar declarations :
symbol declaration ;opt 〈Carry on 29c 〉
flex declaration ;opt 〈Carry on 29c 〉
grammar declarations symbol declaration ;opt Υ← 〈val Υ1val Υ2〉
grammar declarations flex declaration ;opt Υ← 〈val Υ1val Υ2〉

;opt : ◦ | ;
This code is used in section 26a.

29c The following is perhaps the most common action performed by the parser. It is done automatically by the
parser code but this feature is undocumented so we supply an explicit action in each case.
〈Carry on 29c 〉 =

Υ← 〈val Υ1〉
This code is used in sections 29b, 30b, 31a, 31b, 31f, 33b, 33d, 33e, 33g, 34c, 36b, 39h, and 39i.

29d Next comes a subgrammar for processing prologue declarations. Finer differentiation is possible but the
‘subparsers’ described here work pretty well and impose a mild style on the grammar writer. Note that these
roles are not part of the official bison input grammar and are added to make the typesetting of ‘file outlines’
(e.g. 〈 bb.yy 26a 〉 above) possible.
〈Fake start symbol for prologue grammar 29d 〉 =
input : prologue declarations epilogueopt π2(Υ1) 7→ Ω

prologue declarations 〈%〉 〈%〉 epilogue π2(Υ1) 7→ Ω
prologue declarations 〈%〉 〈%〉 π2(Υ1) 7→ Ω

This code is used in section 27a.

29e Declarations: before the first 〈%〉. We are now ready to deal with the specifics of the declarations themselves.
The \grammar macro is a ‘structure’, whose first ‘field’ is the grammar itself, whereas the second carries the
type of the last declaration added to the grammar.
〈Parser prologue productions 29e 〉 = 30b

5

 GRAMMAR PRODUCTIONS SPLINT 37
42

prologue declarations :
◦ Υ← 〈nx

\grammar { }{ nx∅ }〉
prologue declarations prologue declaration 〈Attach a prologue declaration 30a 〉

See also sections 30b, 31a, and 39l.

This code is used in sections 27a and 27b.

30a 〈Attach a prologue declaration 30a 〉 =
〈Attach a productions cluster 34e 〉

This code is used in section 29e.

30b Here is a list of most kinds of declarations that can appear in the prologue. The scanner returns the ‘stream
pointers’ for all the keywords so the declaration ‘structures’ pass on those pointers to the grammar list. The
original syntax has been left intact even though for the purposes of this parser some of the inline rules are
unnecessary.
〈Parser prologue productions 29e 〉 + =

4
29e 31a

5
prologue declaration :

grammar declaration 〈Carry on 29c 〉
%{...%} Υ← 〈nx

\prologuecode val Υ1〉
〈?〉 Υ← 〈nx

\optionflag val Υ1〉
〈define〉 variable value Υ← 〈nx

\vardef { val Υ2 }{ val Υ3 }val Υ1〉
〈defines〉 Υ← 〈nx

\optionflag { defines }{ }val Υ1〉
〈defines〉 ýstringþ va← 〈 defines 〉〈Prepare one parametric option 30c 〉
〈error-verbose〉 Υ← 〈nx

\optionflag { error verbose }{ }val Υ1〉
〈expect〉 int va← 〈 expect 〉〈Prepare a generic one parametric option 30d 〉
〈expect-rr〉 int va← 〈 expect-rr 〉〈Prepare a generic one parametric option 30d 〉
〈file-prefix〉 ýstringþ va← 〈 file prefix 〉〈Prepare one parametric option 30c 〉
〈glr-parser〉 Υ← 〈nx

\optionflag { glr parser }{ }val Υ1〉
〈initial-action〉 {...} Υ← 〈nx

\initaction val Υ2〉
〈language〉 ýstringþ va← 〈 language 〉〈Prepare one parametric option 30c 〉
〈name-prefix〉 ýstringþ va← 〈 name prefix 〉〈Prepare one parametric option 30c 〉
〈no-lines〉 Υ← 〈nx

\optionflag { no lines }{ }val Υ1〉
〈nondet. parser〉 Υ← 〈nx

\optionflag { nondet. parser }{ }val Υ1〉
〈output〉 ýstringþ va← 〈 output 〉〈Prepare one parametric option 30c 〉
〈param〉 � params Υ← 〈nx

\paramdef { val Υ3 }val Υ1〉
〈require〉 ýstringþ va← 〈 require 〉〈Prepare one parametric option 30c 〉
〈skeleton〉 ýstringþ va← 〈 skeleton 〉〈Prepare one parametric option 30c 〉
〈token-table〉 Υ← 〈nx

\optionflag { token table }{ }val Υ1〉
〈verbose〉 Υ← 〈nx

\optionflag { verbose }{ }val Υ1〉
〈yacc〉 Υ← 〈nx

\optionflag { yacc }{ }val Υ1〉
; Υ← 〈nx∅〉

params :
params {...} Υ← 〈val Υ1

nx
\braceit val Υ2〉

{...} Υ← 〈nx
\braceit val Υ1〉

30c This is a typical parser action: encapsulate the ‘type’ of the construct just parsed and attach some auxiliary
info, in this case the stream pointers.
〈Prepare one parametric option 30c 〉 =

Υ← 〈nx
\oneparametricoption { val va }{

nx
\stringify val Υ2 }val Υ1〉

This code is used in section 30b.

30d 〈Prepare a generic one parametric option 30d 〉 =
Υ← 〈nx

\oneparametricoption { val va }{ val Υ2 }val Υ1〉
This code is used in sections 30b and 31f.

42
47 SPLINT GRAMMAR PRODUCTIONS

31a These rules handle extra declarations to typeset flex options and declarations. These are not part of the
bison syntax but their structure is similar enough that they can be included in the grammar. As was
pointed out earlier the addition of the flex input parser to SPLinT made this extension of the original
bison grammar obsolete but it was kept as part of the extended grammar for convenience and ‘historical’
reasons. The convenience results from simplifying the bootstrap procedure by using a single parser.
〈Parser prologue productions 29e 〉 + =

4
30b 39l

5
prologue declaration :

flex declaration 〈Carry on 29c 〉
〈 flex options parser productions 31b 〉

31b The syntax of flex options was extracted from flex documentation so it is not guaranteed to be correct.
〈 flex options parser productions 31b 〉 =
ex declaration :
〈option〉f flex option list 〈Define flex option list 31c 〉
flex state symbols1 〈Define flex states 31d 〉

ex state :
〈state-x〉f Υ← 〈nx

\flexxstatedecls val Υ1〉
〈state-s〉f Υ← 〈nx

\flexsstatedecls val Υ1〉
ex option list :

flex option 〈Carry on 29c 〉
flex option list flex option 〈Add a flex option 31e 〉

ex option :
ýidentifierþ Υ← 〈nx

\flexoptionpair { nx
\idit val Υ1 }{ }〉

ýidentifierþ = symbol Υ← 〈nx
\flexoptionpair { nx

\idit val Υ1 }{ val Υ3 }〉
This code is used in sections 26a and 31a.

31c 〈Define flex option list 31c 〉 =
Υ← 〈nx

\flexoptiondecls { val Υ2 }val Υ1〉
This code is used in section 31b.

31d 〈Define flex states 31d 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

π3(Υ1) 7→ vc

Υ← 〈val va← 〈 val Υ2 〉{ val vb }{ val vc }〉
This code is used in section 31b.

31e 〈Add a flex option 31e 〉 =
π2(Υ2) 7→ va . the identifier /
π4(va) 7→ vb . the format pointer /
π5(va) 7→ vc . the stash pointer /
Υ← 〈val Υ1

nx val vc
val vb

val Υ2〉
This code is used in section 31b.

31f Grammar declarations. These declarations can appear in both the prologue and the rules sections. Their
treatment is very similar to the prologue-only options.
〈Parser common productions 31f 〉 = 32c

5
grammar declaration :

precedence declaration 〈Carry on 29c 〉
symbol declaration 〈Carry on 29c 〉
〈start〉 symbol va← 〈 start 〉〈Prepare a generic one parametric option 30d 〉
code props type {...} generic symlist 〈Assign a code fragment to symbols 32a 〉
〈default-prec〉 Υ← 〈nx

\optionflag { default prec. }{ }val Υ1〉
〈no-default-prec〉 Υ← 〈nx

\optionflag { no default prec. }{ }val Υ1〉
〈code〉 {...} Υ← 〈nx

\codeassoc { code }{ }val Υ2val Υ1〉
〈code〉 ýidentifierþ {...} Υ← 〈nx

\codeassoc { code }{ nx
\idit val Υ2 }val Υ3val Υ1〉

 GRAMMAR PRODUCTIONS SPLINT 47
56

code props type :
〈destructor〉 Υ← 〈{ destructor }val Υ1〉
〈printer〉 Υ← 〈{ printer }val Υ1〉

See also sections 32c, 32g, 33b, 33c, 33e, 39b, and 40a.

This code is used in sections 25a, 27a, and 27b.

32a 〈Assign a code fragment to symbols 32a 〉 =
π1(Υ1) 7→ va . name of the property /
π1(Υ2) 7→ vb . contents of the braced code /
π2(Υ2) 7→ vc . braced code format pointer /
π3(Υ2) 7→ vd . braced code stash pointer /
π2(Υ1) 7→ ve . code format pointer /
π3(Υ1) 7→ vf . code stash pointer /
Υ← 〈nx

\codepropstype { val va }{ val vb }{ val Υ3 }{ val vc }{ val vd }{ val ve }{ val vf }〉
This code is used in section 31f.

32b 〈Tokens and types for the grammar parser 28a 〉 + =
4
28c 36c

5
〈union〉

32c 〈Parser common productions 31f 〉 + =
4
31f 32g

5
union name : ◦ | ýidentifierþ 〈Turn an identifier into a term 39f 〉
grammar declaration : 〈union〉 union name {...} 〈Prepare union definition 32d 〉
symbol declaration : 〈type〉 <tag> symbols1 〈Define symbol types 32e 〉
precedence declaration :

precedence declarator tagopt symbols.prec 〈Define symbol precedences 32f 〉
precedence declarator :

〈left〉 | 〈right〉 | 〈nonassoc〉 | 〈precedence〉 Υ← 〈nx
\preckind { precedence }val Υ1〉

tagopt : ◦ | <tag> 〈Prepare a <tag> 32h 〉

32d 〈Prepare union definition 32d 〉 =
Υ← 〈nx

\codeassoc { union }{ val Υ2 }val Υ3val Υ1〉
This code is used in section 32c.

32e 〈Define symbol types 32e 〉 =
Υ← 〈nx

\typedecls { nx
\tagit val Υ2 }{ val Υ3 }val Υ1〉

This code is used in section 32c.

32f 〈Define symbol precedences 32f 〉 =
π3(Υ1) 7→ va . format pointer /
π4(Υ1) 7→ vb . stash pointer /
π2(Υ1) 7→ vc . kind of precedence /
Υ← 〈nx

\precdecls { val vc }{ val Υ2 }{ val Υ3 }{ val va }{ val vb }〉
This code is used in section 32c.

32g The bootstrap grammar forms the smallest subset of the full grammar.
〈Parser common productions 31f 〉 + =

4
32c 33b

5
〈Parser bootstrap productions 33a 〉

32h 〈Prepare a <tag> 32h 〉 =
Υ← 〈nx

\tagit val Υ1〉
This code is used in sections 32c, 33e, and 33f.

56
63 SPLINT GRAMMAR PRODUCTIONS

33a These are the two most important rules for the bootstrap parser. The reasons for the 〈token〉 declarations to
be collected during the bootstrap pass are outlined in the section on bootstrapping. The 〈nterm〉 declarations
are not strictly necessary for boostrapping the parsers included in SPLinT but they are added for the cases
when the bootstrap mode is used for purposes other than bootstrapping SPLinT.
〈Parser bootstrap productions 33a 〉 = 33f

5
symbol declaration :

〈nterm〉 � symbol defs1 Υ← 〈nx
\ntermdecls { val Υ3 }val Υ1〉

〈token〉 � symbol defs1 Υ← 〈nx
\tokendecls { val Υ3 }val Υ1〉

See also sections 33f, 33g, 39a, and 39e.

This code is used in sections 26a and 32g.

33b Just like symbols1 but accept int for the sake of POSIX. Perhaps the only point worth mentioning here is the
inserted separator (\hspace{p0}{p1}, typeset as p1

p0
). Like any other separator, it takes two parameters,

the stream pointers p0 and p1. In this case, however, both pointers are null since there seems to be no other
meaningful assignment. If any formatting or stash information is needed, it can be extracted by the symbols
themselves.
〈Parser common productions 31f 〉 + =

4
32g 33c

5
symbols.prec :

symbol.prec 〈Carry on 29c 〉
symbols.prec symbol.prec Υ← 〈val Υ1

nx 0
0 val Υ2〉

symbol.prec :
symbol Υ← 〈nx

\symbolprec { val Υ1 }{ }〉
symbol int Υ← 〈nx

\symbolprec { val Υ1 }{ val Υ2 }〉

33c One or more symbols to be 〈type〉’d. The 〈List of symbols 33d 〉 rules below are reused in the boostrap parser
and are put in a separate section for this reason.
〈Parser common productions 31f 〉 + =

4
33b 33e

5
〈List of symbols 33d 〉

33d 〈List of symbols 33d 〉 =
symbols1 :

symbol 〈Carry on 29c 〉
symbols1 symbol Υ← 〈val Υ1

nx 0
0 val Υ2〉

This code is cited in section 33c.

This code is used in sections 26a and 33c.

33e 〈Parser common productions 31f 〉 + =
4
33c 39b

5
generic symlist :

generic symlist item 〈Carry on 29c 〉
generic symlist generic symlist item Υ← 〈val Υ1

nx 0
0 val Υ2〉

generic symlist item : symbol | tag 〈Carry on 29c 〉
tag : <tag> | <*> | <> 〈Carry on 29c 〉

33f One token definition.
〈Parser bootstrap productions 33a 〉 + =

4
33a 33g

5
symbol def :

<tag> 〈Prepare a <tag> 32h 〉
id | id int | id string as id | id int string as id Υ← 〈nx

\onesymbol { val Υ1 }{ val Υ2 }{ val Υ3 }〉

33g One or more symbol definitions.
〈Parser bootstrap productions 33a 〉 + =

4
33f 39a

5
symbol defs1 :

symbol def 〈Carry on 29c 〉
symbol defs1 symbol def 〈Add a symbol definition 34a 〉

 GRAMMAR PRODUCTIONS SPLINT 63
68

34a 〈Add a symbol definition 34a 〉 =
π2(Υ2) 7→ va . the identifier /
π4(va) 7→ vb . the format pointer /
π5(va) 7→ vc . the stash pointer /
Υ← 〈val Υ1

nx val vc
val vb

val Υ2〉
This code is used in section 33g.

34b The grammar section: between the two 〈%〉’s. Finally, the following few short sections define the syntax of
bison’s rules.
〈Parser grammar productions 34b 〉 = 34c

5
grammar :

rules or grammar declaration 〈 Start with a production cluster 34d 〉
grammar rules or grammar declaration 〈Attach a productions cluster 34e 〉

See also sections 34c, 36d, and 39d.

This code is used in sections 25a and 27b.

34c As a bison extension, one can use the grammar declarations in the body of the grammar. What follows is
the syntax of the right hand side of a grammar rule.
〈Parser grammar productions 34b 〉 + =

4
34b 36d

5
rules or grammar declaration :

rules 〈Add a productions cluster 35a 〉
grammar declaration ; 〈Carry on 29c 〉
error ; \errmessage { parsing error! }

rules : id colon named ref opt � rhses1 〈Complete a production 35b 〉
rhses1 :

rhs 〈Start the right hand side 35c 〉
rhses1 | 〈 Insert local formatting 35e 〉

rhs 〈Add a right hand side to a production 36a 〉
rhses1 ; 〈Add an optional semicolon 36b 〉

34d The next few actions describe what happens when a left hand side is attached to a rule.
〈Start with a production cluster 34d 〉 =
π1(Υ1) 7→ va

Υ← 〈nx
\grammar { val Υ1 }{ val va }〉

This code is used in section 34b.

34e 〈Attach a productions cluster 34e 〉 =
π3(Υ1) 7→ va . type of the last rule /
π2(Υ1) 7→ vc . accumulated rules /
π1(Υ2) 7→ vb . type of the new rule /
let default \positionswitchdefault

switch (val vb) ε \positionswitch . determine the position of the first token in the group /
defx next { val va }

defx default { val vb } . reuse \default /
ifx next default

let default \separatorswitchdefaulteq

switch (val va) ε \separatorswitcheq

else
va ← va +s vb

let default \separatorswitchdefaultneq

switch (val va) ε \separatorswitchneq

fi
Υ← 〈nx

\grammar { val vcval \postoks val vdval Υ2 }{ val vb }〉
This code is used in sections 30a and 34b.

68
73 SPLINT GRAMMAR PRODUCTIONS

35a 〈Add a productions cluster 35a 〉 =
π2(Υ1) 7→ va . \prodheader /
π2(va) 7→ vb . \idit /
π4(vb) 7→ vc . format stream pointer /
π5(vb) 7→ vd . stash stream pointer /
π3(Υ1) 7→ vb . \rules /
Υ← 〈nx

\oneproduction { val vaval vb }{ val vc }{ val vd }〉
This code is used in section 34c.

35b 〈Complete a production 35b 〉 =
π4(Υ1) 7→ va . format stream pointer /
π5(Υ1) 7→ vb . stash stream pointer /
Υ← 〈nx

\pcluster { nx
\prodheader { val Υ1 }{ val Υ2 }{ val va }{ val vb } }{ val Υ4 }〉

This code is used in section 34c.

35c It is important to format the right hand side properly, since we would like to indicate that an action is
inlined by an indentation. The ‘format’ of the \rhs ‘structure’ includes the stash pointers and a ‘boolean’
to indicate whether the right hand side ends with an action. Since the action can be implicit, this decision
has to be postponed until, say, a semicolon is seen. No formatting or stash pointers are added for implicit
actions.
〈Start the right hand side 35c 〉 =
π`(Υ1) 7→ va val va

π3(Υ1) 7→ vb . the format pointer /
π4(Υ1) 7→ vc . the stash pointer /
if (rhs = full)

Υ← 〈nx
\rules { val Υ1 }{ val vb }{ val vc }〉

else . it does not end with an action, fake one /
π{}(Υ1) 7→ va . rules /
defx next { val va }

ifx next ∅
va← 〈 p. . .q 〉

fi
Υ← 〈nx

\rules { nx
\rhs { val va

nx
\rarhssep { 0 }{ 0 }

nx
\actbraces { }{ }{ 0 }{ 0 }nx

\bdend }{ }{ nxrhs = full } }{ val vb }{ val vc }〉
fi

This code is used in section 34c.

35d Using standard notation, here is what the middle action does.
〈Old ‘Insert local formatting’ 35d 〉 =
π{}(Υ1) 7→ {Υ0 }

Υ← 〈val Υ0
nx

\midf val Υ2〉

35e However, if the length of the rule preceding the inline action is not known a different way of accessing the
stack is necessary.
〈 Insert local formatting 35e 〉 =

2Υ→ [va] 1Υ→ [vb]
π{}(va) 7→ {Υ0 }

Υ← 〈val Υ0
nx

\midf val vb〉
This code is used in section 34c.

35f 〈Old ‘Add a right hand side to a production’ 35f 〉 =
π`(Υ4) 7→ va val va

if (rhs = full)
Υ← 〈nx

\rules { val Υ3
nx

\rrhssep val Υ2val Υ4 }val Υ2〉
else

 GRAMMAR PRODUCTIONS SPLINT 73
78

π{}(Υ4) 7→ va

defx next { val va }

ifx next ∅
va← 〈 p. . .q 〉

fi
Υ← 〈nx

\rules { val Υ3
nx

\rrhssep val Υ2
nx

\rhs { val va
nx

\rarhssep { 0 }{ 0 } . streams have already been grabbed /
nx

\actbraces { }{ }{ 0 }{ 0 }nx
\bdend }{ }{ nxrhs = full } }val Υ2〉

fi

36a No pointers are provided for an implicit action. Processing a set of rules involves a large number of
reexpansions. This seems to be a good place to use an array to store AST nodes (\astarray). While
providing a noticeable speed up, this technique significantly complicates the debugging of the grammar. In
particular, inspecting a parsed table supplies very little information if the AST nodes are not expanded. The
macros in yyunion.sty provide a special debugging namespace where the expansion of the parser produced
control sequences may be modified to safely expand the generated table.
〈Add a right hand side to a production 36a 〉 =
π`(Υ4) 7→ va val va

if (rhs = full)
\yypushx { val Υ3

nx
\rrhssep val Υ2val Υ4 }\on \astarray

else
π{}(Υ4) 7→ va

defx next { val va }

ifx next ∅
va← 〈 p. . .q 〉

fi
\yypushx { val Υ3

nx
\rrhssep val Υ2

nx
\rhs { val va

nx
\rarhssep { 0 }{ 0 } . streams have already been grabbed /

nx
\actbraces { }{ }{ 0 }{ 0 }nx

\bdend }{ }{ nxrhs = full } }\on \astarray

fi
Υ← 〈nx

\rules { \astarraylastcs }val Υ2〉
This code is used in section 34c.

36b 〈Add an optional semicolon 36b 〉 =
〈Carry on 29c 〉

This code is used in section 34c.

36c 〈Tokens and types for the grammar parser 28a 〉 + =
4

32b

〈empty〉

36d The centerpiece of the grammar is the syntax of the right hand side of a production. Various ‘precedence
hints’ must be attached to an appropriate portion of the rule, just before an action (which can be inline,
implicit or both in this case).
〈Parser grammar productions 34b 〉 + =

4
34c 39d

5
rhs :
◦ 〈Make an empty right hand side 37a 〉
rhs symbol named ref opt 〈Add a term to the right hand side 37b 〉
rhs {...} named ref opt 〈Add an action to the right hand side 37c 〉
rhs %?{...} 〈Add a predicate to the right hand side 37d 〉
rhs 〈empty〉 〈Add 〈empty〉 to the right hand side 37e 〉
rhs 〈prec〉 symbol 〈Add a precedence directive to the right hand side 38a 〉
rhs 〈dprec〉 int 〈Add a 〈dprec〉 directive to the right hand side 38b 〉
rhs 〈merge〉 <tag> 〈Add a 〈merge〉 directive to the right hand side 38c 〉

named ref opt :
◦ 〈Create an empty named reference 38d 〉
"[identifier]"m 〈Create a named reference 38e 〉

78
82 SPLINT GRAMMAR PRODUCTIONS

37a

〈Make an empty right hand side 37a 〉 =
Υ← 〈nx

\rhs { }{ }{ nxrhs = not full }〉
This code is used in section 36d.

37b 〈Add a term to the right hand side 37b 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

defx next { val vb }

ifx next ∅
else

π4(Υ2) 7→ vc

π5(Υ2) 7→ vd

vb ← vb +sx [{ val vc }{ val vd }]
fi
Υ← 〈nx

\rhs { val vaval vb
nx

\termname { val Υ2 }{ val Υ3 } }{
nx }{ nxrhs = not full }〉

This code is used in section 36d.

37c 〈Add an action to the right hand side 37c 〉 =
π{}(Υ1) 7→ va

π`(Υ1) 7→ vb val vb

if (rhs = full) . the first half ends with an action /
va ← va +sx [nx

\arhssep { 0 }{ 0 }nxp. . .q] . no pointers to streams /
fi
defx next { val va }

ifx next ∅
va← 〈 p. . .q 〉

fi
π1(Υ2) 7→ vb . the contents of the braced code /
π2(Υ2) 7→ vc . the format stream pointer /
π3(Υ2) 7→ vd . the stash stream pointer /
Υ← 〈nx

\rhs { val va
nx

\rarhssep { val vc }{ val vd }
nx

\actbraces { val vb }{ val Υ3 }{ val vc }{ val vd }
nx

\bdend }

{ nx
\arhssep }{ nxrhs = full }〉

This code is used in section 36d.

37d 〈Add a predicate to the right hand side 37d 〉 =
π{}(Υ1) 7→ va

π`(Υ1) 7→ vb val vb

if (rhs = full) . the first half ends with an action /
va ← va +sx [nx

\arhssep { 0 }{ 0 }nxp. . .q] . no pointers to streams /
fi
defx next { val va }

ifx next ∅
va← 〈 p. . .q 〉

fi
π1(Υ2) 7→ vb . the contents of the braced code /
π2(Υ2) 7→ vc . the format stream pointer /
π3(Υ2) 7→ vd . the stash stream pointer /
Υ← 〈nx

\rhs { val va
nx

\rarhssep { val vc }{ val vd }
nx

\bpredicate { val vb }{ }{ val vc }{ val vd }
nx

\bdend }{ nx
\arhssep }{ nxrhs = full }〉

This code is used in section 36d.

37e 〈Add 〈empty〉 to the right hand side 37e 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

 GRAMMAR PRODUCTIONS SPLINT 82
88

defx next { val vb }

ifx next ∅
else

π4(Υ2) 7→ vc

π5(Υ2) 7→ vd

vb ← vb +sx [{ val vc }{ val vd }]
fi
Υ← 〈nx

\rhs { val vaval vb
nxp. . .q }{ nx }{ nxrhs = not full }〉

This code is used in section 36d.

38a 〈Add a precedence directive to the right hand side 38a 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

π`(Υ1) 7→ vc val vc

if (rhs = full)
Υ← 〈nx

\sprecop { val Υ3 }val Υ2〉 . reuse \yyval /
\supplybdirective vaΥ . the directive is ‘absorbed’ by the action /
Υ← 〈nx

\rhs { val va }{ val vb }{
nxrhs = full }〉

else
Υ← 〈nx

\rhs { val va
nx

\sprecop { val Υ3 }val Υ2 }{ val vb }{
nxrhs = not full }〉

fi

This code is used in section 36d.

38b 〈Add a 〈dprec〉 directive to the right hand side 38b 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

π`(Υ1) 7→ vc val vc

if (rhs = full)
Υ← 〈nx

\dprecop { val Υ3 }val Υ2〉 . reuse \yyval /
\supplybdirective vaΥ . the directive is ‘absorbed’ by the action /
Υ← 〈nx

\rhs { val va }{ val vb }{
nxrhs = full }〉

else
Υ← 〈nx

\rhs { val va
nx

\dprecop { val Υ3 }val Υ2 }{ val vb }{
nxrhs = not full }〉

fi

This code is used in section 36d.

38c 〈Add a 〈merge〉 directive to the right hand side 38c 〉 =
π{}(Υ1) 7→ va

π↔(Υ1) 7→ vb

π`(Υ1) 7→ vc val vc

if (rhs = full)
Υ← 〈nx

\mergeop { nx
\tagit val Υ3 }val Υ2〉 . reuse \yyval /

\supplybdirective vaΥ . the directive is ‘absorbed’ by the action /
Υ← 〈nx

\rhs { val va }{ val vb }{
nxrhs = full }〉

else
Υ← 〈nx

\rhs { val va
nx

\mergeop { nx
\tagit val Υ3 }val Υ2 }{ val vb }{

nxrhs = not full }〉
fi

This code is used in section 36d.

38d 〈Create an empty named reference 38d 〉 =
Υ← 〈〉

This code is used in section 36d.

38e 〈Create a named reference 38e 〉 =
〈Turn an identifier into a term 39f 〉

This code is used in section 36d.

88
99 SPLINT GRAMMAR PRODUCTIONS

39a Identifiers. Identifiers are returned as uniqstr values by the scanner. Depending on their use, we may need
to make them genuine symbols. We, on the other hand, simply copy the values returned by the scanner.
〈Parser bootstrap productions 33a 〉 + =

4
33g 39e

5
id :

ýidentifierþ 〈Turn an identifier into a term 39f 〉
char 〈Turn a character into a term 39g 〉

39b 〈Parser common productions 31f 〉 + =
4
33e 40a

5
〈Definition of symbol 39c 〉

39c 〈Definition of symbol 39c 〉 =
symbol :

id 〈Turn an identifier into a symbol 39h 〉
string as id 〈Turn a string into a symbol 39i 〉

This code is used in sections 26a and 39b.

39d 〈Parser grammar productions 34b 〉 + =
4

36d

id colon : ýidentifier: þ 〈Prepare the left hand side 39j 〉

39e A string used as an ýidentifierþ.
〈Parser bootstrap productions 33a 〉 + =

4
39a

string as id : ýstringþ 〈Prepare a string for use 39k 〉

39f The remainder of the action code is trivial but we reserved the placeholders for the appropriate actions in
case the parser gains some sophistication in processing low level types (or starts expecting different types
from the scanner).
〈Turn an identifier into a term 39f 〉 =

Υ← 〈nx
\idit val Υ1〉

This code is used in sections 32c, 38e, 39a, 39j, and 39l.

39g 〈Turn a character into a term 39g 〉 =
Υ← 〈nx

\charit val Υ1〉
This code is used in section 39a.

39h 〈Turn an identifier into a symbol 39h 〉 =
〈Carry on 29c 〉

This code is used in section 39c.

39i 〈Turn a string into a symbol 39i 〉 =
〈Carry on 29c 〉

This code is used in section 39c.

39j 〈Prepare the left hand side 39j 〉 =
〈Turn an identifier into a term 39f 〉

This code is used in section 39d.

39k 〈Prepare a string for use 39k 〉 =
Υ← 〈nx

\stringify val Υ1〉
This code is used in sections 39e and 39l.

39l Variable and value. The ýstringþ form of variable is deprecated and is not M4-friendly. For example, M4
fails for %define "[" "value".
〈Parser prologue productions 29e 〉 + =

4
31a

variable : ýidentifierþ | ýstringþ 〈Prepare a string for use 39k 〉

 GRAMMAR PRODUCTIONS SPLINT 99
107

value : ◦ | ýidentifierþ | ýstringþ | {...} Υ← 〈nx
\bracedvalue val Υ1〉

40a 〈Parser common productions 31f 〉 + =
4

39b

epilogueopt : ◦ | 〈%〉 epilogue

40b C preamble for the grammar parser. In this case, there are no ‘real’ actions that our grammar performs,
only TEX output, so this section is empty.
〈Grammar parser C preamble 40b 〉 =
This code is used in sections 25a, 26a, 27a, and 27b.

40c C postamble for the grammar parser. It is tricky to insert function definitions that use bison’s internal types,
as they have to be inserted in a place that is aware of the internal definitions but before said definitions are
used.
〈Grammar parser C postamble 40c 〉 =
#define YYPRINT(file , type , value) yyprint (file , type , value)

static void yyprint (FILE ∗file , int type , YYSTYPEvalue)
{ }

This code is used in sections 25a, 27a, 27b, and 40d.

40d 〈Bootstrap parser C postamble 40d 〉 =
〈Grammar parser C postamble 40c 〉
〈Bootstrap token output 40e 〉

This code is used in section 26a.

40e 〈Bootstrap token output 40e 〉 =
void bootstrap tokens (char ∗bootstrap token format){

#define register token d (name) fprintf (tables out , bootstrap token format , #name ,name , #name);
〈Bootstrap token list 40f 〉

#undef register token d
}

This code is used in section 40d.

40f Here is the minimal list of tokens needed to make the lexer operational just enough to extract the rest of
the token information from the grammar.
〈Bootstrap token list 40f 〉 =

register token d (ID)
register token d (PERCENT_TOKEN)
register token d (STRING)

This code is used in section 40e.

40g Union of types. This section of the bison input lists the types that may appear on the value stack. Since
TEX does not provide any mechanism for type checking (nor is it clear how to translate a C union into any
data structure usable in TEX), this section is left empty.
〈Union of grammar parser types 40g 〉 =
This code is used in sections 25a, 26a, 27a, and 27b.

5
The scanner for bison syntax

41a The fact that bison has a relatively straightforward grammar is partly due to the sophistication of its
scanner. The primary reason for this increased complexity is bison’s awareness of syntax variations in its
input files. In addition to the grammar syntax, the parser has to be able to deal with extended C syntax
inside bison’s actions.

Since the names of the scanner states reside in the common namespace with other variables, in order to
make the TEX version of the scanner aware of the numerical values of the states, a special procedure is
required. It is executed as part of flex’s user initialization code but the data for it has to be collected
separately. The procedure is declared in the preamble section of the scanner.

Below, we follow the same convention (of italicizing the original comments) as in the code for the parser.
〈 lo.ll 41a 〉 =
〈Grammar lexer definitions 41b 〉
··
〈Grammar lexer C preamble 43c 〉
··
〈Grammar lexer options 43d 〉

〈Grammar token regular expressions 43e 〉

void define all states (void)
{

〈Collect state definitions for the grammar lexer 42c 〉
}

41b Definitions and state declarations

It is convenient to abbreviate some commonly used subexpressions.
〈Grammar lexer definitions 41b 〉 = 42a

5
〈Grammar lexer states 42d 〉
〈letter〉 [.abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_]
〈notletter〉 [.abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_]c \ [%{]
〈id〉 〈letter〉 (〈letter〉 | [-0–9])∗
〈int〉 [0–9]+

See also sections 42a and 42b.

This code is used in section 41a.

 DEFINITIONS AND STATE DECLARATIONS SPLINT 109
118

42a Zero or more instances of backslash-newline. Following gcc, allow white space between the backslash and the
newline.
〈Grammar lexer definitions 41b 〉 + =

4
41b 42b

5
〈splice〉 (\ [〈f〉〈t〉〈v〉]∗〈n〉)∗

42b An equal sign, with optional leading whitespaces. This is used in some deprecated constructs.
〈Grammar lexer definitions 41b 〉 + =

4
42a

〈eqopt〉 ([〈 〉]∗=)?

42c This is how the code for state value output is put inside the routine mentioned above. The state information
is collected by a special small scanner that is coupled with the bootstrap parser. This way, all the necessary
token information comes ‘hardwired’ in the bootstrap parser, and the small scanner itself does not use any
state manipulation and thus can get away with using no state setup. It can, however, scan just enough of
the flex syntax to extract the state information from it (only the state names are needed) and output it in
the form of a header file for the ‘real’ lexer output ‘driver’ to use.
〈Collect state definitions for the grammar lexer 42c 〉 =
#define register name (name) Define State (#name ,name)

#include "lo_states.h"

#undef register name

This code is used in section 41a.

42d A C-like comment in directives/rules.
〈Grammar lexer states 42d 〉 = 42e

5
〈states-x〉f: SC_YACC_COMMENT

See also sections 42e, 42f, 42g, 42h, 42i, 43a, and 43b.

This code is used in section 41b.

42e Strings and characters in directives/rules.
〈Grammar lexer states 42d 〉 + =

4
42d 42f

5
〈states-x〉f: SC_ESCAPED_STRING SC_ESCAPED_CHARACTER

42f A identifier was just read in directives/rules. Special state to capture the sequence ‘identifier:’.
〈Grammar lexer states 42d 〉 + =

4
42e 42g

5〈states-x〉f: SC_AFTER_IDENTIFIER

42g POSIX says that a tag must be both an id and a C union member, but historically almost any character is
allowed in a tag. We disallow Λ, as this simplifies our implementation. We match angle brackets in nested
pairs: several languages use them for generics/template types.
〈Grammar lexer states 42d 〉 + =

4
42f 42h

5
〈states-x〉f: SC_TAG

42h Four types of user code:
prologue (code between %{ %} in the first section, before 〈%〉);
actions, printers, union, etc, (between braced in the middle section);
epilogue (everything after the second 〈%〉);
predicate (code between %?{ and } in middle section);
〈Grammar lexer states 42d 〉 + =

4
42g 42i

5
〈states-x〉f: SC_PROLOGUE SC_BRACED_CODE SC_EPILOGUE SC_PREDICATE

42i C and C++ comments in code.
〈Grammar lexer states 42d 〉 + =

4
42h 43a

5
〈states-x〉f: SC_COMMENT SC_LINE_COMMENT

118
123 SPLINT DEFINITIONS AND STATE DECLARATIONS

43a Strings and characters in code.
〈Grammar lexer states 42d 〉 + =

4
42i 43b

5
〈states-x〉f: SC_STRING SC_CHARACTER

43b Bracketed identifiers support.
〈Grammar lexer states 42d 〉 + =

4
43a

〈states-x〉f: SC_BRACKETED_ID SC_RETURN_BRACKETED_ID

43c 〈Grammar lexer C preamble 43c 〉 =
#include <stdint.h>

#include <stdbool.h>

This code is used in section 41a.

43d The code for the generated scanner is highly dependent on the options supplied. Most of the options below
are essential for the scheme adopted in this package to work.
〈Grammar lexer options 43d 〉 =
〈bison-bridge〉f ?
〈noyywrap〉f ?
〈nounput〉f ?
〈noinput〉f ?
〈reentrant〉f ?
〈noyy_top_state〉f ?
〈debug〉f ?
〈stack〉f ?
〈outfile〉f "lo.c"

This code is used in section 41a.

43e Tokenizing with regular expressions

Here is a full list of regular expressions recognized by the bison scanner.
〈Grammar token regular expressions 43e 〉 =
〈Scan grammar white space 43f 〉
〈Scan flex directives and options 46a 〉
〈Scan bison directives 44a 〉
〈Do not support zero characters 47e 〉
〈Scan after an identifier, check whether a colon is next 47f 〉
〈 Scan bracketed identifiers 48d 〉
〈Scan a yacc comment 49e 〉
〈Scan a C comment 49f 〉
〈Scan a line comment 49g 〉
〈Scan a bison string 50a 〉
〈Scan a character literal 50c 〉
〈Scan a tag 50e 〉
〈Decode escaped characters 51b 〉
〈Scan user-code characters and strings 51c 〉
〈 Strings, comments etc. found in user code 51d 〉
〈Scan code in braces 51e 〉
〈Scan prologue 52c 〉
〈Scan the epilogue 52e 〉
〈Add the scanned symbol to the current string 53b 〉

This code is used in section 41a.

43f 〈Scan grammar white space 43f 〉 =
INITIAL SC_AFTER_IDENTIFIER SC_BRACKETED_ID SC_RETURN_BRACKETED_ID:

. comments and white space

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 123
124

, warn〈 stray ‘,’ treated as white space 〉
[〈f〉〈n〉〈t〉〈v〉] ←↩
// .∗ continue
/* \contextstate \YYSTART enter(SC_YACC_COMMENT)continue

. #line directives are not documented, and may be withdrawn or modified in future versions of bison

a #line 〈int〉 (" .∗")?〈n〉 continue

This code is used in section 43e.

44a For directives that are also command line options, the regex must be "%..." after "[-_]"’s are removed, and
the directive must match the --long option name, with a single string argument. Otherwise, add exceptions
to ../build-aux/cross-options.pl. For most options the scanner returns a pair of pointers as the value.
〈Scan bison directives 44a 〉 =

INITIAL:
%binary returnp 〈nonassoc〉
%code returnp 〈code〉
%debug 〈 Set 〈debug〉 flag 46c 〉
%default-prec returnp 〈default-prec〉
%define returnp 〈define〉
%defines returnp 〈defines〉
%destructor returnp 〈destructor〉
%dprec returnp 〈dprec〉
%empty returnp 〈empty〉
%error-verbose returnp 〈error-verbose〉
%expect returnp 〈expect〉
%expect-rr returnp 〈expect-rr〉
%file-prefix returnp 〈file-prefix〉
%fixed-output-files returnp 〈yacc〉
%initial-action returnp 〈initial-action〉
%glr-parser returnp 〈glr-parser〉
%language returnp 〈language〉
%left returnp 〈left〉
%lex-param 〈Return lexer parameters 46d 〉
%locations 〈 Set 〈locations〉 flag 46e 〉
%merge returnp 〈merge〉
%name-prefix returnp 〈name-prefix〉
%no-default-prec returnp 〈no-default-prec〉
%no-lines returnp 〈no-lines〉
%nonassoc returnp 〈nonassoc〉
%nondeterministic-parser returnp 〈nondet. parser〉
%nterm returnp 〈nterm〉
%output returnp 〈output〉
%param 〈Return lexer and parser parameters 46f 〉
%parse-param 〈Return parser parameters 46g 〉
%prec returnp 〈prec〉
%precedence returnp 〈precedence〉
%printer returnp 〈printer〉
%pure-parser 〈 Set 〈pure-parser〉 flag 46h 〉
%require returnp 〈require〉
%right returnp 〈right〉
%skeleton returnp 〈skeleton〉
%start returnp 〈start〉
%term returnp 〈token〉
%token returnp 〈token〉
%token-table returnp 〈token-table〉
%type returnp 〈type〉
%union returnp 〈union〉

124
125 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS

%verbose returnp 〈verbose〉
%yacc returnp 〈yacc〉
. deprecated

%default[-_]prec deprecated〈 %default-prec 〉
%error[-_]verbose deprecated〈 %define parse.error verbose 〉
%expect[-_]rr deprecated〈 %expect-rr 〉
%file-prefix〈eqopt〉 deprecated〈 %file-prefix 〉
%fixed[-_]output[-_]files deprecated〈 %fixed-output-files 〉
%name[-_]prefix〈eqopt〉 deprecated〈 %name-prefix 〉
%no[-_]default[-_]prec deprecated〈 %no-default-prec 〉
%no[-_]lines deprecated〈 %no-lines 〉
%output〈eqopt〉 deprecated〈 %output 〉
%pure[-_]parser deprecated〈 %pure-parser 〉
%token[-_]table deprecated〈 %token-table 〉
. semantic predicate

%? [〈f〉〈n〉〈t〉〈v〉]∗{ enter(SC_PREDICATE)continue
%〈id〉 | %〈notletter〉 ([〈§〉])+ 〈Possibly complain about a bad directive 47a 〉
= returnp "="m

| returnp "|"m

; returnp ";"m

〈id〉 〈Prepare an identifier 47b 〉
〈int〉 defx next { \yylval { nx

\anint { val \yytext }

{ val \yyfmark }{ val \yysmark } } }next
returnl int

0[xX] [0–9abcdefABCDEF]+ defx next { \yylval { nx
\hexint { val \yytext }

{ val \yyfmark }{ val \yysmark } } }next
returnl int

. identifiers may not start with a digit; yet, don’t silently accept 1foo as 1 foo

〈int〉〈id〉 fatal〈 invalid identifier: val \yytext 〉
. characters

’ enter(SC_ESCAPED_CHARACTER)continue

. strings

" enter(SC_ESCAPED_STRING)continue

. prologue

%{ 〈 Start assembling prologue code 47d 〉
. code in between braces; originally preceded by \STRINGGROW but it is omitted here

{ \lonesting 0R enter(SC_BRACED_CODE)continue

. a type

<*> returnp "<*>"m

<> returnp "<>"m

< \lonesting = 0R enter(SC_TAG)continue
%% 〈 Switch sections 47c 〉
[let \bracketedidstr = ∅

\bracketedidcontextstate \YYSTART

enter(SC_BRACKETED_ID)continue

〈EOF〉 \yyterminate . 〈EOF〉 in INITIAL /
[[%A–Za–z0–9_<>{}"’*;|=/, 〈f〉〈n〉〈t〉〈v〉]c+ | . 〈Process a bad character 46b 〉

This code is used in section 43e.

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 125
133

46a Some additional constructs needed to typeset simple flex declarations. This is not part of the original
bison scanner.
〈Scan flex directives and options 46a 〉 =

INITIAL:
%option returnp 〈option〉f
%x returnp 〈state-x〉f
%s returnp 〈state-s〉f

This code is used in section 43e.

46b We present the ‘bad character’ code first, before going into the details of the character matching by the rest
of the lexer.
〈Process a bad character 46b 〉 =

defx next { nx
\csname lexspecial[val \yytextpure]nx

\endcsname }

\expandafter \expandafter \expandafter ifx next ◦
ift [bad char]

fatal〈 invalid character(s): val \yytext 〉
fi

else
\expandafter \lexspecialchar \expandafter {next }{ val \yyfmark }{ val \yysmark }continue

fi

This code is used in section 44a.

46c 〈Set 〈debug〉 flag 46c 〉 =
defx next { \yylval { { parse.trace }{ debug }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈<flag>〉

This code is used in section 44a.

46d 〈Return lexer parameters 46d 〉 =
defx next { \yylval { { lex-param }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈param〉

This code is used in section 44a.

46e 〈Set 〈locations〉 flag 46e 〉 =
defx next { \yylval { { locations }{ }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈<flag>〉

This code is used in section 44a.

46f 〈Return lexer and parser parameters 46f 〉 =
defx next { \yylval { { both-param }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈param〉

This code is used in section 44a.

46g 〈Return parser parameters 46g 〉 =
defx next { \yylval { { parse-param }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈param〉

This code is used in section 44a.

46h 〈Set 〈pure-parser〉 flag 46h 〉 =
defx next { \yylval { { api.pure }{ pure-parser }{ val \yyfmark }{ val \yysmark } } }next
returnl 〈<flag>〉

This code is used in section 44a.

133
140 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS

47a 〈Possibly complain about a bad directive 47a 〉 =
ift [bad char]

warn〈 invalid directive: val \yytext 〉
fi

This code is used in section 44a.

47b At this point we save the spelling and the location of the identifier. The token is returned later, after the
context is known.
〈Prepare an identifier 47b 〉 =

defx next { \yylval { { val \yytextpure }{ val \yytext }

{ val \yyfmark }{ val \yysmark } } }next
let \bracketedidstr = ∅
enter(SC_AFTER_IDENTIFIER)continue

This code is used in section 44a.

47c 〈Switch sections 47c 〉 =
add\percentpercentcount 1R

ifω \percentpercentcount = 2R

enter(SC_EPILOGUE)
fi
returnp 〈%〉

This code is used in section 44a.

47d 〈Start assembling prologue code 47d 〉 =
defx next { \postoks { { val \yyfmark }{ val \yysmark } } }next
enter(SC_PROLOGUE)continue

This code is used in section 44a.

47e Supporting 08 complexifies our implementation for no expected added value.
〈Do not support zero characters 47e 〉 =

SC_ESCAPED_CHARACTER SC_ESCAPED_STRING SC_TAG:
08 warn〈 invalid null character 〉

This code is used in section 43e.

47f 〈Scan after an identifier, check whether a colon is next 47f 〉 =
SC_AFTER_IDENTIFIER:

[〈Process the bracketed part of an identifier 47g 〉
: 〈Process a colon after an identifier 48a 〉
〈EOF〉 〈End the scan with an identifier 48c 〉
. 〈Process a character after an identifier 48b 〉

This code is used in section 43e.

47g 〈Process the bracketed part of an identifier 47g 〉 =
ifx \bracketedidstr∅

\bracketedidcontextstate \YYSTART enter(SC_BRACKETED_ID)
let next = continue

else
\ROLLBACKCURRENTTOKEN

enter(SC_RETURN_BRACKETED_ID)
def next { returnl ýidentifierþ }

fi
next

This code is used in section 47f.

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 140
145

48a 〈Process a colon after an identifier 48a 〉 =
ifx \bracketedidstr∅

enter(INITIAL)
else

enter(SC_RETURN_BRACKETED_ID)
fi
returnl ýidentifier: þ

This code is used in section 47f.

48b 〈Process a character after an identifier 48b 〉 =
\ROLLBACKCURRENTTOKEN

ifx \bracketedidstr∅
enter(INITIAL)

else
enter(SC_RETURN_BRACKETED_ID)

fi
returnl ýidentifierþ

This code is used in section 47f.

48c 〈End the scan with an identifier 48c 〉 =
ifx \bracketedidstr∅

enter(INITIAL)
else

enter(SC_RETURN_BRACKETED_ID)
fi
\ROLLBACKCURRENTTOKEN

returnl ýidentifierþ

This code is used in section 47f.

48d 〈Scan bracketed identifiers 48d 〉 = 49c
5

SC_BRACKETED_ID:
〈EOF〉 〈Complain about unexpected end of file inside brackets 49b 〉
〈id〉 〈Process bracketed identifier 48e 〉
] 〈Finish processing bracketed identifier 48f 〉
[].A–Za–z0–9_/ 〈f〉〈n〉〈t〉〈v〉]c+ | . 〈Complain about improper identifier characters 49a 〉

See also section 49c.

This code is used in section 43e.

48e 〈Process bracketed identifier 48e 〉 =
ifx \bracketedidstr∅

defx \bracketedidstr { { val \yytextpure }{ val \yytext }

{ val \yyfmark }{ val \yysmark } }

let next = continue
else

def next {warn〈 unexpected identifier

in bracketed name: val \yytext } }

fi
next

This code is used in section 48d.

48f 〈Finish processing bracketed identifier 48f 〉 =
enterx \bracketedidcontextstate

ifx \bracketedidstr∅
def next {warn〈 an identifier expected 〉 }

else
ifω \bracketedidcontextstate = state(INITIAL) ◦

145
153 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS

\expandafter \yylval \expandafter { \bracketedidstr }

let \bracketedidstr = ∅
def next { returnl "[identifier]"m }

else
let next = continue

fi
fi
next

This code is used in section 48d.

49a 〈Complain about improper identifier characters 49a 〉 =
fatal〈 invalid character(s) in bracketed name: val \yytext 〉

This code is used in section 48d.

49b 〈Complain about unexpected end of file inside brackets 49b 〉 =
enterx \bracketedidcontextstate

fatal〈 unexpected end of file inside brackets 〉
This code is used in section 48d.

49c 〈Scan bracketed identifiers 48d 〉 + =
4

48d

SC_RETURN_BRACKETED_ID:
. 〈Return a bracketed identifier 49d 〉

49d 〈Return a bracketed identifier 49d 〉 =
\ROLLBACKCURRENTTOKEN

\expandafter \yylval \expandafter { \bracketedidstr }

let \bracketedidstr = ∅
enter(INITIAL)
returnl "[identifier]"m

This code is used in section 49c.

49e Scanning a yacc comment. The initial /* is already eaten.
〈Scan a yacc comment 49e 〉 =

SC_YACC_COMMENT:
〈EOF〉 fatal〈 unexpected end of file in a comment 〉
*/ enterx \contextstate continue
. | 〈n〉 continue

This code is used in section 43e.

49f Scanning a C comment. The initial /* is already eaten.
〈Scan a C comment 49f 〉 =

SC_COMMENT:
〈EOF〉 fatal〈 unexpected end of file in a comment 〉
*〈splice〉/ \STRINGGROW enterx \contextstate continue

This code is used in section 43e.

49g Scanning a line comment. The initial // is already eaten.
〈Scan a line comment 49g 〉 =

SC_LINE_COMMENT:
〈EOF〉 enterx \contextstate \ROLLBACKCURRENTTOKEN

continue

〈n〉 \STRINGGROW enterx \contextstate continue
〈splice〉 \STRINGGROW continue

This code is used in section 43e.

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 153
159

50a Scanning a bison string, including its escapes. The initial quote is already eaten.
〈Scan a bison string 50a 〉 =

SC_ESCAPED_STRING:
〈EOF〉 fatal〈 unexpected end of file in a string 〉
" 〈Finish a bison string 50b 〉
〈n〉 fatal〈 unexpected end of line in a string 〉

This code is used in section 43e.

50b 〈Finish a bison string 50b 〉 =
\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \laststringraw }

{ val \yyfmark }{ val \yysmark } } }next
enter(INITIAL)
returnl ýstringþ

This code is used in section 50a.

50c Scanning a bison character literal, decoding its escapes. The initial quote is already eaten.
〈Scan a character literal 50c 〉 =

SC_ESCAPED_CHARACTER:
〈EOF〉 fatal〈 unexpected end of file in a literal 〉
’ 〈Return an escaped character 50d 〉
〈n〉 fatal〈 unexpected end of line in a literal 〉

This code is used in section 43e.

50d 〈Return an escaped character 50d 〉 =
\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \laststringraw }

{ val \yyfmark }{ val \yysmark } } }next
\STRINGFREE

enter(INITIAL)
returnl char

This code is used in section 50c.

50e Scanning a tag. The initial angle bracket is already eaten.
〈Scan a tag 50e 〉 =

SC_TAG:
> 〈Finish a tag 50f 〉
([<>]c | ->)+ \STRINGGROW continue
< 〈Raise nesting level 51a 〉
〈EOF〉 fatal〈 unexpected end of file in a literal 〉

This code is used in section 43e.

50f 〈Finish a tag 50f 〉 =
add\lonesting −1R

ifω \lonesting < 0R

\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \laststringraw }

{ val \yyfmark }{ val \yysmark } } }next
\STRINGFREE

enter(INITIAL)
def next { returnl <tag> }

else
\STRINGGROW let next = continue

fi
next

This code is used in section 50e.

159
163 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS

51a This is a slightly different rule from the original scanner. We do not perform yyleng computations, so it
makes sense to raise the nesting level one by one.
〈Raise nesting level 51a 〉 =

\STRINGGROW

add\lonesting 1R

continue

This code is used in section 50e.

51b 〈Decode escaped characters 51b 〉 =
SC_ESCAPED_STRING SC_ESCAPED_CHARACTER:

\ [0–7]{1,3} \STRINGGROW continue
\x [0–9abcdefABCDEF]+ \STRINGGROW continue
\a \STRINGGROW continue
\b \STRINGGROW continue
\f \STRINGGROW continue
\n \STRINGGROW continue
\r \STRINGGROW continue
\t \STRINGGROW continue
\v \STRINGGROW continue
\(" | ’ | ? | \) . \["’?\] is shorter but confuses xgettext /

\STRINGGROW continue

\(u | U [0–9abcdefABCDEF]{4}) [0–9abcdefABCDEF]{4} \STRINGGROW continue
\(. | 〈n〉) fatal〈 invalid character after \: val \yytext 〉

This code is used in section 43e.

51c 〈Scan user-code characters and strings 51c 〉 =
SC_CHARACTER SC_STRING:
〈splice〉 | \〈splice〉[〈n〉[]]c \STRINGGROW continue

SC_CHARACTER:
’ \STRINGGROW enterx \contextstate continue
〈n〉 fatal〈 unexpected end of line instead of a character 〉
〈EOF〉 fatal〈 unexpected end of file instead of a character 〉

SC_STRING:
" \STRINGGROW enterx \contextstate continue
〈n〉 fatal〈 unexpected end of line instead of a character 〉
〈EOF〉 fatal〈 unexpected end of file instead of a character 〉

This code is used in section 43e.

51d 〈Strings, comments etc. found in user code 51d 〉 =
SC_BRACED_CODE SC_PROLOGUE SC_EPILOGUE SC_PREDICATE:

’ \STRINGGROW \contextstate \YYSTART enter(SC_CHARACTER)continue
" \STRINGGROW \contextstate \YYSTART enter(SC_STRING)continue
/〈splice〉* \STRINGGROW \contextstate \YYSTART enter(SC_COMMENT)continue
/〈splice〉/ \STRINGGROW \contextstate \YYSTART enter(SC_LINE_COMMENT)continue

This code is used in section 43e.

51e Scanning some code in braces (actions, predicates). The initial { is already eaten.
〈Scan code in braces 51e 〉 =

SC_BRACED_CODE SC_PREDICATE:
{ | <〈splice〉% \STRINGGROW add\lonesting 1R continue
%〈splice〉> \STRINGGROW add\lonesting −1R continue
<〈splice〉< . Tokenize <<% correctly (as << %) rather than incorrectly (as < <%). /

\STRINGGROW continue

〈EOF〉 fatal〈 unexpected end of line inside braced code 〉

 TOKENIZING WITH REGULAR EXPRESSIONS SPLINT 163
169

SC_BRACED_CODE:
} 〈Add closing brace to the braced code 52a 〉

SC_PREDICATE:
} 〈Add closing brace to a predicate 52b 〉

This code is used in section 43e.

52a Unlike the original lexer, we do not return the closing brace as part of the braced code.
〈Add closing brace to the braced code 52a 〉 =

add\lonesting −1R

ifω \lonesting < 0R

\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \yyfmark }{ val \yysmark } } }next
def next { returnl "{...}"m }

enter(INITIAL)
else

\STRINGGROW

let next = continue
fi
next

This code is used in section 51e.

52b 〈Add closing brace to a predicate 52b 〉 =
add\lonesting −1R

ifω \lonesting < 0R

\STRINGFINISH

defx next { \yylval { { val \laststring }{ val \yyfmark }{ val \yysmark } } }next
enter(INITIAL)
def next { returnl "%?{...}"m }

else
\STRINGGROW

let next = continue
fi
next

This code is used in section 51e.

52c Scanning some prologue: from %{ (already scanned) to %}.
〈Scan prologue 52c 〉 =

SC_PROLOGUE:
%} 〈Finish braced code 52d 〉
〈EOF〉 fatal〈 unexpected end of file inside prologue 〉

This code is used in section 43e.

52d 〈Finish braced code 52d 〉 =
\STRINGFINISH

defx next { \yylval { { val \laststring }val \postoks { val \yyfmark }{ val \yysmark } } }next
enter(INITIAL)
returnl "%{...%}"m

This code is used in section 52c.

52e Scanning the epilogue (everything after the second 〈%〉, which has already been eaten).
〈Scan the epilogue 52e 〉 =

SC_EPILOGUE:
〈EOF〉 〈Handle end of file in the epilogue 53a 〉

This code is used in section 43e.

169
171 SPLINT TOKENIZING WITH REGULAR EXPRESSIONS

53a 〈Handle end of file in the epilogue 53a 〉 =
\ROLLBACKCURRENTTOKEN

\STRINGFINISH

\yylval = \laststring

enter(INITIAL)
returnl epilogue

This code is used in section 52e.

53b By default, grow the string obstack with the input.
〈Add the scanned symbol to the current string 53b 〉 =

SC_COMMENT SC_LINE_COMMENT SC_BRACED_CODE SC_PREDICATE SC_PROLOGUE SC_EPILOGUE SC_STRING SC_CHARACTER SC_ESCAPED_STRING SC_ESCAPED_CHARACTER

. ←↩
SC_COMMENT SC_LINE_COMMENT SC_BRACED_CODE SC_PREDICATE SC_PROLOGUE SC_EPILOGUE

〈n〉 \STRINGGROW continue

This code is used in section 43e.

 THE FLEX PARSER STACK SPLINT 171
171

6
The flex parser stack

55a The scanner generator, flex, uses bison to produce a parser for its input language. Its lexer is output by
flex itself so both are reused to generate the parser and the scanner for pretty printing flex input.

This task is made somewhat complicated by the dependence of the flex input scanner on the correctly
placed whitespace 1), as well as the reliance of the said scanner on rather involved state switching. Therefore,
making subparsers for different fragments of flex input involves not only choosing an appropriate subset of
grammar rules to correctly process the grammatic constructs but also setting up the correct lexer states.

The first subparser is designed to process a complete flex file. This parser is not currently part of any
parser stack and is only used for testing. This is the only parser that does not rely on any custom adjustments
to the lexer state to operate correctly.
〈 fip.yy 55a 〉 =
···
〈Preamble for the flex parser 57c 〉
···
〈Options for flex parser 55b 〉
〈union〉
···
〈Postamble for flex parser 66i 〉
···
〈Token definitions for flex input parser 56d 〉

〈Productions for flex parser 57d 〉

55b The selection of options for bison parsers suitable for SPLinT have been discussed earlier so we list them
here without further comments.
〈Options for flex parser 55b 〉 =
〈token table〉 ?
〈parse.trace〉 ? (set as 〈debug〉)
〈start〉 goal

This code is used in sections 55a, 56a, 56b, and 56c.

1) For example, each regular expression definition in section 1 must start at the beginning of the line.

 THE FLEX PARSER STACK SPLINT 173
176

56a A parser for section 1 (definitions and declarations). This parser requires a custom lexer, as discussed above,
to properly set up the state. Short of this, the lexer may produce the wrong kind of tokens or even generate
an error.
〈 ddp.yy 56a 〉 =
···
〈Preamble for the flex parser 57c 〉
···
〈Options for flex parser 55b 〉
〈union〉
···
〈Postamble for flex parser 66i 〉
···
〈Token definitions for flex input parser 56d 〉

〈Exclusive productions for flex section 1 parser 58c 〉
〈Productions for flex section 1 parser 58e 〉

56b A parser for section 2 (rules and actions). This subparser must also use a custom set up for its lexer as
discussed above.
〈 rap.yy 56b 〉 =
···
〈Preamble for the flex parser 57c 〉
···
〈Options for flex parser 55b 〉
〈union〉
···
〈Postamble for flex parser 66i 〉
···
〈Token definitions for flex input parser 56d 〉

〈 Special flex section 2 parser productions 60j 〉
〈Productions for flex section 2 parser 60l 〉

56c A parser for just the regular expression syntax. A custom lexer initialization must precede the use of this
parser, as well.
〈 rep.yy 56c 〉 =
···
〈Preamble for the flex parser 57c 〉
···
〈Options for flex parser 55b 〉
〈union〉
···
〈Postamble for flex parser 66i 〉
···
〈Token definitions for flex input parser 56d 〉

〈 Special productions for regular expressions 62d 〉
〈Rules for flex regular expressions 62f 〉

56d Token and state declarations for the flex input scanner

Needless to say, the original grammar used by flex was not designed with pretty printing in mind (and
why would it be?). Instead, efficiency was the goal which resulted in a number of lexical constructs being
processed ‘on the fly’, as the lexer encounters them. Such syntax fragments never reach the parser, and

176
181 SPLINT TOKEN AND STATE DECLARATIONS FOR THE FLEX INPUT SCANNER

would not have a chance to be displayed by our routines, unless some grammar extensions and alterations
were introduced.

To make the pretty printing possible, a number of new tokens have been introduced below that are later
used in a few altered or entirely new grammar productions.
〈Token definitions for flex input parser 56d 〉 = 57a

5
char num SECTEND 〈state〉
〈xtate〉 ýnameþ PREVCCL 〈EOF〉
〈option〉 〈outfile〉 〈prefix〉 〈yyclass〉
〈header〉 〈extra type〉 〈tables〉 〈αn〉
〈αβ〉 〈 〉 〈7→〉 〈0..9〉
〈§〉 〈a..z〉 〈2〉 〈.〉
〈 〉 〈A..Z〉 〈0..Z〉 〈¬αn〉
〈¬αβ〉 〈¬ 〉 〈¬ 7→〉 〈¬0..9〉
〈¬§〉 〈¬a..z〉 〈¬2〉 〈¬.〉
〈¬ 〉 〈¬A..Z〉 〈¬0..Z〉

〈left〉 \ ∪
See also sections 57a and 57b.

This code is used in sections 55a, 56a, 56b, and 56c.

57a We introduce an additional option type to capture all the non-parametric options used by the flex lexer.
The original lexer processes these options at the point of recognition, while the typesetting parser needs to
be aware of them.
〈Token definitions for flex input parser 56d 〉 + =

4
56d 57b

5
〈top〉 〈pointer*〉 〈array〉 〈def〉
〈defre〉 〈other〉 〈deprecated〉

57b POSIX and AT&T lex place the precedence of the repeat operator, {}, below that of concatenation. Thus,
ab{3} is ababab. Most other POSIX utilities use an Extended Regular Expression (ERE) precedence that
has the repeat operator higher than concatenation. This causes ab{3} to yield abbb.

In order to support the POSIX and AT&T precedence and the flex precedence we define two token sets for
the begin and end tokens of the repeat operator, {p and }p. The lexical scanner chooses which tokens to
return based on whether posix compat or lex compat are specified. Specifying either posix compat or
lex compat will cause flex to parse scanner files as per the AT&T and POSIX-mandated behavior.
〈Token definitions for flex input parser 56d 〉 + =

4
57a

{p }p {f }f

57c The grammar for flex input

The original grammar has been carefully split into sections to facilitate the assembly of various subparsers
in the flex’s stack. Neither the flex parser nor its scanner are part of the bootstrap procedure which
simplifies both the input file organization, as well as the macro design. Some amount of preprocessing is still
necessary, however, to extract the state names from the lexer file (see above for the explanation). We can
nevertheless get away with an empty C preamble.
〈Preamble for the flex parser 57c 〉 =
This code is used in sections 55a, 56a, 56b, and 56c.

57d 〈Productions for flex parser 57d 〉 = 58b
5

goal : initlex sect1 sect1end sect2 initforrule 〈Assemble a flex input file 58a 〉
sect1end : SECTEND 〈Copy the value 66f 〉
initlex : ◦

See also section 58b.

This code is used in section 55a.

 THE GRAMMAR FOR FLEX INPUT SPLINT 181
192

58a 〈Assemble a flex input file 58a 〉 =
Υ← 〈val Υ2val Υ4〉

This code is used in section 57d.

58b 〈Productions for flex parser 57d 〉 + =
4

57d

〈Productions for flex section 1 parser 58e 〉
〈Productions for flex section 2 parser 60l 〉

58c 〈Exclusive productions for flex section 1 parser 58c 〉 =
goal : sect1 〈Assemble a flex section 1 file 58d 〉

This code is used in section 56a.

58d 〈Assemble a flex section 1 file 58d 〉 =
Ω\expandafter { val Υ1 }

This code is used in section 58c.

58e 〈Productions for flex section 1 parser 58e 〉 = 59d
5

sect1 :
sect1 startconddecl namelist1 〈Add start condition declarations 58f 〉
sect1 options 〈Add options to section 1 58g 〉
◦ 〈Create an empty section 1 58h 〉
error 〈Report an error in section 1 and quit 58i 〉

startconddecl :
〈state〉 〈Prepare a state declaration 58j 〉
〈xtate〉 〈Prepare an exclusive state declaration 58k 〉

namelist1 :
namelist1 ýnameþ 〈Add a name to a list 59a 〉
ýnameþ 〈 Start a namelist1 with a name 59b 〉
error 〈Report an error in namelist1 and quit 59c 〉

See also section 59d.

This code is used in sections 56a and 58b.

58f 〈Add start condition declarations 58f 〉 =
Υ← 〈val Υ1

nx
\flscondecl val Υ2{ val Υ3 }〉

This code is used in section 58e.

58g 〈Add options to section 1 58g 〉 =
Υ← 〈val Υ1val Υ2〉

This code is used in section 58e.

58h 〈Create an empty section 1 58h 〉 =
Υ← 〈〉

This code is used in section 58e.

58i 〈Report an error in section 1 and quit 58i 〉 =
\yyerror

This code is used in section 58e.

58j 〈Prepare a state declaration 58j 〉 =
Υ← 〈{ s }val Υ1〉

This code is used in section 58e.

58k 〈Prepare an exclusive state declaration 58k 〉 =
Υ← 〈{ x }val Υ1〉

This code is used in section 58e.

192
202 SPLINT THE GRAMMAR FOR FLEX INPUT

59a 〈Add a name to a list 59a 〉 =
Υ← 〈val Υ1

nx
\flnamesep { }{ }nx

\flname val Υ2〉
This code is used in section 58e.

59b 〈Start a namelist1 with a name 59b 〉 =
Υ← 〈nx

\flname val Υ1〉
This code is used in section 58e.

59c 〈Report an error in namelist1 and quit 59c 〉 =
\yyerror

This code is used in section 58e.

59d 〈Productions for flex section 1 parser 58e 〉 + =
4

58e

options :
〈option〉 optionlist 〈Start an options list 59e 〉
〈pointer*〉 〈Add a pointer option 59f 〉
〈array〉 〈Add an array option 59g 〉
〈top〉 \n 〈Add a 〈top〉 directive 59h 〉
〈def〉 〈defre〉 〈Add a regular expression definition 59i 〉
〈deprecated〉 〈Output a deprecated option 60i 〉

optionlist : optionlist option | ◦ 〈Make an empty option list 60a 〉
option :
〈outfile〉 = ýnameþ 〈Record the name of the output file 60b 〉
〈extra type〉 = ýnameþ 〈Declare an extra type 60c 〉
〈prefix〉 = ýnameþ 〈Declare a prefix 60d 〉
〈yyclass〉 = ýnameþ 〈Declare a class 60e 〉
〈header〉 = ýnameþ 〈Declare the name of a header 60f 〉
〈tables〉 = ýnameþ 〈Declare the name for the tables 60g 〉
〈other〉 〈Output a non-parametric option 60h 〉

59e 〈Start an options list 59e 〉 =
Υ← 〈nx

\floptions { val Υ2 }〉
This code is used in section 59d.

59f 〈Add a pointer option 59f 〉 =
Υ← 〈nx

\flptropt val Υ1〉
This code is used in section 59d.

59g 〈Add an array option 59g 〉 =
Υ← 〈nx

\flarrayopt val Υ1〉
This code is used in section 59d.

59h 〈Add a 〈top〉 directive 59h 〉 =
Υ← 〈nx

\fltopopt val Υ1val Υ2〉
This code is used in section 59d.

59i 〈Add a regular expression definition 59i 〉 =
Υ← 〈nx

\flredef val Υ1val Υ2〉
This code is used in section 59d.

59j 〈Add an option to a list 59j 〉 =
Υ← 〈val Υ1val Υ2〉

This code is used in section 59d.

 THE GRAMMAR FOR FLEX INPUT SPLINT 202
214

60a 〈Make an empty option list 60a 〉 =
Υ← 〈〉

This code is used in section 59d.

60b 〈Record the name of the output file 60b 〉 =
Υ← 〈nx

\flopt { file }val Υ3〉
This code is used in section 59d.

60c 〈Declare an extra type 60c 〉 =
Υ← 〈nx

\flopt { xtype }val Υ3〉
This code is used in section 59d.

60d 〈Declare a prefix 60d 〉 =
Υ← 〈nx

\flopt { prefix }val Υ3〉
This code is used in section 59d.

60e 〈Declare a class 60e 〉 =
Υ← 〈nx

\flopt { yyclass }val Υ3〉
This code is used in section 59d.

60f 〈Declare the name of a header 60f 〉 =
Υ← 〈nx

\flopt { header }val Υ3〉
This code is used in section 59d.

60g 〈Declare the name for the tables 60g 〉 =
Υ← 〈nx

\flopt { tables }val Υ3〉
This code is used in section 59d.

60h 〈Output a non-parametric option 60h 〉 =
Υ← 〈nx

\flopt { other }val Υ1〉
This code is used in section 59d.

60i 〈Output a deprecated option 60i 〉 =
Υ← 〈nx

\flopt { deprecated }val Υ1〉
This code is used in section 59d.

60j 〈Special flex section 2 parser productions 60j 〉 =
goal :

sect2 〈Output section 2 60k 〉
This code is used in section 56b.

60k 〈Output section 2 60k 〉 =
ΩΥ1

This code is used in section 60j.

60l This portion of the grammar was changed to make it possible to read the action code.
〈Productions for flex section 2 parser 60l 〉 = 61e

5
sect2 :

sect2 scon initforrule flexrule \n \n 〈Add a rule to section 2 61a 〉
sect2 scon { sect2 } 〈Add a group of rules to section 2 61b 〉
◦ 〈 Start an empty section 2 61c 〉
sect2 \n 〈Add a bare action 61d 〉

initforrule : ◦ \flin@ruletrue continue

See also sections 61e and 62c.

This code is used in sections 56b and 58b.

214
224 SPLINT THE GRAMMAR FOR FLEX INPUT

61a 〈Add a rule to section 2 61a 〉 =
\ifflcontinued@action

vb← 〈 \flactionc 〉
else

vb← 〈 \flaction 〉
fi
va\expandafter { \astformat@flaction } . capture the formatting action /
\yypushx { val Υ1val vb← 〈 val Υ2 〉{ val Υ4 }val Υ5val Υ6{ val va } }\on \astarray

Υ← 〈\astarraylastcs 〉
let \astformat@flaction∅ . reset the format /

This code is used in section 60l.

61b 〈Add a group of rules to section 2 61b 〉 =
Υ← 〈val Υ1

nx
\flactiongroup { val Υ2 }val Υ3{ val Υ4 }val Υ5〉

This code is used in section 60l.

61c 〈Start an empty section 2 61c 〉 =
Υ← 〈〉

This code is used in section 60l.

61d 〈Add a bare action 61d 〉 =
Υ← 〈val Υ1

nx
\flbareaction val Υ2〉

This code is used in section 60l.

61e 〈Productions for flex section 2 parser 60l 〉 + =
4
60l 62c

5
scon stk ptr : ◦
scon :

< scon stk ptr namelist2 > 〈Create a list of start conditions 61f 〉
< * > 〈Create a universal start condition 61g 〉
◦ 〈Create an empty start condition 61h 〉

namelist2 :
namelist2 , sconname 〈Add a start condition to a list 61i 〉
sconname 〈 Start a list with a start condition name 61j 〉
error 〈Report an error compiling a start condition list 62a 〉

sconname : ýnameþ 〈Make a ýnameþ into a start condition 62b 〉

61f 〈Create a list of start conditions 61f 〉 =
Υ← 〈nx

\flsconlist { val Υ1 }{ val Υ3 }{ val Υ4 }〉
This code is used in section 61e.

61g 〈Create a universal start condition 61g 〉 =
Υ← 〈nx

\flsconuniv val Υ3〉
This code is used in section 61e.

61h 〈Create an empty start condition 61h 〉 =
Υ← 〈〉

This code is used in section 61e.

61i 〈Add a start condition to a list 61i 〉 =
Υ← 〈val Υ1

nx
\flnamesep val Υ2val Υ3〉

This code is used in section 61e.

61j 〈Start a list with a start condition name 61j 〉 =
〈Copy the value 66f 〉

This code is used in section 61e.

 THE GRAMMAR FOR FLEX INPUT SPLINT 224
234

62a 〈Report an error compiling a start condition list 62a 〉 =
\yyerror

This code is used in section 61e.

62b 〈Make a ýnameþ into a start condition 62b 〉 =
Υ← 〈nx

\flname val Υ1〉
This code is used in section 61e.

62c 〈Productions for flex section 2 parser 60l 〉 + =
4

61e

〈Rules for flex regular expressions 62f 〉

62d 〈Special productions for regular expressions 62d 〉 =
goal :

flexrule 〈Output a regular expression 62e 〉
This code is used in section 56c.

62e The parsed regular expression is output in the \table register. It is important to ensure that whenever this
parser is used inside another parser that uses \table for output, the changes to this register stay local. The
\frexproc macro in yyunion.sty ensures that all the changes are local to the parsing macro.
〈Output a regular expression 62e 〉 =

ΩΥ1

This code is used in section 62d.

62f 〈Rules for flex regular expressions 62f 〉 = 63a
5

exrule :
^ rule 〈Match a rule at the beginning of the line 62g 〉
rule 〈Match an ordinary rule 62h 〉
〈EOF〉 〈Match an end of file 62i 〉
error 〈Report an error and quit 62j 〉

See also sections 63a, 63i, 64d, 65f, and 66e.

This code is used in sections 56c and 62c.

62g 〈Match a rule at the beginning of the line 62g 〉 =
va\expandafter { \astformat@flrule }

let \astformat@flrule∅
Υ← 〈nx

\flbolrule { val Υ2 }{ val va }〉
This code is used in section 62f.

62h 〈Match an ordinary rule 62h 〉 =
va\expandafter { \astformat@flrule }

let \astformat@flrule∅
Υ← 〈nx

\flrule { val Υ1 }{ val va }〉
This code is used in section 62f.

62i 〈Match an end of file 62i 〉 =
Υ← 〈nx

\fleof val Υ1〉
This code is used in section 62f.

62j 〈Report an error and quit 62j 〉 =
\yyerror

This code is used in section 62f.

234
245 SPLINT THE GRAMMAR FOR FLEX INPUT

63a 〈Rules for flex regular expressions 62f 〉 + =
4
62f 63i

5
rule :

re2 re 〈Match a regular expression with a trailing context 63b 〉
re2 re $ 〈Disallow a repeated trailing context 63c 〉
re $ 〈Match a regular expression at the end of the line 63d 〉
re 〈Match an ordinary regular expression 63e 〉

re :
re | series 〈Match a sequence of alternatives 63f 〉
series 〈Match a sequence of singletons 63g 〉

re2 : re / 〈Prepare to match a trailing context 63h 〉

63b 〈Match a regular expression with a trailing context 63b 〉 =
π2(Υ1) 7→ vaπ3(Υ1) 7→ vb

Υ← 〈nx
\flretrail { val va }{ val vb }{ val Υ2 }〉

This code is used in section 63a.

63c 〈Disallow a repeated trailing context 63c 〉 =
\yyerror

This code is used in section 63a.

63d 〈Match a regular expression at the end of the line 63d 〉 =
Υ← 〈nx

\flreateol { val Υ1 }val Υ2〉
This code is used in section 63a.

63e 〈Match an ordinary regular expression 63e 〉 =
〈Copy the value 66f 〉

This code is used in section 63a.

63f 〈Match a sequence of alternatives 63f 〉 =
Υ← 〈val Υ1

nx
\flor val Υ2val Υ3〉

This code is used in section 63a.

63g 〈Match a sequence of singletons 63g 〉 =
〈Copy the value 66f 〉

This code is used in section 63a.

63h 〈Prepare to match a trailing context 63h 〉 =
Υ← 〈nx

\fltrail { val Υ1 }{ val Υ2 }〉
This code is used in section 63a.

63i 〈Rules for flex regular expressions 62f 〉 + =
4
63a 64d

5
series :

series singleton 〈Extend a series by a singleton 63j 〉
singleton 〈Match a singleton 63k 〉
series {p num , num }p 〈Match a series of specific length 64a 〉
series {p num , }p 〈Match a series of minimal length 64b 〉
series {p num }p 〈Match a series of exact length 64c 〉

63j 〈Extend a series by a singleton 63j 〉 =
Υ← 〈val Υ1val Υ2〉

This code is used in section 63i.

63k 〈Match a singleton 63k 〉 =
〈Copy the value 66f 〉

This code is used in section 63i.

 THE GRAMMAR FOR FLEX INPUT SPLINT 245
256

64a 〈Match a series of specific length 64a 〉 =
〈Create a series of specific length 64h 〉

This code is used in section 63i.

64b 〈Match a series of minimal length 64b 〉 =
〈Create a series of minimal length 64i 〉

This code is used in section 63i.

64c 〈Match a series of exact length 64c 〉 =
〈Create a series of exact length 64j 〉

This code is used in section 63i.

64d 〈Rules for flex regular expressions 62f 〉 + =
4
63i 65f

5
singleton :

singleton * 〈Create a lazy series match 64e 〉
singleton + 〈Create a nonempty series match 64f 〉
singleton ? 〈Create a possible single match 64g 〉
singleton {f num , num }f 〈Create a series of specific length 64h 〉
singleton {f num , }f 〈Create a series of minimal length 64i 〉
singleton {f num }f 〈Create a series of exact length 64j 〉
. 〈Match (almost) any character 64k 〉
fullccl 〈Match a character class 65a 〉
PREVCCL 〈Match a PREVCCL 65b 〉
" string " 〈Match a string 65c 〉
(re) 〈Match an atom 65d 〉
char 〈Match a specific character 65e 〉

64e 〈Create a lazy series match 64e 〉 =
Υ← 〈nx

\flrepeat { val Υ1 }〉
This code is used in section 64d.

64f 〈Create a nonempty series match 64f 〉 =
Υ← 〈nx

\flrepeatstrict { val Υ1 }〉
This code is used in section 64d.

64g 〈Create a possible single match 64g 〉 =
Υ← 〈nx

\flrepeatonce { val Υ1 }〉
This code is used in section 64d.

64h 〈Create a series of specific length 64h 〉 =
Υ← 〈nx

\flrepeatnm { val Υ1 }{ val Υ3 }{ val Υ5 }〉
This code is used in sections 64a and 64d.

64i 〈Create a series of minimal length 64i 〉 =
Υ← 〈nx

\flrepeatgen { val Υ1 }{ val Υ3 }〉
This code is used in sections 64b and 64d.

64j 〈Create a series of exact length 64j 〉 =
Υ← 〈nx

\flrepeatn { val Υ1 }{ val Υ3 }〉
This code is used in sections 64c and 64d.

64k 〈Match (almost) any character 64k 〉 =
Υ← 〈nx

\fldot val Υ1〉
This code is used in section 64d.

256
267 SPLINT THE GRAMMAR FOR FLEX INPUT

65a 〈Match a character class 65a 〉 =
〈Copy the value 66f 〉

This code is used in section 64d.

65b 〈Match a PREVCCL 65b 〉 =
〈Copy the value 66f 〉

This code is used in section 64d.

65c 〈Match a string 65c 〉 =
Υ← 〈nx

\flstring { val Υ1 }{ val Υ2 }{ val Υ3 }〉
This code is used in section 64d.

65d 〈Match an atom 65d 〉 =
va\expandafter { \astformat@flparens }

let \astformat@flparens∅
Υ← 〈nx

\flparens { val Υ1 }{ val Υ2 }{ val Υ3 }{ val va }〉
This code is used in section 64d.

65e 〈Match a specific character 65e 〉 =
Υ← 〈nx

\flchar val Υ1〉
This code is used in section 64d.

65f 〈Rules for flex regular expressions 62f 〉 + =
4
64d 66e

5
fullccl :

fullccl \ braceccl 〈Subtract a character class 65g 〉
fullccl ∪ braceccl 〈Create a union of character classes 65h 〉
braceccl 〈Turn a basic character class into a character class 65i 〉

braceccl :
[ccl] 〈Create a character class 65j 〉
[^ ccl] 〈Create a complementary character class 65k 〉

ccl :
ccl char – char 〈Add a range to a character class 66a 〉
ccl char 〈Add a character to a character class 66b 〉
ccl ccl expr 〈Add an expression to a character class 66c 〉
◦ 〈Create an empty character class 66d 〉

65g 〈Subtract a character class 65g 〉 =
Υ← 〈nx

\flccldiff { val Υ1 }{ val Υ3 }〉
This code is used in section 65f.

65h 〈Create a union of character classes 65h 〉 =
Υ← 〈nx

\flcclunion { val Υ1 }{ val Υ3 }〉
This code is used in section 65f.

65i 〈Turn a basic character class into a character class 65i 〉 =
〈Copy the value 66f 〉

This code is used in section 65f.

65j 〈Create a character class 65j 〉 =
Υ← 〈nx

\flbraceccl { val Υ1 }{ val Υ2 }{ val Υ3 }〉
This code is used in section 65f.

65k 〈Create a complementary character class 65k 〉 =
Υ← 〈nx

\flbracecclneg { val Υ1 }{ val Υ3 }{ val Υ4 }〉
This code is used in section 65f.

 THE GRAMMAR FOR FLEX INPUT SPLINT 267
276

66a 〈Add a range to a character class 66a 〉 =
Υ← 〈val Υ1

nx
\flcclrnge { nx

\flchar val Υ2 }{
nx

\flchar val Υ4 }〉
This code is used in section 65f.

66b 〈Add a character to a character class 66b 〉 =
Υ← 〈val Υ1

nx
\flchar val Υ2〉

This code is used in section 65f.

66c 〈Add an expression to a character class 66c 〉 =
Υ← 〈val Υ1

nx
\flcclexpr val Υ2〉

This code is used in section 65f.

66d 〈Create an empty character class 66d 〉 =
Υ← 〈〉

This code is used in section 65f.

66e 〈Rules for flex regular expressions 62f 〉 + =
4
65f

ccl expr :
〈αn〉 | 〈αβ〉 | 〈 〉 | 〈7→〉 | 〈0..9〉 | 〈§〉 〈Copy the value 66f 〉
〈a..z〉 | 〈2〉 | 〈.〉 | 〈 〉 | 〈0..Z〉 | 〈A..Z〉 〈Copy the value 66f 〉
〈¬αn〉 | 〈¬αβ〉 | 〈¬ 〉 | 〈¬ 7→〉 | 〈¬0..9〉 | 〈¬§〉 〈Copy the value 66f 〉
〈¬2〉 | 〈¬.〉 | 〈¬ 〉 | 〈¬0..Z〉 | 〈¬a..z〉 | 〈¬A..Z〉 〈Copy the value 66f 〉

string : string char | ◦ 〈Make an empty regular expression string 66h 〉

66f 〈Copy the value 66f 〉 =
Υ← 〈val Υ1〉

This code is used in sections 57d, 61j, 63e, 63g, 63k, 65a, 65b, 65i, and 66e.

66g 〈Extend a flex string by a character 66g 〉 =
Υ← 〈val Υ1

nx
\flchar val Υ2〉

This code is used in section 66e.

66h 〈Make an empty regular expression string 66h 〉 =
Υ← 〈〉

This code is used in section 66e.

66i This is needed to get the yytoknum array. A trivial declaration suffices.
〈Postamble for flex parser 66i 〉 =
#define YYPRINT(file , type , value) yyprint (file , type , value)

static void yyprint (FILE ∗file , int type , YYSTYPEvalue)
{ }

This code is used in sections 55a, 56a, 56b, and 56c.

7
The lexer for flex syntax

67a The original lexer for flex grammar relies on a few rules that use ‘trailing context’. The lexing mechanism
implemented by SPLinT cannot process such rules properly in general. The rules used by flex match fixed-
length trailing context only, which makes it possible to replace them with ordinary patterns and use yyless ()
in the actions.
〈 fil.ll 67a 〉 =
··
〈Preamble for flex lexer 67b 〉
··
〈Options for flex input lexer 67c 〉
〈Additional options for flex input lexer 68a 〉
〈 State definitions for flex input lexer 68b 〉
〈Definitions for flex input lexer 68c 〉

〈Postamble for flex input lexer 68d 〉
〈Patterns for flex lexer 69a 〉

〈Auxilary code for flex lexer 80c 〉

67b 〈Preamble for flex lexer 67b 〉 =
This code is used in section 67a.

67c There are a few options that are necessary to ensure that the lexer functions properly. Some of them (like
caseless) directly affect the behavior of the scanner, others (e.g. noyy_top_state) prevent generation of
unnecessary code.
〈Options for flex input lexer 67c 〉 =
〈caseless〉f ?
〈nodefault〉f ?
〈stack〉f ?
〈noyy_top_state〉f ?
〈nostdinit〉f ?

This code is used in section 67a.

 THE LEXER FOR FLEX SYNTAX SPLINT 279
283

68a 〈Additional options for flex input lexer 68a 〉 =
〈bison-bridge〉f ?
〈noyywrap〉f ?
〈nounput〉f ?
〈noinput〉f ?
〈reentrant〉f ?
〈debug〉f ?
〈stack〉f ?
〈outfile〉f "fil.c"

This code is used in section 67a.

68b Regular expression and state definitions

The lexer uses a large number of states to control its operation. Both section 1 and section 2 rules rely on
the scanner being in the appropriate state. Otherwise (see symbols.sty example) the lexer may parse the
same fragment in a wrong context.
〈State definitions for flex input lexer 68b 〉 =
〈states-x〉f: SECT2 SECT2PROLOG SECT3 CODEBLOCK PICKUPDEF SC CARETISBOL NUM QUOTE

〈states-x〉f: FIRSTCCL CCL ACTION RECOVER COMMENT ACTION_STRING PERCENT_BRACE_ACTION

〈states-x〉f: OPTION LINEDIR CODEBLOCK_MATCH_BRACE

〈states-x〉f: GROUP_WITH_PARAMS

〈states-x〉f: GROUP_MINUS_PARAMS

〈states-x〉f: EXTENDED_COMMENT

〈states-x〉f: COMMENT_DISCARD

This code is used in section 67a.

68c Somewhat counterintuitively, flex definitions do not always have to be fully formed regular expressions. For
example, after

〈BOGUS〉 ^[a-

one can form the following action:

〈BOGUS〉t] ;

although without the ‘^’ in the definition of ‘〈BOGUS〉’ flex would have put a ‘)’ inside the character class.
We will assume such (rather counterproductive) tricks are not used. If the definition is not a well-formed
regular expression the pretty printing will be suspended.
〈Definitions for flex input lexer 68c 〉 =
〈 +〉 [〈 〉]+
〈 ∗〉 [〈 〉]∗
〈NOT_WS〉 [〈 〉〈r〉〈n〉]c
〈←↩〉 〈r〉?〈n〉

〈NAME〉 ([〈αβ〉_] [〈αn〉_-]∗)
〈NOT_NAME〉 [〈αβ〉_*〈n〉]c+

〈SCNAME〉 〈NAME〉
〈ESCSEQ〉 (\([〈n〉]c | [0–7]{1,3} | x [〈0..Z〉]{1,2}))
〈FIRST_CCL_CHAR〉 ([\〈n〉]c | 〈ESCSEQ〉)
〈CCL_CHAR〉 ([\〈n〉]]c | 〈ESCSEQ〉)
〈CCL_EXPR〉 ([: ^? [〈αβ〉]+:])
〈LEXOPT〉 [porkacne]
〈M4QSTART〉 [[

〈M4QEND〉]]

This code is used in section 67a.

68d 〈Postamble for flex input lexer 68d 〉 =
This code is used in section 67a.

283
288 SPLINT REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER

69a Regular expressions for flex input scanner

The code below treats 〈pointer〉 and 〈array〉 the same way it treats 〈option〉 while typesetting.
〈Patterns for flex lexer 69a 〉 = 69f

5
INITIAL:
a 〈 +〉 \flindented@codetrue enter(CODEBLOCK)continue
a /* push state(COMMENT) continue
a #〈 ∗〉line〈 +〉 push state(LINEDIR) continue
a %s 〈NAME〉? returnp 〈state〉
a %x 〈NAME〉? returnp 〈xtate〉
a %{ .∗〈←↩〉 〈Start a C code section 69b 〉
a %top [〈 〉]∗{ [〈 〉]∗〈←↩〉 〈Begin the 〈top〉 directive 69c 〉
a %top .∗ fatal〈 malformed ’% top’ directive 〉
〈 +〉 ; . discard /
a %% .∗ 〈 Start section 2 69d 〉
a %pointer .∗〈←↩〉 \flinc@linenum returnl 〈pointer*〉
a %array .∗〈←↩〉 \flinc@linenum returnl 〈array〉
a %option enter(OPTION)returnl 〈option〉
a %〈LEXOPT〉〈 ∗〉 [〈0..9〉]∗〈 ∗〉〈←↩〉 \flinc@linenum returnopt 〈deprecated〉
a %〈LEXOPT〉〈 +〉 .∗〈←↩〉 \flinc@linenum returnopt 〈deprecated〉
a %[porksexcan{}]c .∗ fatal〈 unrecognized ’%’ directive: val \yytext 〉
a 〈NAME〉 〈Copy the name and start a definition 69e 〉
〈SCNAME〉 \RETURNNAME

a 〈 ∗〉〈←↩〉 \flinc@linenum continue . allows blank lines in section 1 /
〈 ∗〉〈←↩〉 \flinc@linenum continue . maybe end of comment line /

See also sections 69f, 70b, 71b, 73a, 73b, 73f, 77b, 78b, 79b, 79d, and 80b.

This code is used in section 67a.

69b 〈Start a C code section 69b 〉 =
\flinc@linenum

\flindented@codefalse enter(CODEBLOCK)
continue

This code is used in section 69a.

69c Ignore setting brace start line as it is only used internally to report errors.
〈Begin the 〈top〉 directive 69c 〉 =

\flinc@linenum

def \flbrace@depth { 1 }

push state(CODEBLOCK_MATCH_BRACE) continue

This code is used in section 69a.

69d 〈Start section 2 69d 〉 =
def \flsectnum { 2 }def \flbracelevel { 0 }

enter(SECT2PROLOG)returnp SECTEND

This code is used in section 69a.

69e 〈Copy the name and start a definition 69e 〉 =
\fldidadeffalse enter(PICKUPDEF)
returnvp 〈def〉

This code is used in section 69a.

69f 〈Patterns for flex lexer 69a 〉 + =
4
69a 70b

5
COMMENT:

*/ continue
* continue
〈M4QSTART〉 continue

 REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER SPLINT 288
292

〈M4QEND〉 continue
[*〈n〉]c continue
〈←↩〉 \flinc@linenum continue

COMMENT_DISCARD: . This is the same as COMMENT, but is discarded rather than output. /
*/ continue
* continue
[*〈n〉]c continue
〈←↩〉 \flinc@linenum continue

EXTENDED_COMMENT:
) continue
[〈n〉)]c+ continue
〈←↩〉 \flinc@linenum continue

LINEDIR:
〈n〉 continue
[〈0..9〉]+ \fllinenum = \number \yytext continue
" ["〈n〉]c∗" continue . ignore the file name in the line directives /
. continue . ignore spurious characters /

CODEBLOCK:
a %} .∗〈←↩〉 \flinc@linenum enter(INITIAL)continue
〈M4QSTART〉 continue
〈M4QEND〉 continue
. continue
〈←↩〉 \flinc@linenum \ifflindented@code enter(INITIAL)fi continue

CODEBLOCK_MATCH_BRACE:
} 〈Pop state if code braces match 70a 〉
{ \flinc \flbrace@depth continue
〈←↩〉 \flinc@linenum continue
〈M4QSTART〉 continue
〈M4QEND〉 continue
[{}〈r〉〈n〉]c continue
〈EOF〉 fatal〈 Unmatched ’{’ 〉

70a 〈Pop state if code braces match 70a 〉 =
\fldec \flbrace@depth

ifω \flbrace@depth = 0R ◦
returnx\n

else
continue

fi

This code is used in section 69f.

70b 〈Patterns for flex lexer 69a 〉 + =
4
69f 71b

5
PICKUPDEF:
〈 +〉 continue
〈NOT WS〉 [〈r〉〈n〉]c∗ 〈 Skip trailing whitespace, save the definition 70c 〉
〈←↩〉 〈Complain if not inside a definition, continue otherwise 71a 〉

70c 〈Skip trailing whitespace, save the definition 70c 〉 =
defx \flnmdef { { val \yytext }{ val \yytextpure }{ val \yyfmark }{ val \yysmark } }

\fldidadeftrue continue

This code is used in section 70b.

292
293 SPLINT REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER

71a 〈Complain if not inside a definition, continue otherwise 71a 〉 =
\iffldidadef

\yylval \expandafter { \flnmdef }

def next { \flinc@linenum enter(INITIAL)returnl 〈defre〉 }
else

def next { fatal〈 incomplete name definition 〉 }
fi next

This code is used in section 70b.

71b 〈Patterns for flex lexer 69a 〉 + =
4
70b 73a

5
OPTION:
〈←↩〉 \flinc@linenum enter(INITIAL)continue
〈 +〉 \floption@sensetrue continue
= returnc

no 〈Toggle option sense 72a 〉
7bit returnopt 〈other〉
8bit returnopt 〈other〉
align returnopt 〈other〉
always-interactive returnopt 〈other〉
array returnopt 〈other〉
ansi-definitions returnopt 〈other〉
ansi-prototypes returnopt 〈other〉
backup returnopt 〈other〉
batch returnopt 〈other〉
bison-bridge returnopt 〈other〉
bison-locations returnopt 〈other〉
c++ returnopt 〈other〉
caseful | case-sensitive returnopt 〈other〉
caseless | case-insensitive returnopt 〈other〉
debug returnopt 〈other〉
default returnopt 〈other〉
ecs returnopt 〈other〉
fast returnopt 〈other〉
full returnopt 〈other〉
input returnopt 〈other〉
interactive returnopt 〈other〉
lex-compat 〈 Set lex compat 72b 〉
posix-compat 〈 Set posix compat 72c 〉
main returnopt 〈other〉
meta-ecs returnopt 〈other〉
never-interactive returnopt 〈other〉
perf-report returnopt 〈other〉
pointer returnopt 〈other〉
read returnopt 〈other〉
reentrant returnopt 〈other〉
reject returnopt 〈other〉
stack returnopt 〈other〉
stdinit returnopt 〈other〉
stdout returnopt 〈other〉
unistd returnopt 〈other〉
unput returnopt 〈other〉
verbose returnopt 〈other〉
warn returnopt 〈other〉
yylineno returnopt 〈other〉
yymore returnopt 〈other〉
yywrap returnopt 〈other〉
yy_push_state returnopt 〈other〉

 REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER SPLINT 293
297

yy_pop_state returnopt 〈other〉
yy_top_state returnopt 〈other〉
yy_scan_buffer returnopt 〈other〉
yy_scan_bytes returnopt 〈other〉
yy_scan_string returnopt 〈other〉
yyalloc returnopt 〈other〉
yyrealloc returnopt 〈other〉
yyfree returnopt 〈other〉
yyget_debug returnopt 〈other〉
yyset_debug returnopt 〈other〉
yyget_extra returnopt 〈other〉
yyset_extra returnopt 〈other〉
yyget_leng returnopt 〈other〉
yyget_text returnopt 〈other〉
yyget_lineno returnopt 〈other〉
yyset_lineno returnopt 〈other〉
yyget_in returnopt 〈other〉
yyset_in returnopt 〈other〉
yyget_out returnopt 〈other〉
yyset_out returnopt 〈other〉
yyget_lval returnopt 〈other〉
yyset_lval returnopt 〈other〉
yyget_lloc returnopt 〈other〉
yyset_lloc returnopt 〈other〉
extra-type returnl 〈extra type〉
outfile returnl 〈outfile〉
prefix returnl 〈prefix〉
yyclass returnl 〈yyclass〉
header (-file)? returnl 〈header〉
tables-file returnl 〈tables〉
tables-verify returnopt 〈other〉
" ["〈n〉]c∗" defx \flnmstr { { val \yytext }{ val \yytextpure } }returnvp ýnameþ
(([a–mo–z] | n[a–np–z]) [〈αβ〉-+]∗) | . fatal〈 unrecognized %option: val \yytext 〉

72a 〈Toggle option sense 72a 〉 =
\iffloption@sense

\floption@sensefalse

else
\floption@sensetrue

fi continue

This code is used in section 71b.

72b 〈Set lex compat 72b 〉 =
\iffloption@sense

\fllex@compattrue

else
\fllex@compatfalse

fi returnopt 〈other〉
This code is used in section 71b.

72c 〈Set posix compat 72c 〉 =
\iffloption@sense

\flposix@compattrue

else
\flposix@compatfalse

fi returnopt 〈other〉
This code is used in section 71b.

297
302 SPLINT REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER

73a The RECOVER state is never used for typesetting and is only added for completeness.
〈Patterns for flex lexer 69a 〉 + =

4
71b 73b

5RECOVER

.∗〈←↩〉 \flinc@linenum enter(INITIAL)continue

73b Like bison, flex allows insertion of C code in the middle of the input file.
〈Patterns for flex lexer 69a 〉 + =

4
73a 73f

5
SECT2PROLOG:
a %{ .∗ 〈Consume the brace and increment the brace level 73c 〉
a %} .∗ 〈Consume the brace and decrement the brace level 73d 〉
a 〈 +〉 .∗ continue
a 〈NOT WS〉 .∗ 〈Begin section 2, prepare to reread, or ignore braced code 73e 〉
. continue
〈←↩〉 \flinc@linenum continue
〈EOF〉 def \flsectnum { 0 }\yyterminate

73c All the code inside is ignored.
〈Consume the brace and increment the brace level 73c 〉 =

\flinc \flbracelevel \yyless { 2 }continue

This code is used in section 73b.

73d 〈Consume the brace and decrement the brace level 73d 〉 =
\fldec \flbracelevel \yyless { 2 }continue

This code is used in section 73b.

73e 〈Begin section 2, prepare to reread, or ignore braced code 73e 〉 =
ifω \flbracelevel > 0R

let next continue
else

def next { \yysetbol { 1R }enter(SECT2)\yyless { 0 }continue }
fi next

This code is used in section 73b.

73f A pattern below (for the character class processing) had to be broken into two lines. A symbol (�) was
inserted to indicate that a break had occured. The macros for flex typesetting use a different mechanism
from that of bison macros and allow typographic corrections to be applied to sections of the flex code
represented by various nonterminals. These corrections can also be delayed. For the details, an interested
reader may consult yyunion.sty.
〈Patterns for flex lexer 69a 〉 + =

4
73b 77b

5
SECT2:
a 〈 ∗〉〈←↩〉 \flinc@linenum continue . allow blank lines in section 2 /
a 〈 ∗〉%{ 〈 Start braced code in section 2 74a 〉
a 〈 ∗〉< \ifflsf@skip@ws else enter(SC)fi \yylexreturnraw <

a 〈 ∗〉^ \yylexreturnraw ^

" enter(QUOTE)returnx\flquotechar

{[〈0..9〉] 〈Process a repeat pattern 74b 〉
$([〈 〉] | 〈←↩〉) \yyless { 1 }\yylexreturnraw \$

〈 +〉%{ 〈Process braced code in the middle of section 2 74c 〉
〈 +〉| .∗〈←↩〉 〈Process a deferred action 74d 〉
a 〈 +〉/* 〈Process a comment inside a pattern 75a 〉
a 〈 +〉 ; . allow indented rules /
〈 +〉 〈Decide whether to start an action or skip whitespace inside a rule 75b 〉
〈 ∗〉〈←↩〉 〈Finish the line and/or action 75c 〉
a 〈 ∗〉<<EOF>> ←↩
<<EOF>> returnp 〈EOF〉

 REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER SPLINT 302
306

a %% .∗ 〈 Start section 3 76a 〉
[(〈FIRST CCL CHAR〉 | 〈CCL EXPR〉)�
(〈CCL CHAR〉 | 〈CCL EXPR〉)∗ 〈 Start processing a character class 76b 〉

{-} returnl \
{+} returnl ∪
{〈NAME〉} [〈 〉]? 〈Process a named expression after checking for whitespace at the end 76c 〉
/* 〈Decide if this is a comment 76d 〉
(?# 〈Determine if this is extended syntax or return a parenthesis 76e 〉
(? 〈Determine if this is a parametric group or return a parenthesis 77a 〉
(\flsf@push \yylexreturnraw \(

) \flsf@pop \yylexreturnraw \)

[/|*+?.(){}] returnc

. \RETURNCHAR

74a 〈Start braced code in section 2 74a 〉 =
def \flbracelevel { 1 }

\indented@codefalse \doing@codeblocktrue

enter(PERCENT_BRACE_ACTION)
continue

This code is used in section 73f.

74b 〈Process a repeat pattern 74b 〉 =
\yyless { 1 }enter(NUM)
\iffllex@compat

def next { returnl {p }

else
\ifflposix@compat

def next { returnl {p }

else
def next { returnl {f }

fi
fi next

This code is used in section 73f.

74c 〈Process braced code in the middle of section 2 74c 〉 =
def \flbracelevel { 1 }

enter(PERCENT_BRACE_ACTION)
\ifflin@rule

\fldoing@rule@actiontrue

\flin@rulefalse

def next { returnx\n }

else
let next continue

fi next

This code is used in section 73f.

74d This action has been changed to accomodate the new grammar. The separator (|) is treated as an ordinary
(empty) action.
〈Process a deferred action 74d 〉 =

\ifflsf@skip@ws . whitespace ignored, still inside a pattern /
\yylessafter { }

let next continue
else

\flinc@linenum

\fldoing@rule@actiontrue

\flin@rulefalse

306
310 SPLINT REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER

\flcontinued@actiontrue

\unput { \n }

enter(ACTION)
defx next { nxreturnx\n }

fi next

This code is used in section 73f.

75a 〈Process a comment inside a pattern 75a 〉 =
\ifflsf@skip@ws

push state(COMMENT_DISCARD)
else

\unput { \/ * }

def \flbracelevel { 0 }

\flcontinued@actionfalse

enter(ACTION)
fi continue

This code is used in section 73f.

75b 〈Decide whether to start an action or skip whitespace inside a rule 75b 〉 =
\ifflsf@skip@ws

let next continue
else

def \flbracelevel { 0 }

\flcontinued@actionfalse

enter(ACTION)
\ifflin@rule

\fldoing@rule@actiontrue

\flin@rulefalse

def next { returnx\n }

else
let next continue

fi
fi next

This code is used in section 73f.

75c 〈Finish the line and/or action 75c 〉 =
\ifflsf@skip@ws

\flinc@linenum

let next continue
else

def \flbracelevel { 0 }

\flcontinued@actionfalse

enter(ACTION)
\unput { \n }

\ifflin@rule

\fldoing@rule@actiontrue

\flin@rulefalse

def next { returnx\n }

else
let next continue

fi
fi next

This code is used in section 73f.

 REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER SPLINT 310
315

76a 〈Start section 3 76a 〉 =
def \flsectnum { 3 }

enter(SECT3)
\yyterminate

This code is used in section 73f.

76b 〈Start processing a character class 76b 〉 =
defx \flnmstr { val \yytext }

\yyless { 1 }

enter(FIRSTCCL)
\yylexreturnraw [

This code is used in section 73f.

76c Return a special char and return the whitespace back into the input. The braces and the possible trailing
whitespace will be dealt with by the typesetting code.
〈Process a named expression after checking for whitespace at the end 76c 〉 =

defx \flend@ch { val \yytextlastchar }

ifω \flend@ch = ‘\} ◦
\flend@is@wsfalse

else
\flend@is@wstrue

fi
va\expandafter { \astformat@flnametok }

let \astformat@flnametok∅
defx next { \yylval { { nx

\flnametok { val \yytext }{ val va } }{ }{ val \yyfmark }{ val \yysmark } } }next
\ifflend@is@ws

\unput { }

fi
returnl char

This code is used in section 73f.

76d 〈Decide if this is a comment 76d 〉 =
\ifflsf@skip@ws

push state(COMMENT_DISCARD)
continue

else
\yyless { 1 }

\yylexreturnraw \/

fi

This code is used in section 73f.

76e 〈Determine if this is extended syntax or return a parenthesis 76e 〉 =
\iffllex@compat

def next { \yyless { 1 }\flsf@push \yylexreturnraw (}

else
\ifflposix@compat

def next { \yyless { 1 }\flsf@push \yylexreturnraw (}

else
def next {push state(EXTENDED_COMMENT) }

fi
fi next

This code is used in section 73f.

315
316 SPLINT REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER

77a 〈Determine if this is a parametric group or return a parenthesis 77a 〉 =
\flsf@push

\iffllex@compat

def next { \yyless { 1 } }

else
\ifflposix@compat

def next { \yyless { 1 } }

else
def next { enter(GROUP_WITH_PARAMS) }

fi
fi next
\yylexreturnraw (

This code is used in section 73f.

77b 〈Patterns for flex lexer 69a 〉 + =
4
73f 78b

5
SC:
〈 ∗〉〈←↩〉〈 ∗〉 \flinc@linenum . allow blank lines and continuations /
[,*] returnc

> enter(SECT2)returnc

>^ enter(CARETISBOL)\yyless { 1 }\yylexreturnraw >
〈SCNAME〉 \RETURNNAME

. fatal〈 bad <start condition>: val \yytext 〉
CARETISBOL

^ enter(SECT2)returnc

QUOTE:
["〈n〉]c \RETURNCHAR

" enter(SECT2)returnx\flquotechar

〈←↩〉 fatal〈 missing quote 〉

GROUP_WITH_PARAMS:
: enter(SECT2)continue
- enter(GROUP_MINUS_PARAMS)continue
i \flsf@case@instrue continue
s \flsf@dot@alltrue continue
x \flsf@skip@wstrue continue

GROUP_MINUS_PARAMS:
: enter(SECT2)continue
i \flsf@case@insfalse continue
s \flsf@dot@allfalse continue
x \flsf@skip@wsfalse continue

FIRSTCCL:
^[-]〈n〉]c enter(CCL)\yyless { 1 }\yylexreturnraw ^
^(- |]) \yyless { 1 }\yylexreturnraw ^

. enter(CCL)\RETURNCHAR

CCL:
-[]〈n〉]c \yyless { 1 }\yylexreturnraw -

[]〈n〉]c \RETURNCHAR

] enter(SECT2)returnc

. | 〈←↩〉 fatal〈 bad character class 〉

FIRSTCCL CCL:
[:alnum:] set Υ and returnccl 〈αn〉
[:alpha:] set Υ and returnccl 〈αβ〉
[:blank:] set Υ and returnccl 〈 〉
[:cntrl:] set Υ and returnccl 〈7→〉
[:digit:] set Υ and returnccl 〈0..9〉

 REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER SPLINT 316
319

[:graph:] set Υ and returnccl 〈§〉
[:lower:] set Υ and returnccl 〈a..z〉
[:print:] set Υ and returnccl 〈2〉
[:punct:] set Υ and returnccl 〈.〉
[:space:] set Υ and returnccl 〈 〉
[:upper:] set Υ and returnccl 〈A..Z〉
[:xdigit:] set Υ and returnccl 〈0..Z〉
[:^alnum:] set Υ and returnccl 〈¬αn〉
[:^alpha:] set Υ and returnccl 〈¬αβ〉
[:^blank:] set Υ and returnccl 〈¬ 〉
[:^cntrl:] set Υ and returnccl 〈¬ 7→〉
[:^digit:] set Υ and returnccl 〈¬0..9〉
[:^graph:] set Υ and returnccl 〈¬§〉
[:^lower:] set Υ and returnccl 〈¬a..z〉
[:^print:] set Υ and returnccl 〈¬2〉
[:^punct:] set Υ and returnccl 〈¬.〉
[:^space:] set Υ and returnccl 〈¬ 〉
[:^upper:] set Υ and returnccl 〈¬A..Z〉
[:^xdigit:] set Υ and returnccl 〈¬0..Z〉
〈CCL EXPR〉 fatal〈 bad character class expression: val \yytext 〉

NUM:
[〈0..9〉]+ returnv num
, returnc

} 〈Finish the repeat pattern 78a 〉
. fatal〈 bad character inside { }’s 〉
〈←↩〉 fatal〈 missing nx

\} 〉

78a 〈Finish the repeat pattern 78a 〉 =
enter(SECT2)
\iffllex@compat

def next { returnl }p }

else
\ifflposix@compat

def next { returnl }p }

else
def next { returnl }f }

fi
fi next

This code is used in section 77b.

78b 〈Patterns for flex lexer 69a 〉 + =
4
77b 79b

5
PERCENT_BRACE_ACTION:
〈 ∗〉%} .∗ def \flbracelevel { 0 }continue
ACTION

/* push state(COMMENT) continue

CODEBLOCK ACTION:
reject continue
yymore continue

〈M4QSTART〉 continue
〈M4QEND〉 continue
. continue
〈←↩〉 〈Process a newline inside a braced group 79a 〉

319
322 SPLINT REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER

79a This actions has been modified to output \n.
〈Process a newline inside a braced group 79a 〉 =

\flinc@linenum

ifω \flbracelevel = 0R

\iffldoing@rule@action

returnx\n

else
continue

fi
\fldoing@rule@actionfalse

\fldoing@codeblockfalse

enter(SECT2)
else

\iffldoing@codeblock

\ifflindented@code

\fldoing@rule@actionfalse

\fldoing@codeblockfalse

enter(SECT2)
fi

fi
continue

fi

This code is used in section 78b.

79b 〈Patterns for flex lexer 69a 〉 + =
4
78b 79d

5
ACTION: . reject and yymore () are checked for above, in PERCENT BRACE ACTION /

{ \flinc \flbracelevel continue
} \fldec \flbracelevel continue
〈M4QSTART〉 continue
〈M4QEND〉 continue
[〈αβ〉_{}"’/〈n〉[]]c+ continue
[[]] continue
〈NAME〉 continue
’ ([’\〈n〉]c | \.)∗’ continue
" enter(ACTION_STRING)continue
〈←↩〉 〈Process a newline inside an action 79c 〉
. continue

79c This actions has been modified to output \n.
〈Process a newline inside an action 79c 〉 =

\flinc@linenum

ifω \flbracelevel = 0R

\iffldoing@rule@action

returnx\n

else
continue

fi
\fldoing@rule@actionfalse

enter(SECT2)
fi

This code is used in section 79b.

79d 〈Patterns for flex lexer 69a 〉 + =
4
79b 80b

5
ACTION_STRING:

["\〈n〉]c+ continue
\. continue

 REGULAR EXPRESSIONS FOR FLEX INPUT SCANNER SPLINT 322
327

〈←↩〉 \flinc@linenum enter(ACTION)continue
" enter(ACTION)continue
. continue

COMMENT COMMENT_DISCARD ACTION ACTION_STRING

〈EOF〉 fatal〈 EOF encountered inside an action 〉
EXTENDED_COMMENT GROUP_WITH_PARAMS GROUP_MINUS_PARAMS

〈EOF〉 fatal〈 EOF encountered inside pattern 〉
SECT2 QUOTE FIRSTCCL CCL

〈ESCSEQ〉 〈Process an escaped sequence 80a 〉

80a 〈Process an escaped sequence 80a 〉 =
ifω \YYSTART = \number \csname flexstate\parsernamespace FIRSTCCL\endcsname ◦

enter(CCL)
fi
\RETURNCHAR

This code is used in section 79d.

80b 〈Patterns for flex lexer 69a 〉 + =
4

79d

SECT3:
〈M4QSTART〉 continue
〈M4QEND〉 continue
[[]〈n〉]c∗(〈n〉?) continue
(. | 〈n〉) continue
〈EOF〉 def \flsectnum { 0 }\yyterminate

〈∗〉

. | 〈n〉 fatal〈 bad character: val \yytext 〉

80c 〈Auxilary code for flex lexer 80c 〉 =
void define all states (void)
{
〈Collect state definitions for the flex lexer 80d 〉

}
This code is used in section 67a.

80d 〈Collect state definitions for the flex lexer 80d 〉 =
#define register name (name) Define State (#name ,name)

#include "fil_states.h"

#undef register name

This code is used in section 80c.

8
The name parser

81a What follows is an example parser for the term name processing. This approach (i.e. using a ‘full blown’
parser/scanner combination) is probably not the best way to implement such machinery but its main purpose
is to demonstrate a way to create a separate parser for local purposes.
〈 small_parser.yy 81a 〉 =
··
〈Name parser C preamble 85f 〉
··
〈Bison options 81b 〉
〈union〉 〈Union of parser types 85h 〉
··
〈Name parser C postamble 85g 〉
··
〈Token and types declarations 81c 〉

〈Parser productions 81d 〉

81b 〈Bison options 81b 〉 =
〈token table〉 ?
〈parse.trace〉 ? (set as 〈debug〉)
〈start〉 full name

This code is used in section 81a.

81c 〈Token and types declarations 81c 〉 =
%[a . . . Z 0 . . . 9]∗ [a . . . Z 0 . . . 9]∗ opt na

ext l r [0 . . . 9]∗
* or ? \c ýmeta identifierþ

This code is used in section 81a.

81d 〈Parser productions 81d 〉 =
full name :

identifier string suffixesopt 〈Compose the full name 82a 〉
ýmeta identifierþ 〈Turn a ýmeta identifierþ into a full name 82b 〉
quoted name suffixesopt 〈Compose the full name 82a 〉

 THE NAME PARSER SPLINT 330
334

identi�er string :
%[a . . . Z 0 . . . 9]∗ 〈Attach option name 82c 〉
[a . . . Z 0 . . . 9]∗ 〈 Start with an identifier 83a 〉
< [a . . . Z 0 . . . 9]∗ > 〈 Start with a tag 83b 〉
’ * or ? ’ 〈 Start with a quoted string 83c 〉
’ \c ’ 〈 Start with an escaped character 83d 〉
’ > ’ 〈 Start with a > string 83f 〉
’ < ’ 〈 Start with a < string 83e 〉
’ . ’ 〈 Start with a . string 83j 〉
’ _ ’ 〈 Start with an _ string 83g 〉
’ - ’ 〈 Start with a - string 83h 〉
’ $ ’ 〈 Start with a $ string 83i 〉
$ 〈Prepare a bison stack name 83k 〉
qualifier 〈Turn a qualifier into an identifier 83l 〉
identifier string [a . . . Z 0 . . . 9]∗ 〈Attach an identifier 84a 〉
identifier string qualifier 〈Attach qualifier to a name 84b 〉
identifier string [0 . . . 9]∗ 〈Attach an integer 84c 〉

quoted name :
" %[a . . . Z 0 . . . 9]∗ " 〈Process quoted option 84e 〉
" [a . . . Z 0 . . . 9]∗ " 〈Process quoted name 84d 〉

su�xesopt :
◦ Υ← 〈〉
. Υ← 〈nx

\dotsp nx
\sfxnone 〉

. suffixes 〈Attach suffixes 84f 〉

. qualified suffixes 〈Attach qualified suffixes 84g 〉
su�xes :

[a . . . Z 0 . . . 9]∗ 〈 Start with a named suffix 84h 〉
[0 . . . 9]∗ 〈 Start with a numeric suffix 84i 〉
suffixes . 〈Add a dot separator 85a 〉
suffixes [a . . . Z 0 . . . 9]∗ 〈Attach a named suffix 85c 〉
suffixes [0 . . . 9]∗ 〈Attach integer suffix 85b 〉
qualifier . Υ← 〈nx

\sfxn val Υ1
nx

\dotsp 〉
suffixes qualifier . Υ← 〈val Υ1

nx
\sfxn val Υ2

nx
\dotsp 〉

quali�ed su�xes :
suffixes qualifier 〈Attach a qualifier 85d 〉
qualifier 〈 Start suffixes with a qualifier 85e 〉

quali�er : opt | na | ext | l | r Υ← 〈val Υ1〉
This code is used in section 81a.

82a 〈Compose the full name 82a 〉 =
Υ← 〈val Υ1val Υ2〉 \namecharsΥ

This code is used in section 81d.

82b 〈Turn a ýmeta identifierþ into a full name 82b 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

Υ← 〈nx
\idstr { val va }{ val vb }〉 \namecharsΥ

This code is used in section 81d.

82c 〈Attach option name 82c 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

Υ← 〈nx
\optstr { val va }{ val vb }〉

This code is used in section 81d.

334
346 SPLINT THE NAME PARSER

83a 〈Start with an identifier 83a 〉 =
π1(Υ1) 7→ va

π2(Υ1) 7→ vb

Υ← 〈nx
\idstr { val va }{ val vb }〉

This code is used in sections 81d and 83l.

83b 〈Start with a tag 83b 〉 =
π1(Υ2) 7→ va

π2(Υ2) 7→ vb

Υ← 〈nx
\idstr { <val va> }{ <val vb> }〉

This code is used in section 81d.

83c 〈Start with a quoted string 83c 〉 =
π1(Υ2) 7→ va

π2(Υ2) 7→ vb

\sansfirst vb

Υ← 〈nx
\chstr { val vb }{ val vb }

nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

83d 〈Start with an escaped character 83d 〉 =
π2(Υ2) 7→ vb

Υ← 〈nx
\chstr { val vb }{ val vb }

nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

83e 〈Start with a < string 83e 〉 =
Υ← 〈nx

\chstr { < }{ < }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

83f 〈Start with a > string 83f 〉 =
Υ← 〈nx

\chstr { \greaterthan }{ \greaterthan }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

83g 〈Start with an _ string 83g 〉 =
Υ← 〈nx

\chstr { \uscoreletter }{ \uscoreletter }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

83h 〈Start with a - string 83h 〉 =
Υ← 〈nx

\chstr { - }{ - }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

83i 〈Start with a $ string 83i 〉 =
Υ← 〈nx

\chstr { \safemath }{ \safemath }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

83j 〈Start with a . string 83j 〉 =
Υ← 〈nx

\chstr { . }{ . }nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

83k 〈Prepare a bison stack name 83k 〉 =
Υ← 〈nx

\bidstr { nx
\$ }{ \safemath }〉

This code is used in section 81d.

83l 〈Turn a qualifier into an identifier 83l 〉 =
〈Start with an identifier 83a 〉

This code is used in section 81d.

 THE NAME PARSER SPLINT 346
355

84a 〈Attach an identifier 84a 〉 =
π2(Υ1) 7→ va

va ← va +sx []
π1(Υ2) 7→ vb

va ← va +s vb

π3(Υ1) 7→ vb

vb ← vb +sx []
π2(Υ2) 7→ vc

vb ← vb +s vc

Υ← 〈nx
\idstr { val va }{ val vb }〉

This code is used in sections 81d and 84b.

84b 〈Attach qualifier to a name 84b 〉 =
〈Attach an identifier 84a 〉

This code is used in section 81d.

84c An integer at the end of an identifier (such as id1) is interpreted as a suffix (similar to the way METAFONT treats
identifiers, and mft typesets them 1)) to mitigate a well-intentioned but surprisingly inconvenient feature of
CTANGLE, namely outputting something like id.1 as id .1 in an attempt to make sure that integers do
not interfere with structure dereferences. For this to produce meaningful results, a stricter interpretation of
[a . . . Z 0 . . . 9]∗ syntax is required, represented by the id_strict syntax below.
〈Attach an integer 84c 〉 =

Υ← 〈val Υ1
nx

\dotsp nx
\sfxi val Υ2〉

This code is used in section 81d.

84d 〈Process quoted name 84d 〉 =
π1(Υ2) 7→ va

π2(Υ2) 7→ vb

Υ← 〈nx
\idstr { val va }{ val vb }

nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

84e 〈Process quoted option 84e 〉 =
π1(Υ2) 7→ va

π2(Υ2) 7→ vb

Υ← 〈nx
\optstr { val va }{ val vb }

nx
\visflag { nx

\termvstring }{ }〉
This code is used in section 81d.

84f 〈Attach suffixes 84f 〉 =
Υ← 〈nx

\dotsp val Υ2〉
This code is used in sections 81d and 84g.

84g 〈Attach qualified suffixes 84g 〉 =
〈Attach suffixes 84f 〉

This code is used in section 81d.

84h 〈Start with a named suffix 84h 〉 =
Υ← 〈nx

\sfxn val Υ1〉
This code is used in section 81d.

84i 〈Start with a numeric suffix 84i 〉 =
Υ← 〈nx

\sfxi val Υ1〉
This code is used in section 81d.

1) This allows, for example, names like pterm0q while leaving pchar2intq in its ‘natural’ form.

355
363 SPLINT THE NAME PARSER

85a 〈Add a dot separator 85a 〉 =
Υ← 〈val Υ1

nx
\dotsp 〉

This code is used in section 81d.

85b 〈Attach integer suffix 85b 〉 =
Υ← 〈val Υ1

nx
\sfxi val Υ2〉

This code is used in section 81d.

85c 〈Attach a named suffix 85c 〉 =
Υ← 〈val Υ1

nx
\sfxn val Υ2〉

This code is used in section 81d.

85d 〈Attach a qualifier 85d 〉 =
Υ← 〈val Υ1

nx
\qual val Υ2〉

This code is used in section 81d.

85e 〈Start suffixes with a qualifier 85e 〉 =
Υ← 〈nx

\qual val Υ1〉
This code is used in section 81d.

85f C preamble. In this case, there are no ‘real’ actions that our grammar performs, only TEX output, so this
section is empty.
〈Name parser C preamble 85f 〉 =
This code is used in section 81a.

85g C postamble. It is tricky to insert function definitions that use bison’s internal types, as they have to be
inserted in a place that is aware of the internal definitions but before said definitions are used.
〈Name parser C postamble 85g 〉 =
#define YYPRINT(file , type , value) yyprint (file , type , value)

static void yyprint (FILE ∗file , int type , YYSTYPEvalue)
{ }

This code is used in section 81a.

85h Union of types.
〈Union of parser types 85h 〉 =
This code is used in section 81a.

 THE NAME SCANNER SPLINT 363
363

9
The name scanner

87a The scanner for lexing term names is admittedly ad hoc and rather redundant. A minor reason for this
is to provide some flexibility for name typesetting. Another reason is to let the existing code serve as a
template for similar procedures in other projects. At the same time, it must be pointed out that this scanner
is executed multiple times for every bison section, so its efficiency directly affects the speed at which the
parser operates.
〈 small_lexer.ll 87a 〉 =
〈Lexer definitions 87b 〉
································
〈Lexer C preamble 88b 〉
································
〈Lexer options 88c 〉

〈Regular expressions 88d 〉

void define all states (void)
{

〈Collect all state definitions 87c 〉
}

87b 〈Lexer definitions 87b 〉 =
〈Lexer states 88a 〉
〈letter〉 [_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]
〈c-escchar〉 \[fnrtv]
〈wc〉 ([\’"$.<>]c \ [_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0–9] | \.)
〈id〉 〈letter〉 (〈letter〉 | [-0–9])∗
〈id_strict〉 〈letter〉 ((〈letter〉 | [-0–9])∗〈letter〉)?
〈meta_id〉 *〈id strict〉 *?

〈int〉 [0–9]+

This code is used in section 87a.

87c 〈Collect all state definitions 87c 〉 =
#define register name (name) Define State (#name ,name) . nothing for now /

#undef register name

This code is used in section 87a.

 THE NAME SCANNER SPLINT 366
371

88a Strings and characters in directives/rules.
〈Lexer states 88a 〉 =
〈states-x〉f: SC_ESCAPED_STRING SC_ESCAPED_CHARACTER

This code is used in section 87b.

88b 〈Lexer C preamble 88b 〉 =
#include <stdint.h>

#include <stdbool.h>

This code is used in section 87a.

88c 〈Lexer options 88c 〉 =
〈bison-bridge〉f ?
〈noyywrap〉f ?
〈nounput〉f ?
〈noinput〉f ?
〈reentrant〉f ?
〈noyy_top_state〉f ?
〈debug〉f ?
〈stack〉f ?
〈outfile〉f "small_lexer.c"

This code is used in section 87a.

88d 〈Regular expressions 88d 〉 =
〈 Scan white space 88e 〉
〈Scan identifiers 88f 〉

This code is used in section 87a.

88e White space skipping.
〈Scan white space 88e 〉 =

[〈f〉〈n〉〈t〉〈v〉] continue

This code is used in section 88d.

88f This collection of regular expressions might seem redundant, and in its present state, it certainly is. However,
if later on the typesetting style for some of the keywords would need to be adjusted, such changes would be
easy to implement, since the template is already here.
〈Scan identifiers 88f 〉 =

%binary returnv %[a . . . Z 0 . . . 9]∗
%code returnv %[a . . . Z 0 . . . 9]∗
%debug returnv %[a . . . Z 0 . . . 9]∗
%default-prec returnv %[a . . . Z 0 . . . 9]∗
%define returnv %[a . . . Z 0 . . . 9]∗
%defines returnv %[a . . . Z 0 . . . 9]∗
%destructor returnv %[a . . . Z 0 . . . 9]∗
%dprec returnv %[a . . . Z 0 . . . 9]∗
%empty returnv %[a . . . Z 0 . . . 9]∗
%error-verbose returnv %[a . . . Z 0 . . . 9]∗
%expect returnv %[a . . . Z 0 . . . 9]∗
%expect-rr returnv %[a . . . Z 0 . . . 9]∗
%file-prefix returnv %[a . . . Z 0 . . . 9]∗
%fixed-output-files returnv %[a . . . Z 0 . . . 9]∗
%initial-action returnv %[a . . . Z 0 . . . 9]∗
%glr-parser returnv %[a . . . Z 0 . . . 9]∗
%language returnv %[a . . . Z 0 . . . 9]∗
%left returnv %[a . . . Z 0 . . . 9]∗
%lex-param returnv %[a . . . Z 0 . . . 9]∗

371
372 SPLINT THE NAME SCANNER

%locations returnv %[a . . . Z 0 . . . 9]∗
%merge returnv %[a . . . Z 0 . . . 9]∗
%name-prefix returnv %[a . . . Z 0 . . . 9]∗
%no-default-prec returnv %[a . . . Z 0 . . . 9]∗
%no-lines returnv %[a . . . Z 0 . . . 9]∗
%nonassoc returnv %[a . . . Z 0 . . . 9]∗
%nondeterministic-parser returnv %[a . . . Z 0 . . . 9]∗
%nterm returnv %[a . . . Z 0 . . . 9]∗
%output returnv %[a . . . Z 0 . . . 9]∗
%param returnv %[a . . . Z 0 . . . 9]∗
%parse-param returnv %[a . . . Z 0 . . . 9]∗
%prec returnv %[a . . . Z 0 . . . 9]∗
%precedence returnv %[a . . . Z 0 . . . 9]∗
%printer returnv %[a . . . Z 0 . . . 9]∗
%pure-parser returnv %[a . . . Z 0 . . . 9]∗
%require returnv %[a . . . Z 0 . . . 9]∗
%right returnv %[a . . . Z 0 . . . 9]∗
%skeleton returnv %[a . . . Z 0 . . . 9]∗
%start returnv %[a . . . Z 0 . . . 9]∗
%term returnv %[a . . . Z 0 . . . 9]∗
%token returnv %[a . . . Z 0 . . . 9]∗
%token-table returnv %[a . . . Z 0 . . . 9]∗
%type returnv %[a . . . Z 0 . . . 9]∗
%union returnv %[a . . . Z 0 . . . 9]∗
%verbose returnv %[a . . . Z 0 . . . 9]∗
%yacc returnv %[a . . . Z 0 . . . 9]∗
%default[-_]prec returnv %[a . . . Z 0 . . . 9]∗
%error[-_]verbose returnv %[a . . . Z 0 . . . 9]∗
%expect[-_]rr returnv %[a . . . Z 0 . . . 9]∗
%fixed[-_]output[-_]files returnv %[a . . . Z 0 . . . 9]∗
%name[-_]prefix returnv %[a . . . Z 0 . . . 9]∗
%no[-_]default[-_]prec returnv %[a . . . Z 0 . . . 9]∗
%no[-_]lines returnv %[a . . . Z 0 . . . 9]∗
%pure[-_]parser returnv %[a . . . Z 0 . . . 9]∗
%token[-_]table returnv %[a . . . Z 0 . . . 9]∗
% (〈letter〉 | [0–9] | [-_] | % | [<>])+ returnv %[a . . . Z 0 . . . 9]∗
. suffixes

opt returnv opt

na returnv na

ext returnv ext

l returnv l

r returnv r

. delimeters

[<>$._’"] returnc

〈c-escchar〉 returnv \c
〈wc〉 returnv * or ?

. identifiers and other names

〈id strict〉 〈Prepare to process an identifier 90a 〉
〈meta id〉 〈Prepare to process a meta-identifier 90b 〉
〈int〉 returnv [0 . . . 9]∗
. everything else

. 〈React to a bad character 90c 〉
This code is used in section 88d.

 THE NAME SCANNER SPLINT 372
375

90a 〈Prepare to process an identifier 90a 〉 =
returnv [a . . . Z 0 . . . 9]∗

This code is used in section 88f.

90b 〈Prepare to process a meta-identifier 90b 〉 =
returnv ýmeta identifierþ

This code is used in section 88f.

90c 〈React to a bad character 90c 〉 =
ift [bad char]

fatal〈 invalid character(s): val \yytext 〉
fi

This code is used in section 88f.

10
Forcing bison and flex to output TEX

91a Instead of implementing a bison (or flex) ‘plugin’ for outputting TEX parser, the code that follows produces
a separate executable that outputs all the required tables after the inclusion of an ordinary C parser produced
by bison (or a scanner produced by flex). The actions in both bison parser and flex scanner are assumed
to be merely printf () statements that output the ‘real’ TEX actions. The code below simply cycles through
all such actions to output an ‘action switch’ appropriate for use with TEX. In every other respect, the
included parser or scanner can use any features allowed in ‘real’ parsers and scanners.

91b Common routines

The ‘top’ level of the scanner and parser ‘drivers’ is very similar, and is therefore separated into a few
sections that are common to both drivers. The layout is fairly typical and follows a standard ‘initialize-input-
process-output-clean up’ scheme. The logic behind each section of the program will be explained in detail
below.

The section below is called 〈C postamble 91b 〉 because the output of the tables can happen only after the
bison (or flex) generated .c file is included and all the data structures are known.

The actual ‘assembly’ of each driver has to be done separately due to some ‘singularities’ of the CWEB
system and the design of this software. All the essential routines are presented in the sections below, though.
〈C postamble 91b 〉 =
〈Auxiliary function definitions 99g 〉
int main (int argc , char ∗∗argv)
{
〈Local variable and type declarations 93c 〉
〈Establish defaults 101a 〉
〈Command line processing variables 101d 〉
〈Process command line options 101e 〉
switch (mode) {
〈Various output modes 92a 〉

default: break;
}
fprintf (stderr , "Outputting tables and actions\n");
if (tables out) {

fprintf (stderr , " tables ... ");
〈Perform output 96a 〉
fprintf (stderr , "actions ... ");
〈Output action switch, if any 99c 〉

 COMMON ROUTINES SPLINT 376
379

}
else {

fprintf (stderr , "No output, exiting\n");
exit (0);

}
fprintf (stderr , "done, cleaning up\n");
〈Clean up 93b 〉
return 0;

}
This code is cited in section 91b.

92a Not all the code can be supplied at this stage (most of the routines here are at the ‘top’ level so the specifics
have to be ‘filled-in’ by each driver), so many of the sections above are placeholders for the code provided
by a specific driver. However, we still need to supply a trivial definition here to placate CWEAVE whenever
this portion of the code is used isolated in documentation.
〈Various output modes 92a 〉 =
This code is used in section 91b.

92b Standard library declarations for memory management routines, some syntactic sugar, command line pro-
cessing, and variadic functions are all that is needed.
〈Outer definitions 92b 〉 = 101b

5
#include <stdlib.h>

#include <stdbool.h>

#include <stdarg.h>

#include <assert.h>

#include <string.h>

See also section 101b.

This code is used in section 97f.

92c This code snippet is a payment for some poor (in my view) philosophy on the part of the bison and flex
developers. There used to be an option in bison to output just the tables and the action code but it had
never worked correctly and it was simply dropped in the latest version. Instead, one can only get access to
bison’s goodies as part of a tangled mess of #define’s and error processing code. Had the tables and the
parser function itself been considered separate, well isolated sections of bison’s output, there would simply
be no reason for dirty tricks like the one below, one would be able to write custom error processing functions,
unicorns would roam the Earth and pixies would hand open sourced tablets to everyone. At a minimum, it
would have been a much cleaner, modular approach.

As of version 3.0 of bison some critical arrays, namely, yyprhs and yyrhs are no longer generated (even
internally) which significantly reduces bison’s useability as a parser generator. As an example, the yyrthree
array, which is necessary for processing ‘inline’ actions is computed in bs.w using the two arrays mentioned
in the previous sentence. There does not seem to be any other way to access this information. A number
of tools (GNU and otherwise) have taken the path of narrowing the field of application to a few use cases
envisioned by the maintainers. This includes compilers, as well.

There is a strange reluctance on the part of the gcc team to output any intermediate code other than the
results of preprocessing and assembly. I have seen an argument that involves some sort of appeal to making
the code difficult to close source but the logic of it escaped me completely (well, there is logic to it, however
choosing poor design in order to punish a few bad players seems like a rather inferior option).

Ideally, there should be no such thing as a parser generator, or a compiler, for that matter: all of these are
just basic table driven rewriting routines. Tables are hard but table driven code should not be. If one had
access to the tables themselves, and some canonical examples of code driven by such tables, like yyparse ()
and yylex (), the flexibility of these tools would improve tremendously. Barring that, this is what we have
to do now.

There are several ways to gain write access to the data declared const in C, like passing its address
to a function with no prototype. All these methods have one drawback: the loopholes that make them

379
384 SPLINT COMMON ROUTINES

possible have been steadily getting on the chopping block of the C standards committee. Indeed, const data
should be constant. Even if one succeeds in getting access, there is no reason to believe that the data is not
allocated in a write-only region of the memory. The cleanest way to get write access then is to eliminate
const altogether. The code should have the same semantics after that, and the trick is only marginally bad.

The last two definitions are less innocent (and, at least the second one, are prohibited by the ISO standard
(clause 6.10.8(2), see [ISO/C11])) but gcc does not seem to mind, and it gets rid of warnings about dropping
a const qualifier whenever an assert is encountered. Since the macro is not recursively expanded, this will
only work if . . .FUNCTION__ is treated as a pseudo-variable, as it is in gcc, not a macro.

#define const
#define __PRETTY_FUNCTION__ (char ∗) __PRETTY_FUNCTION__
#define __FUNCTION__ (char ∗) __FUNCTION__

93a The output file has to be known to both parts of the code, so it is declared at the very beginning of the
program. We also add some syntactic sugar for loops.

#define forever for (; ;)
〈Common code for C preamble 93a 〉 =
#include <stdio.h>

FILE ∗tables out ;

93b The clean-up portion of the code can be left empty, as all it does is close the output file, which can be left
to the operating system but we take care of it ourselves to keep out code ‘clean’ 1).
〈Clean up 93b 〉 =

fclose (tables out);

This code is used in section 91b.

93c There is a descriptor controlling the output of the program as a whole. The code below is an example of
a literate programming technique that will be used repeatedly to maintain large structures that can grow
during the course of the program design. Note that the name of each table is only mentioned once, the rest
of the code is generic.

Technically speaking, all of this can be done with C preprocessor macros of moderate complexity, taking
advantage of its expansion rules but it is not nearly as transparent as the CWEB approach.
〈Local variable and type declarations 93c 〉 = 94b

5
struct output d {
〈Output descriptor fields 93d 〉
};
struct output d output desc ⇐ {〈Default outputs 94a 〉};

See also sections 94b, 97d, 98c, 100a, and 101c.

This code is used in section 91b.

93d To declare each table field in the global output descriptor, all one has to do is to provide a general pattern.
〈Output descriptor fields 93d 〉 = 97b

5
#define register table d (name) bool output ##name :1;
〈Table names 96c 〉

#undef register table d

See also sections 97b and 98d.

This code is used in section 93c.

1) In case the reader has not noticed yet, this is a weak attempt at humor to break the monotony of going through the lines of
CTANGLE’d code

 COMMON ROUTINES SPLINT 384
388

94a Same for assigning default values to each field.
〈Default outputs 94a 〉 = 97c

5
#define register table d (name) .output ##name ⇐ 0, . do not output any tables by default /
〈Table names 96c 〉

#undef register table d

See also sections 97c and 98e.

This code is used in section 93c.

94b Each descriptor is populated using the same approach.
〈Local variable and type declarations 93c 〉 + =

4
93c 97d

5
#define register table d (name) struct table d name## desc ⇐ {0};
〈Table names 96c 〉

#undef register table d

94c The flag --optimize-tables affects the way tables are output.
〈Global variables and types 94c 〉 = 94e

5
static int optimize tables ⇐ 0;

See also sections 94e, 96d, 97a, 98b, and 99d.

This code is used in section 97f.

94d It is set using the command line option below.
〈Options without arguments 94d 〉 = 96e

5
register option ("optimize-tables",no argument ,&optimize tables , 1, "")

See also section 96e.

This code is used in section 102a.

94e The reason to implement the table output routine as a macro is to avoid writing separate functions for tables
of different types of data (stings as well as integers). The output is controlled by each table’s descriptor
defined below. A more sophisticated approach is possible but this code is merely a ‘patch’ so we are not
after full generality 1).

#define output table (table desc , table name , stream)
if (output desc .output ##table name) {

int i, j ⇐ 0;
if (optimize tables) {

fprintf (stream , "\\setoptopt{%s}%%\n", table desc .name);
if (nottable desc .optimized numeric) {

fprintf (stream , "\\beginoptimizednonnumeric{%s}%%\n", table desc .name);
}
for (i⇐ 0; i < sizeof (table name)/sizeof (table name [0])− 1; i++) {

if (table desc .formatter) {
table desc .formatter (stream , i);
}
else {

fprintf (stream , table desc .optimized numeric , table desc .name , i, table name [i]);
}

}
if (table desc .formatter) {

table desc .formatter (stream ,−i);
}
else {

1) A somewhat cleaner way to achieve the same effect is to use the _Generic facility of C11.

388
389 SPLINT COMMON ROUTINES

fprintf (stream , table desc .optimized numeric , table desc .name , i, table name [i]);
}
if (table desc .cleanup) {

table desc .cleanup(&table desc);
}

}
else {

fprintf (stream , table desc .preamble , table desc .name);
for (i⇐ 0; i < sizeof (table name)/sizeof (table name [0])− 1; i++) {

if (table desc .formatter) {
j

+⇐ table desc .formatter (stream , i);
}
else {

if (table name [i]) {
j

+⇐ fprintf (stream , table desc .separator , table name [i]);
}
else {
j

+⇐ fprintf (stream , "%s", table desc .null);
}
}
if (j > MAX_PRETTY_LINE ∧ table desc .prettify) {

fprintf (stream , "\n");
j ⇐ 0;
}

}
if (table desc .formatter) {

table desc .formatter (stream ,−i);
}
else {

if (table name [i]) {
fprintf (stream , table desc .postamble , table name [i]);
}
else {

fprintf (stream , "%s", table desc .null postamble);
}

}
if (table desc .cleanup) {

table desc .cleanup(&table desc);
}

}
}

〈Global variables and types 94c 〉 + =
4
94c 96d

5
struct table d {
〈Generic table desciptor fields 95a 〉
};

95a 〈Generic table desciptor fields 95a 〉 =
char ∗name ;
char ∗preamble ;
char ∗separator ;
char ∗postamble ;
char ∗null postamble ;
char ∗null ;

 COMMON ROUTINES SPLINT 389
395

char ∗optimized numeric ;
bool prettify ;

int(∗formatter)(FILE ∗, int);
void(∗cleanup)(struct table d ∗);

This code is used in section 94e.

96a Tables are output first. The action output code must come last since it changes the values of the tables to
achieve its goals. Again, a different approach is possible, that saves the data first but simplicity was deemed
more important than total generality at this point.
〈Perform output 96a 〉 = 98f

5
〈Output all tables 96b 〉

See also section 98f.

This code is used in section 91b.

96b One more application of ‘gather the names first then process’ technique.
〈Output all tables 96b 〉 =
#define register table d (name) output table (name## desc ,name , tables out);
〈Table names 96c 〉

#undef register table d

This code is used in section 96a.

96c Tables will be output by each driver. Placeholder here, for CWEAVE’s piece of mind.
〈Table names 96c 〉 =
This code is used in sections 93d, 94a, 94b, 96b, and 108b.

96d Action output invokes a totally new level of dirty code. If tables, constants, and tokens are just data
structures, actions are executable commands. We can only hope to cycle through all the actions, which is
enough to successfully use bison and flex to generate TEX. The switch statement containing the actions
is embedded in the parser function so to get access to each action one has to coerce yyparse () to jump to
each case. Here is where we need the table manipulation. The appropriate code is highly specific to the
program used (since bison and flex parsing and scanning functions had to be ‘reverse engineered’ to make
them do what we want), so at this point we simply declare the options controlling the level of detail and the
type of actions output.
〈Global variables and types 94c 〉 + =

4
94e 97a

5
static int bare actions ⇐ 0;
. (static for local variables) and int to pacify the compiler (for a constant initializer and compatible type) /

static int optimize actions ⇐ 0;

96e The first of the following options allows one to output an action switch without the actions themselves. It
is useful when one needs to output a TEX parser for a grammar file that is written in C. In this case it
will be impossible to cycle through actions (as no setup code has been executed), so the parser invocation is
omitted.

The second option splits the action switch into several macros to speed up the processing of the action
code.

The last argument of the ‘flexible’ macro below is supposed to be an extended description of each option
which can be later utilized by a usage () function.
〈Options without arguments 94d 〉 + =

4
94d

register option ("bare-actions",no argument ,&bare actions , 1, "")
register option ("optimize-actions",no argument ,&optimize actions , 1, "")

395
401 SPLINT COMMON ROUTINES

97a The rest of the action output code mimics that for table output, starting with the descriptor. To make the
output format more flexible, this descriptor should probably be turned into a specialized routine.
〈Global variables and types 94c 〉 + =

4
96d 98b

5
struct action d {

char ∗preamble ;
char ∗act setup ;
char ∗act suffix ;
char ∗action 1;
char ∗action n;
char ∗postamble ;

void(∗print rule)(int);
void(∗cleanup)(struct action d ∗);
};

97b 〈Output descriptor fields 93d 〉 + =
4
93d 98d

5
bool output actions :1;

97c Nothing is output by default, including actions.
〈Default outputs 94a 〉 + =

4
94a 98e

5
.output actions ⇐ 0,

97d 〈Local variable and type declarations 93c 〉 + =
4
94b 98c

5
struct action d action desc ⇐ {0};

97e Each function below outputs the TEX code of the appropriate action when the action is ‘run’ by the action
output switch. The main concern in designing these functions is to make the code easier to look at. Further
explanation is given in the grammar file. If the parser is doing its job, this is the only place where one would
actually see these as functions (or, rather, macros).

In compliance with paragraph 6.10.8(2) 1) of the ISO C11 standard the names of these macros do not start
with an underscore, since the first letter of TeX is uppercase 2).

#define TeX_(string) fprintf (tables out , " %s%%\n", string)
#define TeXb(string) TeX_(string)
#define TeXa(string) TeX_(string)
#define TeXf(string) TeX_(string)
#define TeXfo(string) TeX_(string)
#define TeXao(string) TeX_(string)
#define YY_FATAL_ERROR(message)

fprintf (tables out , " /yylexcomplain{%s}/yylexerrterminate%%\n",message)
〈C preamble 97e 〉 = 97f

5
#define TeX__(string , . . .) fprintf (tables out , " "string"%s\n", __VA_ARGS__, "%")

See also section 97f.

97f If a full parser is not needed, the lexing mechanism is not required. To satisfy the compiler and the linker,
the lexer and other functions still have to be declared and defined, since these functions are referred to in
the body of the parser. The details of these declarations can be found in the driver code.
〈C preamble 97e 〉 + =

4
97e

〈Outer definitions 92b 〉;
〈Global variables and types 94c 〉
〈Auxiliary function declarations 99f 〉

1) [. . .] Any other predefined macro names shall begin with a leading underscore followed by an uppercase letter or a second un-
derscore. 2) One might wonder why one of these functions is defined as a CWEB macro while the other is put into the pream-
ble ‘by hand’. It really makes no difference, however, the reason the second macro is defined explicitly is CWEB’s lack of aware-
ness of ‘variadic’ macros which produces undesirable typesetting artefacts.

 COMMON ROUTINES SPLINT 401
407

98a We begin with a few macros to facilitate the output of tables in the format that TEX can understand. As
there is no perfect way to represent an array in TEX a rather weak compromise was settled upon. Further
explanation of this choice is given in the TEX file that implements the TEX parser for the bison input
grammar.
#define tex table generic(table name) table name## desc .preamble ⇐ "\\newtable{%s}{%%\n";

table name## desc .separator ⇐ "%d\\or ";
table name## desc .postamble ⇐ "%d}%%\n";
table name## desc .null postamble ⇐ "0}%%\n";
table name## desc .null ⇐ "0\\or ";
table name## desc .optimized numeric ⇐ "\\expandafter\\def\\csname %s\\parserna\

mespace %d\\endcsname{%d}%%\n";
table name## desc .prettify ⇐ true ;
table name## desc .formatter ⇐ Λ;
table name## desc .cleanup ⇐ Λ;
output desc .output ##table name ⇐ 1;

#define tex table (table name) tex table generic(table name);
table name## desc .name ⇐ #table name ;

98b An approach paralleling the table output scheme is taken with constants. Since constants are C macros one
has to be careful to avoid the temptation of using constant names directly as names for fields in structures.
They will simply be replaced by the constants’ values. When the names are concatenated with other tokens,
however, the C preprocessor postpones the macro expansion until the concatenation is complete (see clauses
6.10.3.1, 6.10.3.2, and 6.10.3.3 of the ISO C Standard, [ISO/C11]). Unless the result of the concatenation is
still expandable, the expansion will halt.
〈Global variables and types 94c 〉 + =

4
97a 99d

5
struct const d {

char ∗format ;
char ∗name ;
};

98c 〈Local variable and type declarations 93c 〉 + =
4
97d 100a

5
#define register const d (c name) struct const d c name## desc ;
〈Constant names 99a 〉

#undef register const d

98d 〈Output descriptor fields 93d 〉 + =
4

97b

#define register const d (c name) bool output ##c name :1;
〈Constant names 99a 〉

#undef register const d

98e 〈Default outputs 94a 〉 + =
4

97c

#define register const d (c name) .output ##c name ⇐ 0,
〈Constant names 99a 〉

#undef register const d

98f 〈Perform output 96a 〉 + =
4

96a

fprintf (tables out , "%%\n%% constant definitions\n%%\n");
〈Output constants 98g 〉

98g 〈Output constants 98g 〉 =
{ int any constants ⇐ 0;

#define register const d (c name)
if (output desc .output ##c name) {

const out (tables out , c name## desc , c name)
any constants ⇐ 1;

407
414 SPLINT COMMON ROUTINES

}
〈Constant names 99a 〉

#undef register const d
if (any constants) ; . this is merely a placeholder statement /
}

This code is used in section 98f.

99a Constants are very driver specific, so to make CWEAVE happy . . .
〈Constant names 99a 〉 =
This code is used in sections 98c, 98d, 98e, and 98g.

99b A macro to help with constant output.

#define const out (stream , c desc , c name) fprintf (stream , c desc .format , c desc .name , c name);

99c Action switch output routines modify the automata tables and therefore have to be output last. Since action
output is highly automaton specific, we leave this section blank here, to pacify CWEAVE in case this file is
typeset by itself.
〈Output action switch, if any 99c 〉 =
This code is used in section 91b.

99d Error codes

〈Global variables and types 94c 〉 + =
4

98b

enum err codes {
〈Error codes 99e 〉 LAST_ERROR
};

99e 〈Error codes 99e 〉 = 114a
5

NO_MEMORY, BAD_STRING, BAD_MIX_FORMAT,

See also section 114a.

This code is used in section 99d.

99f A lot more care is necessary to output the token table. A number of precautions are taken to ensure that
a maximum possible range of names can be passed safely to TEX. This involves some manipulation of
\catcode’s and control characters. The complicated part is left to TEX so the output code can be kept
simple. The helper function below is used to ‘combine’ two strings.

#define MAX_PRETTY_LINE 100
〈Auxiliary function declarations 99f 〉 =

char ∗mix string (char ∗format , . . .);

This code is used in section 97f.

99g 〈Auxiliary function definitions 99g 〉 =
char ∗mix string (char ∗format , . . .)
{

char ∗buffer ;
size t size ⇐ 0;
int length ⇐ 0;
int written ⇐ 0;
char ∗formatp ⇐ format ;
va list ap , ap save ;

va start (ap , format);
va copy (ap save , ap);
size ⇐ strnlen (format , MAX_PRETTY_LINE ∗ 5);

 ERROR CODES SPLINT 414
417

if (size > MAX_PRETTY_LINE ∗ 5) {
fprintf (stderr , "%s: runaway string?\n", func);
exit (BAD_STRING);

}
while ((formatp ⇐ strstr (formatp , "%"))) {

switch (formatp [1]) {
case ’s’:

length ⇐ strnlen (va arg (ap , char ∗), MAX_PRETTY_LINE ∗ 5);
if (length > MAX_PRETTY_LINE ∗ 5) {

fprintf (stderr , "%s: runaway string?\n", func);
exit (BAD_STRING);

}
size

+⇐ length ;

size
−⇐ 2;

formatp ++;
break;

case ’%’:
size−−;

formatp
+⇐ 2;

default: printf ("%s: cannot handle %%%c in mix string format\n", func , formatp [1]);
exit (BAD_MIX_FORMAT);

}
}
buffer ⇐ (char ∗) malloc(sizeof (char) ∗ size + 1);
if (buffer) {

written ⇐ vsnprintf (buffer , size + 1, format , ap save);
if (written < 0 ∨ written > size) {

fprintf (stderr , "%s: runaway string?\n", func);
exit (BAD_STRING);

}
}
else {

fprintf (stderr , "%s: failed to allocate memory for the output string\n", func);
exit (NO_MEMORY);

}
va end (ap);
va end (ap save);
return buffer ;

}
This code is used in section 91b.

100a Initial setup

Depending on the output mode (right now only TEX and ‘tokens only’ (in the bison ‘driver’) are supported)
the format of each table, action field and token has to be set up.
〈Local variable and type declarations 93c 〉 + =

4
98c 101c

5
enum output mode {
〈Output modes 100b 〉 LAST_OUT
};

100b And to calm down CWEAVE . . .

〈Output modes 100b 〉 =
This code is used in section 100a.

417
421 SPLINT INITIAL SETUP

101a TEX is the main output mode.
〈Establish defaults 101a 〉 =

enum output mode mode ⇐ TEX_OUT;

This code is used in section 91b.

101b Command line processing

This program uses a standard way of parsing the command line, based on getopt long . At the heart of the
setup are the array below with a couple of supporting variables.
〈Outer definitions 92b 〉 + =

4
92b

#include <unistd.h>

#include <getopt.h>

#include <string.h>

101c 〈Local variable and type declarations 93c 〉 + =
4

100a

const char ∗usage ⇐ "%s [options] output_file\n";

101d 〈Command line processing variables 101d 〉 =
int c, option index ⇐ 0;

enum higher options {
NON_OPTION ⇐ FF16, 〈Higher index options 102c 〉 LAST_HIGHER_OPTION
};
static struct option long options []⇐ {
〈Long options array 102a 〉
{0, 0, 0, 0}};

This code is used in section 91b.

101e The main loop of the command line option processing follows. This can be used as a template for setting
up the option processing. The specific cases are added to in the course of adding new features.
〈Process command line options 101e 〉 =

opterr ⇐ 0; . we do our own error reporting /
forever{ c⇐ getopt long (argc , argv , (char[]){’:’, 〈 Short option list 102b 〉}, long options ,&option index) ;

if (c = −1) break;
switch (c) {
case 0: . it is a flag, the name is kept in long options [option index].name , and the value can be found

in long options [option index].val /
break;

〈Cases affecting the whole program 102f 〉;
〈Cases involving specific modes 102g 〉;
case ’?’:

fprintf (stderr , "Unknown option: ‘%s’, see ‘Usage’ below\n\n", argv [optind − 1]);
fprintf (stderr , usage , argv [0]);
exit (1);
break;

case ’:’:
fprintf (stderr , "Missing argument for ‘%s’\n\n", argv [optind − 1]);
fprintf (stderr , usage , argv [0]);
exit (1);
break;

default:
printf ("warning: feature ‘%c’ is not yet implemented\n", c);

}
}
if (optind > argc) {

fprintf (stderr , "No output file specified!\n");
}

 COMMAND LINE PROCESSING SPLINT 421
429

else {
tables out ⇐ fopen (argv [optind ++], "w");

}
if (optind < argc) {

printf ("script files to be loaded: ");
while (optind < argc) printf ("%s ", argv [optind ++]);
putchar (’\n’);

}
This code is used in section 91b.

102a 〈Long options array 102a 〉 =
#define register option (name , arg flag , loc , val , exp) {name , arg flag , loc , val },
〈Options without shortcuts 102e 〉
〈Options with shortcuts 102d 〉
〈Options without arguments 94d 〉

#undef register option

This code is used in section 101d.

102b In addition to spelling out the full command line option name (such as --help) getopt long gives the user
a choice of using a shortcut (say, -h). As individual options are treated in drivers themselves, there are no
shortcuts to supply at this point. We leave this section (and a number of others) empty to be filled in with
the driver specific code to pacify CWEAVE.
〈Short option list 102b 〉 =
#define dd optional argument , ’:’, ’:’

#define dd required argument , ’:’

#define dd no argument

#define register option (name , arg flag , loc , val , . . .) , val dd ##arg flag
〈Options with shortcuts 102d 〉

#undef register option

#undef dd optional argument

#undef dd required argument

#undef dd no argument

This code is used in section 101e.

102c Some options have one-letter ‘shortcuts’, whereas others only exist in ‘fully spelled-out’ form. To easily keep
track of the latter, a special enumerated list is declared. To add to this list, simply add to the CWEB section
below.
〈Higher index options 102c 〉 =
#define register option (name , arg flag , loc , val , . . .) val ,
〈Options without shortcuts 102e 〉

#undef register option

This code is used in section 101d.

102d 〈Options with shortcuts 102d 〉 =
This code is used in sections 102a and 102b.

102e 〈Options without shortcuts 102e 〉 =
This code is used in sections 102a and 102c.

102f 〈Cases affecting the whole program 102f 〉 =
This code is used in section 101e.

102g 〈Cases involving specific modes 102g 〉 =
This code is used in section 101e.

429
433 SPLINT BISON SPECIFIC ROUTINES

103a bison specific routines

The placeholder code left blank in the common routines is filed in with the code relevant to the output of
parser tables in the following sections.

103b Tables

Here are all the parser table names. Some tables are not output but adding one to the list in the future will
be easy: it does not even have to be done here.
〈Parser table names 103b 〉 = 104c

5
register table d (yytranslate)
register table d (yyr1)
register table d (yyr2)
register table d (yydefact)
register table d (yydefgoto)
register table d (yypact)
register table d (yypgoto)
register table d (yytable)
register table d (yycheck)
register table d (yytoknum)
register table d (yystos)
register table d (yytname)
register table d (yyprhs)
register table d (yyrhs)

See also section 104c.

103c One special table requires a little bit more preparation. This is a table that lists the depth of the stack before
an implicit terminal. It is not one of the tables that is used by bison itself but is needed if the symbolic
name processing is to be implemented (bison has access to this information ‘on the fly’). The ‘new’ bison
(starting with version 3.0) does not generate yyprhs and yyrhs or any other arrays that contain similar
information, so we fake them here if such a crippled version of bison is used.
〈Variables and types local to the parser 103c 〉 = 105b

5
unsigned int yyrthree [YYNRULES + 1]⇐ {0};

#ifdef BISON_IS_CRIPPLED

unsigned int yyrhs [YYNRULES + 1]⇐ {−1};
unsigned int yyprhs [YYNRULES + 1]⇐ {0};

#endif

See also sections 105b and 112a.

103d We populate this table below . . .

〈Parser defaults 103d 〉 =
#ifndef BISON_IS_CRIPPLED

assert (YYNRULES + 1 = sizeof (yyprhs)/sizeof (yyprhs [0]));
{

int i, j;

for (i⇐ 1; i 6 YYNRULES; i++) {
for (j ⇐ 0; yyrhs [yyprhs [i] + j] 6= −1; j++) {

assert (yyprhs [i] + j < sizeof (yyrhs));
assert (j < yyr1 [i]);
if (〈This is an implicit term 104a 〉) {
〈Find the rule that defines it and set yyrthree 104b 〉

}
}
}
}

#endif

 TABLES SPLINT 433
436

104a 〈This is an implicit term 104a 〉 =
(strlen (yytname [yyrhs [yyprhs [i] + j]]) > 1) ∧ (yytname [yyrhs [yyprhs [i] + j]][0] =

’Υ’) ∧ (yytname [yyrhs [yyprhs [i] + j]][1] = ’@’)

This code is used in section 103d.

104b 〈Find the rule that defines it and set yyrthree 104b 〉 =
int rule number ;

for (rule number ⇐ 1; rule number < YYNRULES; rule number ++) {
if (yyr1 [rule number] = yyrhs [yyprhs [i] + j]) {

yyrthree [rule number]⇐ j;
break;

}
}
assert (rule number < YYNRULES);

This code is used in section 103d.

104c . . . and add its name to the list.
〈Parser table names 103b 〉 + =

4
103b

register table d (yyrthree)

104d Actions

There are several ways of making yyparse () execute all portions of the action code. The one chosen here
makes sure that none of the tables gets written past its last element. To see how it works, it might be helpful
to ‘walk through’ bison’s output to see how each change affects the generated parser.
〈Output parser semantic actions 104d 〉 =

if (output desc .output actions) {
int i, j;

fprintf (tables out , "%s", action desc .preamble);
if (notbare actions) {

yypact [0]⇐ YYPACT_NINF;
yypgoto [0]⇐ −1;
yydefgoto [0]⇐ YYFINAL;

}
for (i⇐ 1; i < sizeof (yyr1)/sizeof (yyr1 [0]); i++) {

fprintf (tables out , action desc .act setup , i, yyr2 [i]− 1);
if (action desc .print rule) {

action desc .print rule (i);
}
if (yyr2 [i] > 0) {

if (action desc .action 1) {
fprintf (tables out , "%s", action desc .action 1);

}
}
for (j ⇐ 2; j 6 yyr2 [i]; j++) {

if (action desc .action n) {
fprintf (tables out , action desc .action n, j);

}
}
if (notbare actions) {

yyr1 [i]⇐ YYNTOKENS;
yydefact [0]⇐ i;
yyr2 [i]⇐ 0;
yyparse (YYPARSE_PARAMETERS);

}
fprintf (tables out , action desc .act suffix , i, yyr2 [i]− 1);

436
440 SPLINT ACTIONS

}
fprintf (tables out , "%s", action desc .postamble);
if (action desc .cleanup) {

action desc .cleanup(&action desc);
}
}

105a Constants

A generic list of constants to be used later in different contexts is defined below. As before, the appropriate
macro will be defined generically to do what is required with these names (for example, we can turn each
name into a string for reporting purposes).
〈Parser constants 105a 〉 =

register const d (YYEMPTY)
register const d (YYPACT_NINF)
register const d (YYEOF)
register const d (YYLAST)
register const d (YYNTOKENS)
register const d (YYNRULES)
register const d (YYNSTATES)
register const d (YYFINAL)

This code is used in section 110b.

105b Tokens

Similar techniques are employed in token output. Tokens are parser specific (the scanner only needs their
numeric values) so we need some flexibility to output them in a desired format. For special purposes (say
changing the way tokens are typeset) we can control the format tokens are output in.
〈Variables and types local to the parser 103c 〉 + =

4
103c 112a

5
char ∗token format char ⇐ Λ;
char ∗token format affix ⇐ Λ;
char ∗token format suffix ⇐ Λ;
char ∗bootstrap token format ⇐ Λ;

105c 〈Parser specific options without shortcuts 105c 〉 = 107d
5

register option ("token-format-char", required argument , 0, TOKEN_FORMAT_CHAR, "")
register option ("token-format-affix", required argument , 0, TOKEN_FORMAT_AFFIX, "")
register option ("token-format-suffix", required argument , 0, TOKEN_FORMAT_SUFFIX, "")
register option ("bootstrap-token-format", required argument , 0, BOOTSTRAP_TOKEN_FORMAT, "")

See also sections 107d and 111c.

105d 〈Handle parser output options 105d 〉 = 111e
5

case TOKEN_FORMAT_CHAR:
token format char ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (token format char , optarg);
break;

case TOKEN_FORMAT_AFFIX:
token format affix ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (token format affix , optarg);
break;

case TOKEN_FORMAT_SUFFIX:
token format suffix ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (token format suffix , optarg);
break;

case BOOTSTRAP_TOKEN_FORMAT:
bootstrap token format ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (bootstrap token format , optarg);

 TOKENS SPLINT 440
445

break;

See also sections 111e and 112b.

106a 〈Parser specific output descriptor fields 106a 〉 =
bool output tokens :1;

106b No tokens are output by default.
〈Parser specific default outputs 106b 〉 =
.output tokens ⇐ 0,

106c The only part of the code below that needs any explanation is the ‘bootstrap’ token output. In bison every
token has three attributes: its ‘macro name’ (say, STRING) that is used by the parse code internally, its
‘print name’ ("string" to continue the example) that bison uses to print the token names in its diagnostic
messages, and its numeric value (that can be assigned implicitly by bison itself or explicitly by the user).
Only the ‘print names’ are kept in the yytname array so to reuse the scanner used by bison we either have
to extract the token ‘macro names’ from the C code ourselves to pass them on to the lexer, or use a special
‘stripped down’ version of a bison grammar parser to extract the names from the parser’s bison grammar.
To do this, some token names would still need to be known to the scanner. These tokens are selected by
hand to make the ‘bootstrapping’ parser operational. The token list for the bison grammar parser can be
examined as part of the appropriate driver file.
〈Output parser tokens 106c 〉 =

if (output desc .output tokens) {
int i;
int length ;
char token ;
char ∗token name ;
bool too creative ⇐ false ;

for (i⇐ 258; i < sizeof (yytranslate)/sizeof (yytranslate [0]); i++) {
token name ⇐ yytname [yytranslate [i]];
if (token name) {

fprintf (tables out , token format affix , yytranslate [i], i);
length ⇐ 0;
while ((token ⇐ ∗token name)) {

if (token format char) {
length

+⇐ fprintf (tables out , token format char , (unsigned int) token);
}
if (token < ◦40 ∨ token = ◦177) {

too creative ⇐ true ;
}
token name ++;

}
fprintf (tables out , token format suffix , too creative ? ".unprintable." : yytname [yytranslate [i]]);

}
}
}

#ifdef BISON_BOOTSTRAP_MODE

fprintf (tables out , "\\bootstrapmodetrue\n");
fprintf (tables out , "%% token values needed to bootstrap the parser\n");
bootstrap tokens (bootstrap token format);

#endif

106d The size of the token name table is useful to determine, say, how many ‘named’ tokens the parser uses.
〈Output parser constants 106d 〉 =

fprintf (tables out , "\\constset{YYTRANSLATESIZE}{%d}%%\n", (int)(sizeof (yytranslate)/sizeof (yytranslate [0])));

445
454 SPLINT OUTPUT MODES

107a Output modes

The code below can be easily extended and modified to output parser tables, actions, and constants in a
language of one’s choice. We are only interested in TEX, however, thus other modes are very rudimentary
or non-existent at this point.

107b Token only mode

Token only output mode does exactly what is expected: outputs token names and values in the format of
your choosing.
〈Parser specific output modes 107b 〉 = 107g

5
TOKEN_ONLY_OUT,

See also sections 107g and 107i.

107c 〈Handle parser related output modes 107c 〉 = 107h
5

case TOKEN_ONLY_OUT:
〈Prepare token only output environment 107f 〉
break;

See also sections 107h and 108a.

107d 〈Parser specific options without shortcuts 105c 〉 + =
4
105c 111c

5
register option ("token-only-mode",no argument , 0, TOKEN_ONLY_MODE, "")

107e 〈Configure parser output modes 107e 〉 =
case TOKEN_ONLY_MODE:

mode ⇐ TOKEN_ONLY_OUT;
break;

107f 〈Prepare token only output environment 107f 〉 =
if (nottoken format char) {

token format char ⇐ "{%u}";
}
if (nottoken format affix) {

token format affix ⇐ "%% token: %d, token value: %d\n\\prettytoken@{";
}
if (nottoken format suffix) {

token format suffix ⇐ "}%% %s\n";
}
output desc .output tokens ⇐ 1;

This code is used in section 107c.

107g Generic output

Generic output is not programmed yet.
〈Parser specific output modes 107b 〉 + =

4
107b 107i

5
GENERIC_OUT,

107h 〈Handle parser related output modes 107c 〉 + =
4
107c 108a

5
case GENERIC_OUT:

printf ("This mode is not supported yet\n");
exit (0);
break;

107i TEX output

The TEX mode is the main reason for this software.
〈Parser specific output modes 107b 〉 + =

4
107g

TEX_OUT,

 TEX OUTPUT SPLINT 454
457

108a 〈Handle parser related output modes 107c 〉 + =
4

107h

case TEX_OUT:
〈Set up TEX table output for parser tables 108b 〉
〈Prepare TEX format for semantic action output 109b 〉
〈Prepare TEX format for parser constants 110b 〉
〈Prepare TEX format for parser tokens 111a 〉
break;

108b Some tables require name adjustments due to TEX’s reluctance to treat digits as part of a name.
〈Set up TEX table output for parser tables 108b 〉 = 109a

5
#define register table d (name)tex table (name);
〈Table names 96c 〉

#undef register table d
yyr1 desc .name ⇐ "yyrone";
yyr2 desc .name ⇐ "yyrtwo";

See also section 109a.

This code is used in section 108a.

108c The memory allocated for the yytname table is released at the end.
〈Helper functions declarations for for parser output 108c 〉 =

void yytname cleanup(struct table d ∗table);
int yytname formatter tex (FILE ∗stream , int index);
int yytname formatter (FILE ∗stream , int index);

108d There are a number of helper functions to output complicated names in TEX. The safest way seems to be to
output those as sequences of ASCII codes to accommodate names like $end safely. TEX’s ^^. . . convention is
supported as well.
〈Helper functions for parser output 108d 〉 = 110a

5
void yytname cleanup(struct table d ∗table)
{

free (table⇁separator);
free (table⇁null);

}
int yytname formatter tex (FILE ∗stream , int index)
{

char ∗token name ⇐ yytname [index];
unsigned char token ;
int length ⇐ 0;

fprintf (stream , "\\addname ");
while ((token ⇐ ∗token name)) {

if (token < ◦40 ∨ token = ◦177) { . unprintable characters /
fprintf (stream , "^^%c", token < ◦100 ? (unsigned char)(token + ◦100) : (unsigned char)(token − 100));

length
+⇐ 3;

}
else {

fprintf (stream , "%c", token);
length ++;

}
token name ++;

}
fprintf (stream , "\n");
return length ;

}
int yytname formatter (FILE ∗stream , int index)
{

457
459 SPLINT TEX OUTPUT

char ∗token name ;
unsigned char token ;
int length ⇐ 0;
bool too creative ⇐ false ; . to indicate if the name is too dangerous to print /

fprintf (stream , "\\addname");
if (index > 0) { . this is not the last name /

token name ⇐ yytname [index];
if (token name = Λ) {

token name ⇐ "$impossible";
}
while ((token ⇐ ∗token name)) {

length
+⇐ fprintf (stream , "{%u}", (unsigned int) token);

if (token < ◦40 ∨ token = ◦177) {
too creative ⇐ true ;

}
token name ++;

}
fprintf (stream , "%% %s\n", too creative ? ".unprintable." : yytname [index]);

}
else { . this is the last name /

token name ⇐ yytname [−index];
if (token name = Λ) {

token name ⇐ "$impossible";
}
while ((token ⇐ ∗token name)) {

length
+⇐ fprintf (stream , "{%u}", (unsigned int) token);

token name ++;
if (token < ◦40 ∨ token = ◦177) {

too creative ⇐ true ;
}

}
fprintf (stream , "%% %s\n\\end\n%%\n",

too creative ? ".unprintable." : (yytname [−index] ? yytname [−index] : "end of array"));
}
return length ;

}
See also section 110a.

109a 〈Set up TEX table output for parser tables 108b 〉 + =
4

108b

yytname desc .preamble ⇐ "%%\n\\newtable{yytname}{}\\tempca0\\relax%% a robust way to\
 add the yytname array\n";

yytname desc .separator ⇐ Λ;
yytname desc .postamble ⇐ Λ;
yytname desc .null ⇐ Λ;
yytname desc .null postamble ⇐ Λ;
yytname desc .optimized numeric ⇐ Λ;
yytname desc .prettify ⇐ false ;
yytname desc .formatter ⇐ yytname formatter ;
yytname desc .cleanup ⇐ Λ;
output desc .output yytname ⇐ 1;

109b 〈Prepare TEX format for semantic action output 109b 〉 =
if (optimize actions) {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax % see the documentation for an explanation of this trick\n"

"\\def\\yybigswitch#1{%%\n"

" \\csname dobisonaction\\number #1\\parsernamespace\\endcsname\n"

 TEX OUTPUT SPLINT 459
461

"}\\stashswitch{yybigswitch}%%\n";
action desc .act setup ⇐ "\n\\expandafter\\def\\csname dobisonaction%d\\parsernamespa\

ce\\endcsname{%%\n%%";
action desc .act suffix ⇐ "}%% end of rule %d\n";
action desc .action 1 ⇐ Λ;
action desc .action n ⇐ Λ;
action desc .postamble ⇐ "\n\\catcode‘\\/=12\\relax\n\n";
action desc .print rule ⇐ print rule ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
else {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax % see the documentation for an explanation of this trick\n"

"\\def\\yybigswitch#1{%%\n"

" \\ifcase#1\\relax\n";
action desc .act setup ⇐ " \\or %% (rule %d) ";
action desc .act suffix ⇐ "";
action desc .action 1 ⇐ Λ;
action desc .action n ⇐ Λ;
action desc .postamble ⇐ " \\else\n \\fi\n}\\stashswitch{yybigswitch}%%\n\\catcode‘\

\\/=12\\relax\n\n";
action desc .print rule ⇐ print rule ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
This code is used in section 108a.

110a Grammar rules are listed in a readable form alongside the action code to make it possible to quickly find an
appropriate action. The rules are not output if a crippled bison is used.
〈Helper functions for parser output 108d 〉 + =

4
108d

void print rule (int n)
{

fprintf (tables out , "%s%s: ", (n < 10 ∧ notoptimize actions ? " " : ""), yytname [yyr1 [n]]);

#ifndef BISON_IS_CRIPPLED

int i;

i⇐ yyprhs [n];
if (yyrhs [i] < 0) {

fprintf (tables out , "<empty>");
}
else {

while (yyrhs [i] > 0) {
fprintf (tables out , "%s ", yytname [yyrhs [i]]);
i++;

}
}

#endif
fprintf (tables out , "\n");

}

110b TEX constant output is another place where the techniques described above are applied. As before, the
macro handles the repetitive work of initialization, declaration, etc in each place where the corresponding
constant is mentioned. The one exception is YYPACT_NINF, which has to be handled separately because the
underscore in its name makes it difficult to use it as a command sequence name.
〈Prepare TEX format for parser constants 110b 〉 =
#define register const d (c name) c name## desc .format ⇐ "\\constset{%s}{%d}%%\n";

461
469 SPLINT TEX OUTPUT

c name## desc .name ⇐ #c name ;
output desc .output ##c name ⇐ 1;
〈Parser constants 105a 〉

#undef register const d
YYPACT_NINF_desc .name ⇐ "YYPACTNINF";

This code is used in section 108a.

111a Token definitions round off the TEX output mode.
〈Prepare TEX format for parser tokens 111a 〉 =

token format char ⇐ Λ; . do not output individual characters /
if (nottoken format affix) {

token format affix ⇐ "\\tokenset{%d}{%d}";
}
if (nottoken format suffix) {

token format suffix ⇐ "%% %s\n";
}
if (notbootstrap token format) {

bootstrap token format ⇐ "\\expandafter\\def\\csname token\\parsernamespace %s\\endcs\
name{%d}%% %s\n";

} . output desc .output tokens ⇐ 1; is no longer necessary as it is done entirely in TEX /

This code is used in section 108a.

111b Command line options

We start with the most obvious option, the one begging for help.

111c 〈Parser specific options without shortcuts 105c 〉 + =
4

107d

register option ("help",no argument , 0, LONG_HELP, "")

111d 〈Shortcuts for command line options affecting parser output 111d 〉 =
, ’h’

111e 〈Handle parser output options 105d 〉 + =
4
105d 112b

5
case ’h’: . short help /

fprintf (stderr , "Usage: %s [options] output_file\n", argv [0]);
exit (0);
break; . should not be needed /

case LONG_HELP:
fprintf (stderr ,

"%s [--mode=TeX:options] output_file outputs tables\n"" and constants for a TeX parser\n",
argv [0]);

exit (0);
break; . should not be needed /

111f 〈Parser specific options with shortcuts 111f 〉 =
register option ("debug", optional argument , 0, ’b’, "")
register option ("mode", required argument , 0, ’m’, "")
register option ("table-separator", required argument , 0, ’z’, "")
register option ("format", required argument , 0, ’f’, "") . name? /
register option ("table", required argument , 0, ’t’, "") . specific table /
register option ("constant", required argument , 0, ’c’, "") . specific constant /
register option ("name-length", required argument , 0, ’l’, "") . change MAX_NAME_LENGTH /
register option ("token", required argument , 0, ’n’, "") . specific token /
register option ("run-parse", required argument , 0, ’p’, "") . run the parser /
register option ("parse-file", required argument , 0, ’i’, "") . input for the parser /

111g The string below is a list of short options.

 COMMAND LINE OPTIONS SPLINT 469
474

112a A few options can be discussed immediately.
〈Variables and types local to the parser 103c 〉 + =

4
105b

char ∗table separator ⇐ "%s ";

112b 〈Handle parser output options 105d 〉 + =
4

111e

case ’m’: . output mode /
switch (optarg [0]) {
case ’T’: case ’t’:

mode ⇐ TEX_OUT;
break;

case ’b’: case ’B’: case ’g’: case ’G’:
mode ⇐ GENERIC_OUT;
break;

default:
break;

}
break;

case ’z’: table separator ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));
strcpy (table separator , optarg);
break;

112c flex specific routines

The output of the scanner automaton follows the steps similar to the ones taken during the parser output.
The major difference is in the output of actions and constants.

112d Tables

As in the case of a parser we start with all the table names.
〈Scanner table names 112d 〉 =

register table d (yy accept)
register table d (yy ec)
register table d (yy meta)
register table d (yy base)
register table d (yy def)
register table d (yy nxt)
register table d (yy chk)

112e Actions

The scanner function, yylex (), has been reverse engineered to execute all portions of the action code. The
method chosen here makes sure that none of the tables gets written past its last element.
〈Variables and types local to the scanner driver 112e 〉 = 114b

5
int max yybase entry ⇐ 0;
int max yyaccept entry ⇐ 0;
int max yynxt entry ⇐ 0;
int max yy ec entry ⇐ 0;

See also sections 114b and 118f.

112f The ‘exotic’ scanner constants treated below are the constants used to control the scanner code itself.
Unfortunately they are not given any names that can be used by the ‘driver’ to output them in a simple
way.
〈Compute exotic scanner constants 112f 〉 =
{

int i;

for (i⇐ 0; i < sizeof (yy base)/sizeof (yy base [0]); i++) {
if (yy base [i] > max yybase entry) {

474
475 SPLINT ACTIONS

max yybase entry ⇐ yy base [i];
}
}
for (i⇐ 0; i < sizeof (yy nxt)/sizeof (yy nxt [0]); i++) {

if (yy nxt [i] > max yynxt entry) {
max yynxt entry ⇐ yy nxt [i];

}
}
for (i⇐ 0; i < sizeof (yy accept)/sizeof (yy accept [0]); i++) {

if (yy accept [i] > max yyaccept entry) {
max yyaccept entry ⇐ yy accept [i];

}
}
for (i⇐ 0; i < sizeof (yy ec)/sizeof (yy ec [0]); i++) {

if (yy ec [i] > max yy ec entry) {
max yy ec entry ⇐ yy ec [i];

}
}
}

113a 〈Output scanner actions 113a 〉 =
if (output desc .output actions) {

int i, j;

yyscan t fake scanner ;
fprintf (tables out , "%s", action desc .preamble);
if (notbare actions) {

if (yylex init (&fake scanner)) {
printf ("Cannot initialize the scanner\n");

}
yy ec [0]⇐ 0;
yy base [1]⇐ max yybase entry ;
yy base [2]⇐ 0;
yy chk [0]⇐ 2;
yy chk [max yybase entry]⇐ 1;
yy nxt [max yybase entry]⇐ 1;
yy nxt [0]⇐ 1;
fprintf (stderr , "max entry: %d\n",max yybase entry);

}
for (i⇐ 1; i 6 max yyaccept entry ; i++) {

fprintf (tables out , action desc .act setup , i);
if (i = YY_END_OF_BUFFER) {

fprintf (tables out , " %% YY_END_OF_BUFFER\n%s\n", " \\yylexeofaction");
}
else {

fprintf (tables out , "\n");
if (notbare actions) {

((struct yyguts t ∗) fake scanner)⇁yy hold char ⇐ 0;
yy accept [1]⇐ i;
if (i% 10 = 0) {

fprintf (stderr , ".");
}
yylex (Λ, fake scanner);

}
}
fprintf (tables out , action desc .act suffix , i);

}
fprintf (tables out , " %% end of file states:\n%s\n",

 ACTIONS SPLINT 475
478

" %#define YY_STATE_EOF(state) (YY_END_OF_BUFFER + state + 1)");
if (max eof state = 0) { . in case the user has not declared any states /

max eof state ⇐ YY_STATE_EOF(INITIAL);
}
for (; i 6 max eof state ; i++) {

fprintf (tables out , action desc .act setup , i);
if (notbare actions) {

fprintf (tables out , "\n");
((struct yyguts t ∗) fake scanner)⇁yy hold char ⇐ 0;
yy accept [1]⇐ i;
yylex (Λ, fake scanner);

}
fprintf (tables out , action desc .act suffix , i);

}
fprintf (tables out , "%s", action desc .postamble);
if (action desc .cleanup) {

action desc .cleanup(&action desc);
}
}
〈Compute magic constants 114c 〉
〈Output states 115b 〉;
fprintf (tables out , "\\constset{YYECMAGIC}{%d}%%\n", yy ec magic);
fprintf (tables out , "\\constset{YYMAXEOFSTATE}{%d}%%\n",max eof state);

114a 〈Error codes 99e 〉 + =
4

99e

BAD_SCANNER,

114b 〈Variables and types local to the scanner driver 112e 〉 + =
4
112e 118f

5
int yy ec magic ;

114c The ‘magic’ constants are similar to the ‘exotic’ ones mentioned above except the methods used to compute
them rely on reverse engineering the scanner function. Since this changes the scanner tables it has to be
done after the ‘driver’ has finished going through all the actions.
〈Compute magic constants 114c 〉 =
{

int i, j;
char fake yytext [YY_MORE_ADJ + 1];

yyscan t yyscanner ;

struct yyguts t ∗yyg ;

if (yylex init (&yyscanner)) {
printf ("Cannot initialize the scanner\n");
exit (BAD_SCANNER);

}
yyg ⇐ (struct yyguts t ∗) yyscanner ;
yyg⇁yy start ⇐ 0;
yy set bol (0);
yyg⇁yytext ptr ⇐ fake yytext ;
yyg⇁yy c buf p ⇐ yyg⇁yytext ptr + 1 + YY_MORE_ADJ;
fake yytext [YY_MORE_ADJ]⇐ 0; . ∗yy cp ⇐ 0; /
yy accept [0]⇐ 0;
yy base [0]⇐ 0;
for (i⇐ 0; i < sizeof (yy chk)/sizeof (yy chk [0]); i++) {

yy chk [i]⇐ 0;
}
for (i⇐ 0; i < sizeof (yy nxt)/sizeof (yy nxt [0]); i++) {

yy nxt [i]⇐ i;

478
480 SPLINT ACTIONS

}
yy ec magic ⇐ yy get previous state (yyscanner);

}
This code is used in section 113a.

115a State names

There is no easy way to output the symbolic names for states, so this has to be done by hand while the
actions are output. The state names are accumulated in a list structure and are printed out after the action
output is complete.

Note that parsing the scanner file is only partially helpful (even though the extended parser and scanner
can recognize the %x option). All that can be done is output the state names but not their numerical values,
since all such names are macros whose values are only known to the flex generated scanner.
#define Define State (st name , st num) do {

struct lexer state d ∗this state ;
this state ⇐ malloc(sizeof (struct lexer state d));
this state⇁name ⇐ st name ;
this state⇁value ⇐ st num ;
this state⇁next ⇐ Λ;
if (last state) {

last state⇁next ⇐ this state ;
last state ⇐ this state ;

}
else {

last state ⇐ state list ⇐ this state ;
}
if (YY_STATE_EOF(st num) > max eof state) {

max eof state ⇐ YY_STATE_EOF(st num);
}
} while (0);

〈Scanner variables and types for C preamble 115a 〉 =
int max eof state ⇐ 0;
struct lexer state d {

char ∗name ;
int value ;
struct lexer state d ∗next ;
};
struct lexer state d ∗state list ⇐ Λ;
struct lexer state d ∗last state ⇐ Λ;

115b 〈Output states 115b 〉 =
{

struct lexer state d ∗current state ;
struct lexer state d ∗next state ;

current state ⇐ next state ⇐ state list ;
if (current state) {

fprintf (tables out , "\\def\\setflexstates{%%\n"" \\stateset{INITIAL}{%d}%%\n", INITIAL);
while (current state) {

fprintf (tables out , " \\stateset{%s}{%d}%%\n", current state⇁name , current state⇁value);
current state ⇐ current state⇁next ;
free (next state);
next state ⇐ current state ; . the name field is not deallocated because it is not allocated on the heap /

}
fprintf (tables out , "}%%\n%%\n");

}

 STATE NAMES SPLINT 480
488

}
This code is used in section 113a.

116a Constants

〈Scanner constants 116a 〉 =
register const d (YY_END_OF_BUFFER_CHAR)
register const d (YY_NUM_RULES)
register const d (YY_END_OF_BUFFER)

This code is used in section 117b.

116b Output modes

The output modes are the same as those in the parser driver with some minor changes.

116c Generic output

Generic output is not programmed yet.
〈Scanner specific output modes 116c 〉 = 116e

5
GENERIC_OUT,

See also section 116e.

116d 〈Handle scanner output modes 116d 〉 = 116f
5

case GENERIC_OUT:
printf ("This mode is not supported yet\n");
exit (0);
break;

See also section 116f.

116e TEX mode

The TEX mode is the main focus of this software.
〈Scanner specific output modes 116c 〉 + =

4
116c

TEX_OUT,

116f 〈Handle scanner output modes 116d 〉 + =
4

116d

case TEX_OUT:
〈Set up TEX format for scanner tables 116g 〉
〈Set up TEX format for scanner actions 117a 〉
〈Prepare TEX format for scanner constants 117b 〉
break;

116g 〈Set up TEX format for scanner tables 116g 〉 =
tex table generic(yy accept);
yy accept desc .name ⇐ "yyaccept";
tex table generic(yy ec);
yy ec desc .name ⇐ "yyec";
tex table generic(yy meta);
yy meta desc .name ⇐ "yymeta";
tex table generic(yy base);
yy base desc .name ⇐ "yybase";
tex table generic(yy def);
yy def desc .name ⇐ "yydef";
tex table generic(yy nxt);
yy nxt desc .name ⇐ "yynxt";
tex table generic(yy chk);
yy chk desc .name ⇐ "yychk";

This code is used in section 116f.

488
491 SPLINT TEX MODE

117a 〈Set up TEX format for scanner actions 117a 〉 =
if (optimize actions) {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax\n%\n"

"\\def\\yydoactionswitch#1{%%\n"

" \\let\\yylextail\\yylexcontinue\n"

" \\csname doflexaction\\number #1\\parsernamespace\\endcsname\n"

" \\yylextail\n"

"}\\stashswitch{yydoactionswitch}%\n";
action desc .act setup ⇐ "\n\\expandafter\\def\\csname doflexaction%d\\parsernamespac\

e\\endcsname{%%";
action desc .act suffix ⇐ "}%% end of rule %d\n";
action desc .action 1 ⇐ Λ;
action desc .action n ⇐ Λ;
action desc .postamble ⇐ "\\catcode‘\\/=12\\relax\n%\n";
action desc .print rule ⇐ Λ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
else {

action desc .preamble ⇐ "%\n% the big switch\n%\n"

"\\catcode‘\\/=0\\relax\n%\n"

"\\def\\yydoactionswitch#1{%%\n \\let\\yylextail\\yylexcontinue\n"

" \\ifcase#1\\relax\n";
action desc .act setup ⇐ " \\or\n"" \\YYRULESETUP %% (rule %d) ";
action desc .act suffix ⇐ " %% end of rule %d\n";
action desc .action 1 ⇐ Λ;
action desc .action n ⇐ Λ;
action desc .postamble ⇐ " \\else\n \\fi\n \\yylextail\n}\\stashswitch{yydoactions\

witch}%\n\\catcode‘\\/=12\\relax\n%\n";
action desc .print rule ⇐ Λ;
action desc .cleanup ⇐ Λ;
output desc .output actions ⇐ 1;

}
This code is used in section 116f.

117b TEX constant output is another place where the techniques described above are applied. A few names are
handled separately, because they contain underscores.
〈Prepare TEX format for scanner constants 117b 〉 =
#define register const d (c name) c name## desc .format ⇐ "\\constset{%s}{%d}%%\n";

c name## desc .name ⇐ #c name ;
output desc .output ##c name ⇐ 1;
〈Scanner constants 116a 〉

#undef register const d
YY_END_OF_BUFFER_CHAR_desc .name ⇐ "YYENDOFBUFFERCHAR";
YY_NUM_RULES_desc .name ⇐ "YYNUMRULES";
YY_END_OF_BUFFER_desc .name ⇐ "YYENDOFBUFFER";

This code is used in section 116f.

117c 〈Output exotic scanner constants 117c 〉 =
fprintf (tables out , "\\constset{YYMAXREALCHAR}{%ld}%%\n", sizeof (yy accept)/(sizeof (yy accept [0]))− 1);
fprintf (tables out , "\\constset{YYBASEMAXENTRY}{%d}%%\n",max yybase entry);
fprintf (tables out , "\\constset{YYNXTMAXENTRY}{%d}%%\n",max yynxt entry);
fprintf (tables out , "\\constset{YYMAXRULENO}{%d}%%\n",max yyaccept entry);
fprintf (tables out , "\\constset{YYECMAXENTRY}{%d}%%\n",max yy ec entry);

 COMMAND LINE OPTIONS SPLINT 491
497

118a Command line options

We start with the most obvious option, the one begging for help.

118b 〈Scanner specific options without shortcuts 118b 〉 =
register option ("help",no argument , 0, LONG_HELP, "")

118c 〈Shortcuts for command line options affecting scanner output 118c 〉 =
, ’h’

118d 〈Handle scanner output options 118d 〉 = 118g
5

case ’h’: . short help /
fprintf (stderr , "Usage: %s [options] output_file\n", argv [0]);
exit (0);
break; . should not be needed /

case LONG_HELP:
fprintf (stderr ,

"%s [--mode=TeX:options] output_file outputs tables\n"" and constants for a TeX scanner\n",
argv [0]);

exit (0);
break; . should not be needed /

See also section 118g.

118e 〈Scanner specific options with shortcuts 118e 〉 =
register option ("debug", optional argument , 0, ’b’, "")
register option ("mode", required argument , 0, ’m’, "")
register option ("table-separator", required argument , 0, ’z’, "")
register option ("format", required argument , 0, ’f’, "") . name? /
register option ("table", required argument , 0, ’t’, "") . specific table /
register option ("constant", required argument , 0, ’c’, "") . specific constant /
register option ("name-length", required argument , 0, ’l’, "") . change MAX_NAME_LENGTH /
register option ("token", required argument , 0, ’n’, "") . specific token /
register option ("run-scan", required argument , 0, ’p’, "") . run the scanner /
register option ("scan-file", required argument , 0, ’i’, "") . input for the scanner /

118f A few options can be immediately discussed.
〈Variables and types local to the scanner driver 112e 〉 + =

4
114b

int debug level ⇐ 0;
char ∗table separator ⇐ "%s ";

118g 〈Handle scanner output options 118d 〉 + =
4

118d

case ’b’: . debug (level) /
debug level ⇐ optarg ? atoi (optarg) : 1;
break;

case ’m’: . output mode /
switch (optarg [0]) {
case ’T’: case ’t’:

mode ⇐ TEX_OUT;
break;

case ’b’: case ’B’: case ’g’: case ’G’:
mode ⇐ GENERIC_OUT;
break;

default:
break;

}
break;

case ’z’: table separator ⇐ (char ∗) malloc((strlen (optarg) + 1) ∗ sizeof (char));

497
498 SPLINT COMMAND LINE OPTIONS

strcpy (table separator , optarg);
break;

 PHILOSOPHY SPLINT 498
498

11
Philosophy

121a This section should, perhaps, be more appropriately called rant but philosophy sounds more academic. The
design of any software involves numerous choices, and SPLinT is no exception. Some of these choices are
explained in the appropriate places in the package files. This section collects a few ‘big picture’ viewpoints
that did not fit elsewhere.

121b On typographic convention

It must seem quite perplexing to some readers that a manual focussing on pretty-printing shows such a
wanton disregard for good typographic style. Haphazard choice of layouts to present programming constructs,
random overabundance of fonts on almost every page are just a few of the many typographic sins and design
guffaws so amply manifested in this opus. The author must take full responsibility for the lack of taste in
this document and has only one argument in his defense: this is not merely a book for a good night read
but a piece of technical documentation.

In many ways, the goal of this document is somewhat different from that of a well-written manual: to
display the main features prominently and in logical order. After all, this is a package that is intended to
help write such manuals so it must inevitably present some use cases that exhibit a variety of typographic
styles achievable with SPLinT. Needless to say, variety and consistency seldom go hand in hand and it is
the consistency that makes for a pretty page. One of the objectives has been to reveal a number of quite
technical programming constructs so one should keep in mind that it is assumed that the reader will want to
look up the input files to see how some (however ugly and esoteric) typographic effects have been achieved.

On the other hand, to quote a cliché, beauty is in the eyes of the beholder so what makes a book readable (or
even beautiful) may well depend on the reader’s background. As an example, letterspacing as a typographic
device is almost universally reviled in Western typography (aside from a few niche uses such as setting titles).
In Russian, however (at least until recently), letterspacing has been routinely used for emphasis (or, as a
Russian would put it, e m p h a s i s) in lieu of, say, italics. Before I hear any objections from typography
purists, let me just say that this technique fits in perfectly with the way emphasis works in the Russian
speech: the speaker slowly enunciates the sounds of each word (incidentally, emphasizing emphasis this way
is a perfect example of the inevitable failure of any attempted letterspaced highlighting in most English
texts). Letterspaced sentences are easy to find on a page, and they set a special reading rhythm, which is an
added bonus in many cases, although their presense openly violates the ‘universally gray pages are a must’
dogma.

 WHY GPL SPLINT 500
501

122a Why GPL

Selecting the license for this project involves more than the availability of the source code. TEX, by its
very nature is an interpreted 1) language, so it is not a matter of hiding anything from the reader or a
potential programmer. The C code is a different matter but the source is not that complicated. Reducing
the licensing issue to the ability of someone else to see the source code is a great oversimplification. Short
of getting into too many details of the so-called ‘open source licenses’ (other than GPL) and arguing with
their advocates, let me simply express my lack of understanding of the arguments purporting that BSD-style
licenses introduce more freedom by allowing a software vendor to incorporate the BSD-licensed software into
their products. What benefit does one derive from such ‘extension’ of software freedom? Perhaps the hope
that the ‘open source’ (for the lack of a better term) will prompt the vendor to follow the accepted free
(or any other, for that matter!) software standards and make its software more interoperable with the free
alternatives? A well-known software giant’s embrace, extend, extinguish philosophy shows how näıve and
misplaced such hopes are.

I am not going to argue for the benefits of free software at length, either (such benefits seem self-evident
to me, although the readers should feel free to disagree). Let me just point out that the software companies
enjoy quite a few freedoms that we, as software consumers elect to afford them. Among such freedoms are
the ability to renege on any promises made to us and withdraw any guarantees that we might enjoy. As
a result of such ‘release of any responsibility’, the claims of increased reliability or better support for the
commercial software sound a bit hollow. Free software, of course, does not provide any guarantees, either
but ‘you get what you paid for’.

Another well spread industry tactic is user brainwashing and changing the culture (usually for the worse)
in order to promote new ‘user-friendly’ features of commercial software. Instead of taking advantage of
computers as cognitive machines we have come to view them as advanced media players that we interact
with through artificial, unnatural interfaces. Meaningless terminology (‘UX’ for ‘user experience’? What in
the world is ‘user experience’?) proliferates, and programmers are all too happy to deceive themselves with
their newly discovered business prowess.

One would hope that the somewhat higher standards of the ‘real’ manufacturers might percolate to the
software world, however, the reality is very different. Not only has life-cycle ‘engineering’ got to the point
where manufacturers can predict the life spans of their products precisely, embedded software in those
products has become an enabling technology that makes this ‘life design’ much easier.

In effect, by embedding software in their products, hardware manufacturers not only piggy-back on
software’s perceived complexity, and argue that such complex systems cannot be made reliable, they have an
added incentive to uphold this image. The software weighs nothing, memory is cheap, consumers are easy
to deceive, thus ‘software is expensive’ and ‘reliable software is prohibitively so’. Designing reliable software
is quite possible, though, just look at programmable thermostats, simple cellphones and other ‘invisible’
gadgets we enjoy. The ‘software ideology’ with its ‘IP’ lingo is spreading like a virus even through the world
of real things. We now expect products to break and are too quick to forgive sloppy (or worse, malicious)
engineering that goes into everyday things. We are also getting used to the idea that it is the manufacturers
that get to dictate the terms of use for ‘their’ products and that we are merely borrowing ‘their’ stuff.

The GPL was conceived as an antidote to this scourge. This license is a remarkable piece of ‘legal
engineering’: a self-propagating contract with a clearly outlined set of goals. While by itself it does not
guarantee reliability or quality, it does inhibit the spread of the ‘IP’ (which is sometimes sarcastically, though
quite perceptively, ‘deabbreviated’ as Imaginary Property) disease through software.

The industry has adapted, of course. So called (non GPL) ‘open source licenses’, that are supposed to be
an improvement on GPL, are a sort of ‘immune reaction’ to the free software movement. Describing GPL
as ‘viral’, creating dismissive acronims such as FLOSS to refer to the free software, and spreading outright
misinformation about GPL are just a few of the tactics employed by the software companies. Convince and
confuse enough apathetic users and the protections granted by GPL are no longer visible.

1) There are some exceptions to this, in the form of preloaded formats.

501
504 SPLINT WHY NOT C++ OR OOP IN GENERAL

123a Why not C++ or OOP in general

The choice of the language was mainly driven by æsthetic motives: C++ has a bloated and confusing standard,
partially supported by various compilers. It seems that there is no agreement on what C++ really is or how to
use some of its constructs. This is all in contrast to C with its well defined and concise body of specifications
and rather well established stylistics. The existence of ‘obfuscated C’ is not good evidence of deficiency and
C++ is definitely not immune to this malady.

Object oriented design has certainly taken on an aura of a religious dictate, universally adhered to and
forcefully promoted by its followers. Unfortunately, the definition of what constitutes an ‘object-oriented’
approach is rather vague. A few informal concepts are commonly tossed about to give the illusion of a
well developed abstraction (such as ‘polymorphism’, ‘encapsulation’, and so on) but definitions vary in both
length and content, depending on the source.

On the syntactic level, some features of object-oriented languages are undoubtedly very practical (such as
a this pointer in C++), however, many of those features can be effectively emulated with some clever uses of
an appropriate preprocessor (there are a few exceptions, of course, this being one of them). The rest of the
‘object-oriented philosophy’ is just that: a design philosophy. Before that we had structured programming,
now there are patterns, extreme, agile, reactive, etc. They might all find their uses, however, there are
always numerous exceptions (sometimes even global variables and goto’s have their place, as well).

A pedantic reader might point out a few object-oriented features even in the TEX portion of the package
and then accuse the author of being ‘inconsistent’. I am always interested in possible improvements in style
but I am unlikely to consider any changes based solely on the adherence to any particular design fad.

In short, OOP was not shunned simply because a ‘non-OOP’ language was chosen, instead, whatever
approach or style was deemed most effective was used. The author’s judgment has not always been perfect,
of course, and given a good reason, changes can be made, including the choice of the language. ‘Make it
object-oriented’ is neither a good reason nor a clearly defined one, however.

123b Why not ∗TEX

Simple. I never use it and have no idea of how packages, classes, etc., are designed. I have heard it
has impressive mechanisms for dealing with various problems commonly encountered in TEX. Sadly, my
knowledge of ∗TEX machinery is almost nonexistent. This may change but right now I have tried to make
the macros as generic as possible, hopefully making ∗TEX adaptation easy.

The following quote from [Ho] makes me feel particularly uneasy about the current state of development
of various TEX variants: “Finally, to many current programmers WEB source simply feels over-documented
and even more important is that the general impression is that of a finished book: sometimes it seems like
WEB actively discourages development. This is a subjective point, but nevertheless a quite important one.”

Discouraging development seems like a good thing to me. Otherwise we are one step away from encouraging
writing poor software with inadequate tools merely ‘to encourage development’.

The feeling of a WEB source being over-documented is most certainly subjective, and, I am sure, not shared
by all ‘current programmers’. The advantage of using WEB-like tools, however, is that it gives the programmer
the ability to place vital information where it does not distract the reader (‘developer’, ‘maintainer’, call it
whatever you like) from the logical flow of the code.

Some of the complaints in [Ho] are definitely justified (see below for a few similar criticisms of CWEB),
although it seems that a better approach would be to write an improved tool similar to WEB, rather than
give up all the flexibility such a tool provides.

123c Why CWEB

CWEB is not as polished as TEX but it works and has a number of impressive features. It is, regrettably,
a ‘niche’ tool and a few existing extensions of CWEB and software based on similar ideas do not enjoy the
popularity they deserve. Literate philosophy has been largely neglected even though it seems to have a more
logical foundation than OOP. Under these circumstances, CWEB seemed to be the best available option.

 SOME CWEB IDIOSYNCHRASIES SPLINT 504
504

124a Some CWEB idiosynchrasies

CWEB was among the first tools for literate programming intended for public use 1). By almost every measure
it is a very successful design: the program mostly does what is intended, was used in a number of projects,
and made a significant contribution to the practice of literate programming. It also gave rise to a multitude
of similar software packages (see, for example, noweb by N. Ramsey, [Ra]), which proves the vitality of the
approach taken by the authors of CWEB.

While the value of CWEB is not in dispute, it would be healthy to outline a few deficiencies 2) that became
apparent after intensive (ab)use of this software. Before we proceed to list our criticisms, however, the author
must make a disclaimer that not only most of the complaints below stem from trying to use CWEB outside of
its intended field of application but such use has also been hampered by the author’s likely lack of familiarity
with some ot CWEB’s features.

The first (non)complaint that must be mentioned here is CWEB’s narrow focus on C-styled languages. The
‘grammar’ used to process the input is hard coded in CWEAVE, so any changes to it inevitably involve rewriting
portions of the code and rebuilding CWEAVE. As C11 came to prominence, a few of its constructs have been
left behind by CWEAVE. Among the most obvious of these are variadic macros and compound literals. The
former is only a problem in CWEB’s @d style definitions (which are of questionable utility to begin with) while
the lack of support for the latter may be somewhat amended by the use of @[. . .@] and @; constructs to
manipulate CWEAVE’s perception of a given chunk as either an exp or a stmt. This last mechanism of syntactic
markup is spartan but remarkably effective, although the code thus annotated tends to be hard to read in
the editor (while resulting in just as beautifully typeset pages, nonetheless).

Granted, CWEB’s stated goal was to bring the technique of literate programming to C, C++, and related
languages so the criticism above must be viewed in this context. Since CWEAVE outputs TEX, one avenue
for customizing its use to one’s needs is modifying the macros in cwebmac.tex. SPLinT took this route
by rewriting a number of macros, ranging from simple operator displays (replacing, say, ‘=’ with ‘⇐’) to
extensively customizing the indexing mechanism.

Unfortunately, this strategy could only take one thus far. The TEX output produced by CWEAVE does not
always avail itself to this approach readily. To begin with, while combining its ‘chunks’ into larger ones,
CWEAVE dives in and out of the math mode unpredictably, so any macros trying to read their ‘environment’
must be ready to operate both inside and outside of the math mode and leave the proper mode behind when
they are done. The situation is not helped by the fact that both the beginning and the end of the math
mode in TEX are marked by the same character ($, and it costs you, indeed) so ‘expandable’ macros are
difficult to design.

Adding to these difficulties is CWEAVE’s facility to insert raw TEX material in the middle of its input (the
@t. . .@> construct). While rather flexible, by default it puts all such user supplied TEX fragments inside
an \hbox which brings with it all the advantages, and, unfortunately, disadvantages of grouping, inability
to introduce line breaks within the fragment, etc. There is, of course, an easy fix to most of these woes,
outlined in CWEB’s manual: one can simply type @t} TEX stuff {@> which inserts \hbox{} TEX stuff {} into
CWEAVE’s output. The cost of this hack (aside from looking and feeling rather ugly on the editor screen,
not to mention disrupting the editor’s brace accounting) is a superfluous \hbox{} left behind before the
‘TEX stuff’. The programmer’s provided TEX code is unable to remove this box (at the macro level, i.e. in
TEX’s ‘mouth’ using D. Knuth’s terminology, one may still succeed with the \lastbox approach unless the
\hbox was inserted in the main vertical mode) and it may result in an unwanted blank line, slow down the
typesetting, etc. Most of these side-effects are easily treatable but it would still be nice if a true ‘asm style’
insertion of raw TEX were possible 3).

In general, the lack of structure in CWEAVE’s generated TEX seems to hinder even seemingly legitimate uses
of cwebmac.tex macros. Even such a natural desire as to use a different type size for the C portions of the
CWEB input is unexpectedly tricky to implement. Modifying the \B macro results in rather wasteful multiple
reading of the tokens in the C portion, not to mention the absense of any guarantee that \B can find the end
of its argument (the macros used by SPLinT look for the \par inserted by CWEAVE whenever \B is output

1) The original WEB was designed to support DEK’s TEX and METAFONT projects and was inteded for PASCAL family languages.
2) Quirks would be a better term. 3) It must be said that in the majority of cases such side-effects are indeed desirable, and
save the programmer some typing but it seems that the @t facility was not well thought out in its entirety.

504
506 SPLINT SOME CWEB IDIOSYNCHRASIES

but an unsuspecting programmer may disrupt this mechanism by inserting h{is, her} own \par using the
@t facility with the aim to put a picture in the middle of the code, for example.

The authors of CWEB understood the importance of the cross-referencing facilities provided by their program.
There are several control sequences dedicated to indexing alone (which itself has been the subject of criticism
aimed at CWEB). The indexing mechanism addresses a number of important needs, although it does not seem
to be as flexible as required in some instances. For example, most book indices are split into sections
according to the first letter of the indexed word to make it easier to find the desired term in the index (or
to establish that it is not indexed). Doing so in CWEB requires some macro acrobatics, to say the least.

Also absent is a facility to explicitly inhibit the indexing of a specific word (in CWEAVE’s own source, the
references for pp fill up several lines in the index) or limit it to definitions only (as CWEAVE automatically
does for single letter identifiers). This too, can be fixed by writing new indexing macros.

Finally, the index is created at the point of CWEAVE invocation, before any pagination information becomes
available. It is therefore difficult to implement any page oriented referencing scheme. Instead, the index and
all the other cross referencing facilities are tied to section numbers. In the vast majority of cases, this is a
superior scheme: sections tend to be short and the index creation is fast. Sometimes, however, it is useful
to provide the page information to the index macros. Unfortunately, after the index creation is completed,
any connection between the words in the original document and those in the index is lost.

The indexing macros in SPLinT that deal with bison and flex code have the advantage of being able
to use the page numbers so a better indexing scheme is possible. The section numbering approach taken
by SPLinT approximately follows that of noweb: the section reference consists of two parts, where the first
is the page number the section starts on, and the the second is the index of the section within the page.
Within the page, sections are indexed by (sequences of) letters of the aphabet (a. . .z and, in the rarest
of cases, aa. . .zz and so on). Numbering the sections themselves is not terribly complicated. Where it
gets interesting, is during the production of the index entries based on this system. When the sections are
short, just referencing the section where the term appears works well. Sometimes, however, a section is split
between two or more pages, in which case the indexing macros provide a compromise: whenever the term
appears on a page different from the one on which the corresponding section starts, the index entry for that
term uses the page number instead of the section reference. The difference between the two is easy to see,
since the page number does not have any alphabetic characters in it.

This is not exactly how the references work in noweb, since noweb ignores the TEX portion of the section
and only references the code chunks but it is similar in spirit. Other conveniences, also borrowed from noweb,
are the references in the margins that allow the reader to jump from one chink to the next whenever the
code chunk is composed of several sections. All of these changes are implemented with macros only, so, for
example, the finer section number/page number scheme is not available for the index entries produced by
CWEAVE itself. In the case of CWEB generated entries only the section numbers are used (which in most cases
do provide the correct page number as part of the reference, however).

To conclude this Festivus 1) style airing of grievances, let me state once again that CWEB is a remarkable
tool, and incredibly useful as it is, although it does test one’s ability to write sophisticated TEX if subtle
effects are desired. Finally, when all else fails, one is free to modify CWEB itself or even write one’s own
literate programming tool.

125a Why not GitHub c©, Bitbucket c©, etc

Git is fantastic software that is used extensively in the development of SPLinT. The distribution archive is a
Git repository. The use of centralized services such as GitHub c© 2), however, seems redundant. The standard
cycle, ‘clone-modify-create pull request’ works the same even when ‘clone’ is replaced by ‘download’. Thus,
no functionality is lost. This might change if the popularity of the package unexpectedly increases.

On the other hand, GitHub c© and its cousins are commercial entities, whose availability in the future is not
guaranteed (nothing is certain, of course, no matter what distribution method is chosen). Keeping SPLinT
as an archive of a Git repository seems like an efficient way of being ready for an unexpected change.

1) Yes, I am old enough to know what this means. 2) A recent aquisition of GitHub c© by a company that not so long ago
used expletives to refer to the free software movement only strengthens my suspicions, although everyone is welcome to draw
their own conclusions.

 CHECKLISTS SPLINT 506
506

12
Checklists

127a This (experimental) section serves to aid in the testing and extension of SPLinT by formalizing a number
of procedures in the form of a checklist. After having witnessed first hand the effectiveness of checklists in
aviation, the author feels that a similar approach will be beneficial in programming, as well. Most of these
tests can and should be automated but the applicable situations are rather rare so the automation has not
been implemented yet.

General checklist.

Have the checklists in this section been followed?
Have all the examples been built and tested?

make: this would build the ld parser, as well as other parts, like ssfo.pdf, etc.
symbols
xxpression (both make and make test)
expression (both make and make test)
once in a while it is useful to run a tool like diffpdf to check that the generated output does not
change unexpectedly
parsec (not part of SPLinT)

Have the changes been documented?
If any limitations have been removed, has this been reflected in the documentation, examples, such as
symbols.sty?
If any new conditionals have been added, does yydebug.sty provide a way to check their status, if
appropriate?
If any new script option has been added, has the script documentation been updated?

If a new process has been introduced, has it been reflected in any of the checklists in this section?

Rewriting checklist.

Is the output of the new system identical?
once in a while it is useful to run a tool like diffpdf to check that the generated output does not
change unexpectedly
has diff been used to check that .gdx and .gdy files produced are (nearly) identical?
has diff been used to check that .sns files produced by symbols and xxpression examples are
(nearly) identical?

 BIBLIOGRAPHY SPLINT 507
507

13
Bibliography

129a This list of references is not meant to be exhaustive or complete. These are merely the papers and the books
mentioned in the body of the program above. Naturally, this project has been influenced by many outside
ideas but it would be impossible to list them all due to time and (human) memory limitations.

∗ ∗ ∗
[ACM] Ronald M. Baecker, Aaron Marcus, Human Factors and Typography for More Readable Programs,

Reading, Massachusetts: Addison-Wesley, 1990, xx+344 pp.
[Ah] Alfred V. Aho et al., Compilers: Principles, Techniques, and Tools, Pearson Education, 2006.
[Bi] Charles Donnelly and Richard Stallman, Bison, The Yacc-compatible Parser Generator, The Free

Software Foundation, 2013. http://www.gnu.org/software/bison/

[CWEB] Donald E. Knuth and Silvio Levy The CWEB System of Structured Documentation, Reading, Mas-
sachusetts: Addison-Wesley, 1993, iv+227 pp.

[DEK1] Donald E. Knuth, The TEXbook, Addison-Wesley Reading, Massachusetts, 1984.
[DEK2] Donald E. Knuth The future of TEX and METAFONT, TUGboat 11 (4), p. 489, 1990.
[DHB] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman, Syntactic Abstraction in Scheme, Lisp Symb.

Comput. 5, 4 (Dec. 1992), pp. 295–326.
[Do] Jean-luc Doumont, Pascal pretty-printing: an example of “preprocessing with TEX”, TUGboat 15 (3),

1994—Proceedings of the 1994 TUG Annual Meeting
[Er] Sebastian Thore Erdweg and Klaus Ostermann, Featherweight TEX and Parser Correctness, Proceedings

of the Third International Conference on Software Language Engineering, pp. 397–416, Springer-Verlag
Berlin, Heidelberg 2011.

[Fi] Jonathan Fine, The \CASE and \FIND macros, TUGboat 14 (1), pp. 35–39, 1993.
[Go] Pedro Palao Gostanza, Fast scanners and self-parsing in TEX, TUGboat 21 (3), 2000—Proceedings of

the 2000 Annual Meeting.
[Gr] Andrew Marc Greene, BASIX—an interpreter written in TEX, TUGboat 11 (3), 1990—Proceedings of

the 1990 TUG Annual Meeting.
[Ha] Hans Hagen, LuaTEX: Halfway to version 1, TUGboat 30 (2), pp. 183–186, 2009.

http://tug.org/TUGboat/tb30-2/tb95hagen-luatex.pdf.
[Ho] Taco Hoekwater, LuaTEX says goodbye to Pascal, TUGboat 30 (3), pp. 136–140, 2009—EuroTEX 2009

Proceedings.
[Ie] R. Ierusalimschy et al., Lua 5.1 Reference Manual, Lua.org, August 2006.

http://www.lua.org/manual/5.1/.
[ISO/C11] ISO/IEC 9899—Programming languages—C (C11), December 2011, draft available at

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

[Jo] Derek M. Jones, The New C Standard: An Economic and Cultural Commentary, available at
http://www.knosof.co.uk/cbook/cbook.html.

[KR] B. Kernighan, D. Ritchie, The C programming language, Englewood Cliffs, NJ: Prentice Hall, 1978.

http://www.gnu.org/software/bison/
http://tug.org/TUGboat/tb30-2/tb95hagen-luatex.pdf
http://www.lua.org/manual/5.1/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.knosof.co.uk/cbook/cbook.html

 BIBLIOGRAPHY SPLINT 507
508

[La] The l3regex package: regular expressions in TEX, The LATEX3 Project.
[Pa] Vern Paxson et al., Lexical Analysis With Flex, for Flex 2.5.37, July 2012.

http://flex.sourceforge.net/manual/.
[Ra] Norman Ramsey, Literate programming simplified, IEEE Software, 11 (5), pp. 97–105, 1994.
[Sh] Alexander Shibakov, Parsers in TEX and using CWEB for general pretty-printing, TUGboat 35 (1), 2014,

available as part of the documentation supplied with SPLinT.
[Wo] Marcin Woliński, Pretprin—a LATEX2ε package for pretty-printing texts in formal languages, TUGboat

19 (3), 1998—Proceedings of the 1998 TUG Annual Meeting.

http://flex.sourceforge.net/manual/

14
Index

131a This section is, perhaps, the most valuable product of CWEB’s labors. It lists references to definitions (set in
italic) as well as uses for each C identifier used in the source. Special facilities have been added to extend the
indexing to bison grammar terms, flex regular expression names and state names, as well as flex options,
and TEX control sequences encountered in bison actions. Definitions of tokens (via 〈token〉, 〈nterm〉 and
〈type〉 directives) are typeset in bold. The bison and TEX entries are put in distinct sections of the index in
order to keep the separation between the C entries and the rest. It may be worth noting that the definition of
the symbol is listed under both its ‘macro name’ (such as CHAR, typeset as char in the case of the grammar
below), as well as its ‘string’ name if present (to continue the previous example, "char" is synonymous with
char after a declaration such as ‘〈token〉 char "char"’), while the use of the term lists whichever token
form was referenced at the point of use (both forms are accessible when the entry is typeset for the index
and a macro can be written to mention the other form as well). The original syntax of bison allows the
programmer to declare tokens such as { and } and the indexing macros honor this convention even though
in a typeless environment such as the one the present typesetting parser is operating in such declarations
are redundant. The indexing macros also record the use of such character tokens. The quotes indicate
that the ‘string’ form of the token’s name was used. A section set in italic references the point where the
corresponding term appeared on the left hand side of a production. A production:

left hand side :
term1 term2 term3 \do \somethingΥ1

inside the TEX part of a CWEB section will generate several index entries, as well, including the entries for
any material inside the action, mimicking CWEB’s behavior for the inline C (|. . .|). Such entries (except for
the references to the C code inside actions) are labeled with ◦, to provide a reminder of their origin.

This parser collection, as well as the indexing facilities therein have been designed to showcase the broadest
range of options available to the user and thus it does not always exhibit the most sane choices one could
make (for example, using a full blown parser for term names is poor design but it was picked to demonstrate
multiple parsers in one program). The same applies to the way the index is constructed (it would be easy
to only use the ‘string’ name of the token if available, thus avoiding referencing the same token twice).

TEX control sequences are listed following the index of all bison and flex entries. The different sections
of the index are separated by a dinkus (∗ ∗ ∗). Since it is nearly impossible to determine at what point
a TEX macro is defined (and most of them are defined outside of the CWEB sources), only their uses are
listed (to be more precise, every appearance of a macro is assumed to be its use). In a few cases, a ‘graphic’
representation for a control sequence appears in the index (for example, π1 represents \getfirst). The index
entries are ordered alphabetically. The latter may not be entirely obvious in the cases when the ‘graphical

 INDEX SPLINT 508
508

representation’ of the corresponding token manifests a significant departure from its string version (such as
Υ1 instead of \yy (1)). Incidentally, for the examples on this page (as well an example in the section about
TEX pretty-printing) both the ‘graphic’ as well as ‘text’ versions of the control sequence are indexed. It is
instructive to verify that their location in the index corresponds to the ‘spelling’ of their visual representation
(thus, π1 appears under ‘p’). One should also be aware that the indexing of some terms has been suppressed,
since they appear too often.

Υ: 6a, 7a
� separator, flex: 73f
Υ1 : 6a, 7a

func : 99g
__FUNCTION__: 92c
__PRETTY_FUNCTION__: 92c
__VA_ARGS__: 97e
desc : 94b, 96b, 98a, 98c, 98g, 110b,

117b
register const d : 98c, 98d, 98e, 98g,

105a, 110b, 116a, 117b
register name : 42c, 80d, 87c
register table d : 93d, 94a, 94b, 96b,

103b, 104c, 108b, 112d
register token d : 40e, 40f

A ···
abstract syntax tree: 5a
act setup : 97a, 104d, 109b, 113a, 117a
act suffix : 97a, 104d, 109b, 113a, 117a
action d: 97a, 97d
action desc : 97d, 104d, 109b, 113a, 117a
action n: 97a, 104d, 109b, 117a
action1: 97a, 104d, 109b, 117a
all : 8b
any constants : 98g
ap : 99g
ap save : 99g
arg flag : 102a, 102b, 102c
argc : 91b, 101e
argv : 91b, 101e, 111e, 118d
assert : 92c, 103d, 104b
atoi : 118g

B ···
BAD_MIX_FORMAT: 99e, 99g
BAD_SCANNER: 114a, 114c
BAD_STRING: 99e, 99g
bare actions : 96d, 96e, 104d, 113a
BISON_BOOTSTRAP_MODE: 26a, 106c
BISON_IS_CRIPPLED: 103c, 103d, 110a
bootstrap token format : 40e, 105b, 105d,

106c, 111a
BOOTSTRAP_TOKEN_FORMAT: 105c, 105d
bootstrap tokens : 40e, 106c
bootstrapping: 25a, 26a
brace start line : 69c
buffer : 99g
but : 8b

C ···
c: 101d
c desc : 99b
c name : 98c, 98d, 98e, 98g, 99b, 110b,

117b
char: 101e
char2int : 84c
cleanup : 94e, 95a, 97a, 98a, 104d, 109a,

109b, 113a, 117a
const: 92c
const d: 98b, 98c
const out : 98g, 99b

context-free: 5a
current state : 115b

D ··
dd : 102b
dd no argument : 102b
dd optional argument : 102b
dd required argument : 102b
debug level : 118f, 118g
define all states : 41a, 80c, 87a
Define State : 42c, 80d, 87c, 115a

E ···
err codes: 99d
exit : 91b, 99g, 101e, 107h, 111e, 114c,

116d, 118d
exp : 102a

F ···
fake scanner : 113a
fake yytext : 114c
false : 106c, 108d, 109a
fclose : 93b
Festivus: 124a
file : 40c, 66i, 85g
fopen : 101e
forever: 93a, 101e
format : 98b, 99b, 99f, 99g, 110b, 117b
formatp : 99g
formatter : 94e, 95a, 98a, 109a
fprintf : 40e, 91b, 94e, 97e, 98f, 99b, 99g,

101e, 104d, 106c, 106d, 108d, 110a,
111e, 113a, 115b, 117c, 118d

free : 108d, 115b
FUNCTION__: 92c

G ···
GENERIC_OUT: 107g, 107h, 112b, 116c,

116d, 118g
getopt long : 101b, 101e, 102b
grammar: 5a

H ··
higher options: 101d

I ··
i: 94e, 103d, 104d, 106c, 110a, 112f,

113a, 114c
ID: 40f
id1 : 84c
index : 108c, 108d
INITIAL: 113a, 115b
it : 8b

J ···
j: 94e, 103d, 104d, 113a, 114c

L ···
LAST_ERROR: 99d
LAST_HIGHER_OPTION: 101d
LAST_OUT: 100a
last state : 115a
length : 99g, 106c, 108d
lexer state d: 115a, 115b

literate programming: 124a
loc : 102a, 102b, 102c
LONG_HELP: 111c, 111e, 118b, 118d
long options : 101d, 101e

M ··
main : 91b
malloc : 99g, 105d, 112b, 115a, 118g
max eof state : 113a, 115a
MAX_NAME_LENGTH: 111f, 118e
MAX_PRETTY_LINE: 94e, 99f, 99g
max yy ec entry : 112e, 112f, 117c
max yyaccept entry : 112e, 112f, 113a,

117c
max yybase entry : 112e, 112f, 113a,

117c
max yynxt entry : 112e, 112f, 117c
message : 97e
mix string : 99f, 99g
mode : 91b, 101a, 107e, 112b, 118g

N ··
n: 110a
name : 40e, 42c, 80d, 87c, 93d, 94a, 94b,

94e, 95a, 96b, 98a, 98b, 99b, 101e,
102a, 102b, 102c, 108b, 110b, 115a,
115b, 116g, 117b

next : 115a, 115b
next state : 115b
no argument : 94d, 96e, 107d, 111c, 118b
NO_MEMORY: 99e, 99g
NON_OPTION: 101d
noweb: 124a
null : 94e, 95a, 98a, 108d, 109a
null postamble : 94e, 95a, 98a, 109a

O ··
of : 8b
optarg : 105d, 112b, 118g
opterr : 101e
optimize actions : 96d, 96e, 109b, 110a,

117a
optimize tables : 94c, 94d, 94e
optimized numeric : 94e, 95a, 98a, 109a
optind : 101e
option : 101d
option index : 101d, 101e
optional argument : 111f, 118e
output : 93d, 94a, 94e, 98a, 98d, 98e,

98g, 110b, 117b
output actions : 97b, 97c, 104d, 109b,

113a, 117a
output d: 93c
output desc : 93c, 94e, 98a, 98g, 104d,

106c, 107f, 109a, 109b, 110b, 111a,
113a, 117a, 117b

output mode: 100a, 101a
output table : 94e, 96b
output tokens : 106a, 106b, 106c, 107f,

111a
output yytname : 109a

508
508 SPLINT INDEX

P ···
parser: 5a
parser stack: 25a
PERCENT_TOKEN: 40f
postamble : 94e, 95a, 97a, 98a, 104d,

109a, 109b, 113a, 117a
pp : 124a
preamble : 94e, 95a, 97a, 98a, 104d, 109a,

109b, 113a, 117a
prettify : 94e, 95a, 98a, 109a
print rule : 97a, 104d, 109b, 110a, 117a
printf : 91a, 99g, 101e, 107h, 113a, 114c,

116d
putchar : 101e

R ···
recursive descent parser: 5a
register option : 94d, 96e, 102a, 102b,

102c, 105c, 107d, 111c, 111f, 118b,
118e

reject : 79b
required argument : 105c, 111f, 118e
rule number : 104b

S ···
scanner states: 41a
separator : 94e, 95a, 98a, 108d, 109a
size : 99g
st name : 115a
st num : 115a
state list : 115a, 115b
stderr : 91b, 99g, 101e, 111e, 113a, 118d
strcpy : 105d, 112b, 118g
stream : 94e, 99b, 108c, 108d
string : 97e
STRING: 40f
strlen : 104a, 105d, 112b, 118g
strnlen : 99g
strstr : 99g
syntax-directed translation: 25a

T ···
table : 108c, 108d
table d: 94b, 94e, 95a, 108c, 108d
table desc : 94e
table name : 94e, 98a
table separator : 112a, 112b, 118f, 118g
tables out : 40e, 91b, 93a, 93b, 96b, 97e,

98f, 98g, 101e, 104d, 106c, 106d, 110a,
113a, 115b, 117c

term0 : 84c
TEX_: 97e, other refs.
TeX__: 97e
TEX_OUT: 101a, 107i, 108a, 112b, 116e,

116f, 118g
tex table : 98a, 108b
tex table generic : 98a, 116g
TEX(a): 97e, other refs.
TEX(ao): 97e, other refs.
TEX(b): 97e, other refs.

TEX(f): 97e, other refs.
TEX(fo): 97e, other refs.
this state : 115a
token : 106c, 108d
token format affix : 105b, 105d, 106c,

107f, 111a
TOKEN_FORMAT_AFFIX: 105c, 105d
token format char : 105b, 105d, 106c,

107f, 111a
TOKEN_FORMAT_CHAR: 105c, 105d
TOKEN_FORMAT_SUFFIX: 105c, 105d
token format suffix : 105b, 105d, 106c,

107f, 111a
token name : 106c, 108d
TOKEN_ONLY_MODE: 107d, 107e
TOKEN_ONLY_OUT: 107b, 107c, 107e
too creative : 106c, 108d
true : 98a, 106c, 108d
type : 40c, 66i, 85g

U ··
uniqstr : 39a
usage : 96e, 101c, 101e

V ···
va arg : 99g
va copy : 99g
va end : 99g
va start : 99g
val : 101e, 102a, 102b, 102c
value : 40c, 66i, 85g, 115a, 115b
verbatim block: 3b
vsnprintf : 99g

W ··
written : 99g

X ···
xgettext : 51b

Y ···
yy accept : 112d, 112f, 113a, 114c, 116g,

117c
yy accept desc : 116g
yy base : 112d, 112f, 113a, 114c, 116g
yy base desc : 116g
yy c buf p : 114c
yy chk : 112d, 113a, 114c, 116g
yy chk desc : 116g
yy cp : 114c
yy def : 112d, 116g
yy def desc : 116g
yy ec : 112d, 112f, 113a, 116g
yy ec desc : 116g
yy ec magic : 113a, 114b, 114c
YY_END_OF_BUFFER: 113a, 116a
YY_END_OF_BUFFER_CHAR: 116a
YY_END_OF_BUFFER_CHAR_desc : 117b
YY_END_OF_BUFFER_desc : 117b
YY_FATAL_ERROR: 97e
yy get previous state : 114c

yy hold char : 113a
yy meta : 112d, 116g
yy meta desc : 116g
YY_MORE_ADJ: 114c
YY_NUM_RULES: 116a
YY_NUM_RULES_desc : 117b
yy nxt : 112d, 112f, 113a, 114c, 116g
yy nxt desc : 116g
yy set bol : 114c
yy start : 114c
YY_STATE_EOF: 113a, 115a
yycheck : 103b
yydefact : 103b, 104d
yydefgoto : 103b, 104d
YYEMPTY: 105a
YYEOF: 105a
YYFINAL: 104d, 105a
yyg : 114c
yyguts t : 113a, 114c
YYLAST: 105a
yyleng : 51a
yyless : 67a
yylex : 92c, 112e, 113a
yylex init : 113a, 114c
yymore : 79b
YYNRULES: 103c, 103d, 104b, 105a
YYNSTATES: 105a
YYNTOKENS: 104d, 105a
yypact : 103b, 104d
YYPACT_NINF: 104d, 105a
YYPACT_NINF_desc : 110b
yyparse : 13a, 14a, 92c, 96d, 104d
YYPARSE_PARAMETERS: 104d
yypgoto : 103b, 104d
yyprhs : 20a, 92c, 103b, 103c, 103d, 104a,

104b, 110a
YYPRINT: 40c, 66i, 85g
yyprint : 40c, 66i, 85g
yyrhs : 20a, 92c, 103b, 103c, 103d, 104a,

104b, 110a
yyrthree : 20a, 92c, 103c, 104b, 104c
yyr1 : 103b, 103d, 104b, 104d, 110a
yyr1 desc : 108b
yyr2 : 103b, 104d
yyr2 desc : 108b
yyscan t : 113a, 114c
yyscanner : 114c
yystos : 103b
YYSTYPE: 40c, 66i, 85g
yytable : 103b
yytext ptr : 114c
yytname : 26a, 28a, 29b, 103b, 104a,

106c, 108c, 108d, 110a
yytname cleanup : 108c, 108d
yytname desc : 109a
yytname formatter : 108c, 108d, 109a
yytname formatter tex : 108c, 108d
yytoknum : 66i, 103b
yytranslate : 103b, 106c, 106d

BISON, FLEX, AND TEX INDICES

〈 〉: 57, 66e, 78
〈 〉: 57, 66e, 77b
/: 63a
$: 63a, 82, 82◦, 83i◦

〈%〉: 25a◦, 28b, 29, 29d, 29e◦, 34b◦, 40a,
42h◦, 47c, 52e◦

〈<flag>〉: 28b, 46c, 46e, 46h

%[a . . . Z 0 . . . 9]∗: 81c, 82, 88f, 89
〈array〉: 69a◦

〈code〉: 28b, 31f, 44a
〈debug〉: 44a◦, 46c◦

〈default-prec〉: 28b, 31f, 44a
〈define〉: 28b, 30b, 44a
〈defines〉: 28b, 30b, 44a

〈destructor〉: 28a, 32, 44a
〈dprec〉: 28a, 36d, 36d◦, 38b◦, 44a
〈empty〉: 36c, 36d, 36d◦, 37e◦, 44a
〈error-verbose〉: 28b, 30b, 44a
〈expect〉: 28b, 30b, 44a
〈expect-rr〉: 28b, 30b, 44a
〈file-prefix〉: 28b, 30b, 44a

 INDEX SPLINT 508
508

〈glr-parser〉: 28b, 30b, 44a
〈initial-action〉: 28b, 30b, 44a
〈language〉: 28b, 30b, 44a
〈left〉: 28a, 32c, 44a
〈locations〉: 44a◦, 46e◦

〈merge〉: 28a, 36d, 36d◦, 38c◦, 44a
〈name-prefix〉: 28b, 30b, 44a
〈no-default-prec〉: 28b, 31f, 44a
〈no-lines〉: 28b, 30b, 44a
〈nonassoc〉: 28a, 32c, 44a
〈nondet. parser〉: 28b, 30b, 44a
〈nterm〉: 28a, 29b◦, 33a, 33a◦, 44a, 131a◦

〈option〉: 69a◦

〈output〉: 28b, 30b, 44a
〈param〉: 28b, 30b, 46d, 46f, 46g
〈pointer〉: 69a◦

〈prec〉: 28a, 36d, 44a
〈precedence〉: 28a, 32c, 44a
〈printer〉: 28a, 32, 44a
〈pure-parser〉: 44a◦, 46h◦

〈require〉: 28b, 30b, 44a
〈right〉: 28a, 32c, 44a
〈skeleton〉: 28b, 30b, 44a
〈start〉: 28b, 31f, 44a
〈token〉: 26a◦, 28a, 29b◦, 33a, 33a◦, 44a,

131a◦

〈token-table〉: 28b, 30b, 44a
〈top〉: 59d◦, 59h◦, 69a◦, 69c◦

〈type〉: 28a, 32c, 33c◦, 44a, 131a◦

〈union〉: 32b, 32c, 44a
〈verbose〉: 28b, 30b, 45
〈yacc〉: 28b, 30b, 44a, 45
^: 62f, 65f
*: 5a◦, 6◦, 61e, 64d
* or ?: 81c, 82, 89
<: 61e, 82, 82◦, 83e◦

〈?〉: 28b, 30b
<tag>: 28b
>: 61e, 82, 82◦, 83f◦

[: 65f
[0 . . . 9]∗: 81c, 82, 89
[a . . . Z 0 . . . 9]∗: 81c, 82, 84c◦, 90a
]: 65f
{: 60l, 131a◦

{f : 57b, 64d, 74b
{p: 57b, 57b◦, 63i, 74b

}: 60l, 131a◦

}f : 57b, 64d, 78a
}p: 57b, 57b◦, 63i, 78a

(: 5a◦, 6◦, 64d
): 5a◦, 6◦, 64d
+: 64d
-: 82, 82◦, 83h◦

〈7→〉: 57, 66e, 77b
–: 65f
=: 59d
_: 82, 82◦, 83g◦

|: 63a
\: 57, 65f, 74
\c: 81c, 82, 89
\n: 59d, 60l, 79a◦, 79c◦

,: 61e, 63i, 64d
;opt: 29b, 29b

.: 57, 64d, 82, 82◦, 83j◦

〈.〉: 66e, 78
?: 64d
’: 82
": 64d, 82

"%{...%}"m: 28b, 52d
"%{...%}": 28b, 30b
"%?{...}"m: 28b, 52b
"%?{...}": 28b, 36d
"<*>"m: 28b, 45
"<*>": 28b, 33e
"<>"m: 28b, 45
"<>": 28b, 33e
<tag>: 28b, 32c, 32c◦, 32h◦, 33e, 33f,

33f◦, 36d, 50f
"[identifier]"m: 28b, 36d, 49, 49d
"[identifier]": 28b
"{...}"m: 28b, 52a
"{...}": 28b, 30b, 31f, 32c, 36d, 40
"="m: 28b, 45
"=": 28b, 31b
"|"m: 28b, 45
"|": 28b, 34c
";"m: 28b, 45
";": 28b, 29b, 30b, 34c
"end of file"m: 28a
ýidentifier: þ: 28b, 39d, 48a
"identifier:": 28b
〈0..9〉: 57, 66e, 77b
〈0..Z〉: 57, 66e, 78

A ···
〈A..Z〉: 57, 66e, 78
〈a..z〉: 57, 66e, 78
all: 8e
〈αβ〉: 57, 66e, 77b
〈αn〉: 57, 66e, 77b
〈array〉: 57a, 59d, 69a
astring: 5a◦, 6◦, 5a◦, 6◦

B ···
〈§〉: 57, 66e, 78
braceccl: 65f, 65f
but: 8e

C ···
ccl: 65f, 65f
ccl expr: 65f, 66e
char: 28b, 39a, 50d, 57, 64d, 65f, 66e,

76c, 76c◦, 131a◦

char2int: 84c◦

code props type: 32, 31f

D ··
〈def〉: 57a, 59d, 69e
〈defre〉: 57a, 59d, 71a
〈deprecated〉: 57a, 59d, 69a

E ···
〈EOF〉: 57, 62f, 73f
◦ (empty rhs): 5a◦, 6◦, 29b, 30, 32c, 36d,

40, 40a, 57d, 58e, 59d, 60l, 61e, 65f,
66e, 82

end of file: 28a
epilogue: 28b, 29d, 40a, 53a
epilogueopt: 29, 29a, 29d, 40a

error: 34c, 58e, 61e, 62f
expression: 19◦

ext: 81c, 82, 89
〈extra type〉: 57, 59d, 72

F ···
flex declaration: 29b, 31a, 31b
flex option: 31b, 31b
flex option list: 31b, 31b
flex state: 31b, 31b

flexrule: 60l, 62d, 62f
full name: 81d
fullccl: 64d, 65f, 65f

G ···
generic symlist: 31f, 33e, 33e
generic symlist item: 33e, 33e
goal: 57d, 58c, 60j, 62d
grammar: 29, 29a, 34b, 34b
grammar declaration: 29b◦, 30b, 31f,

32c, 34c
grammar declarations: 29b, 29b

H ··
〈header〉: 57, 59d, 72

I ··
id: 33f, 39a, 39c
id colon: 34c, 39d
ýidentifierþ: 12◦, 28b, 31b, 31f, 32c, 39a,

39e◦, 39l, 40, 47g, 48b, 48c
identifier string: 82, 81d, 82
in: 8d
initforrule: 57d, 60l, 60l
initlex: 57d, 57d
� (inline action): 30b, 33a, 34c
input: 29, 29a, 29b, 29d
int: 28b, 30b, 33b, 33b◦, 33f, 36d, 45
it: 8e

L ···
Λ: 42g◦

l: 81c, 82, 89
left hand side: 131a◦

lex compat: 57b◦

line: 8d
lr.type: 28◦

M ··
ýmeta identifierþ: 81c, 81d, 81d◦, 82b◦,

90b
more: 6a, 8d

N ··
na: 81c, 82, 89
ýnameþ: 57, 58e, 59d, 61e, 61e◦, 62b◦,

72
named ref opt: 34c, 36d, 36d

namelist1: 58e, 58e, 58e◦, 59b◦, 59c◦

namelist2: 61e, 61e
〈¬ 〉: 57, 66e, 78
〈¬ 〉: 57, 66e, 78
〈¬ 7→〉: 57, 66e, 78
〈¬.〉: 57, 66e, 78
〈¬0..9〉: 57, 66e, 78
〈¬0..Z〉: 57, 66e, 78
〈¬A..Z〉: 57, 66e, 78
〈¬a..z〉: 57, 66e, 78
〈¬αβ〉: 57, 66e, 78
〈¬αn〉: 57, 66e, 78
〈¬§〉: 57, 66e, 78
〈¬2〉: 57, 66e, 78
next term: 8, 8c
non terminal: 6a
not: 8e
num: 57, 63i, 64d, 78

O ··
of: 8e
opt: 81c, 82, 89
〈option〉: 57, 59d, 59d, 69a
〈option〉f : 28c, 31b, 46a

508
508 SPLINT INDEX

optionlist: 59d, 59d
options: 58e, 59d
〈other〉: 57a, 59d, 71b, 72, 72b, 72c
other term: 6a
〈outfile〉: 57, 59d, 72

P ···
PREVCCL: 57, 64d, 64d◦, 65b◦

params: 30b, 30b
〈parse.trace〉: 28, 55b, 81b
pexp: 5a◦, 6◦, 5a◦, 6◦

〈pointer*〉: 57a, 59d, 69a
posix compat: 57b◦

precedence declaration: 31f, 32c
precedence declarator: 32c, 32c
〈prefix〉: 57, 59d, 72
prologue declaration: 30, 30b, 31a
prologue declarations: 29, 29d, 30, 30

Q ··
qualified suffixes: 82, 82
qualifier: 82, 82
quoted name: 82, 81d

R ···
r: 81c, 82, 89
re: 63a, 63a, 64d
re2: 63a, 63a
rhs: 34c, 36d, 36d
rhses1: 34c, 34c
rule: 62f, 63a
rules: 34c, 34c
rules or grammar declaration: 34b, 34c

S ···
SECTEND: 57, 57d, 69d
scon: 60l, 61e
scon stk ptr: 61e, 61e
sconname: 61e, 61e
sect1: 57d, 58c, 58e, 58e
sect1end: 57d, 57d
sect2: 57d, 60j, 60l, 60l
series: 63a, 63i, 63i
singleton: 63i, 64d, 64d
〈start〉: 28, 55b, 81b
startconddecl: 58e, 58e
〈state〉: 57, 58e, 69a
〈state-s〉f : 28c, 31b, 46a
〈state-x〉f : 28c, 31b, 46a
still: 6a
string: 28a, 30b, 39e, 39l, 40, 39l◦, 50b,

64d, 66e, 66e
string as id: 33f, 39c, 39e
stuff: 8, 8c, 8d
suffixes: 82, 82
suffixesopt: 82, 81d

symbol: 27◦, 31b, 31f, 33b, 33d, 33e, 36d,
39b◦, 39c, 39c◦

symbol declaration: 29b, 31f, 32c, 33a
symbol def: 33f, 33g
symbol defs1: 33a, 33g, 33g
symbol.prec: 33b, 33b
symbols1: 31b, 32c, 33b◦, 33d, 33d
symbols.prec: 32c, 33b, 33b

T ···
TOKEN (example): 26a
〈tables〉: 57, 59d, 72
tag: 33e, 33e
tagopt: 32c, 32c

term1: 6a, 131a◦

term2: 6a, 131a◦

term3: 6a, 131a◦

term0: 84c◦

terms: 6a
this: 8d
"token" (example): 26a
〈token table〉: 28, 55b, 81b
〈top〉: 57a, 59d
translation-unit: 19◦

U ··
∪: 57, 65f, 74
〈union〉: 26, 27, 27a, 27b, 55a, 56a,

56b, 56c, 81a
union name: 32c, 32c

V ···
value: 30b, 40
variable: 30b, 39l

X ···
〈xtate〉: 57, 58e, 69a

Y ···
〈yyclass〉: 57, 59d, 72

Z ···
〈2〉: 57, 66e, 78

FLEX INDEX

〈 〉: 42b, 74
〈 ∗〉: 68c, 69a, 73f, 77b, 78b
〈 +〉: 68c, 69a, 70b, 71b, 73b, 73f
〈 〉: 68c, 69a, 73f
*: 80b
〈0..9〉: 69a, 70, 73f, 78
〈0..Z〉: 68c

A ···
ACTION: 68b, 75, 75a, 75b, 75c, 78b, 79b,

80
ACTION_STRING: 68b, 79b, 79d, 80
〈αβ〉: 68c, 72, 79b
〈αn〉: 68c

B ···
〈BOGUS〉: 68c◦

〈§〉: 45
〈bison-bridge〉f : 43d, 68a, 88c

C ···
CARETISBOL: 68b, 77b
CCL: 68b, 77b, 80, 80a
〈CCL_CHAR〉: 68c, 74
〈CCL_EXPR〉: 68c, 74, 78
CODEBLOCK: 68b, 69a, 69b, 70, 78b
CODEBLOCK_MATCH_BRACE: 68b, 69c, 70
COMMENT: 68b, 69a, 69f, 70◦, 78b, 80
COMMENT_DISCARD: 68b, 70, 75a, 76d, 80
〈c-escchar〉: 87b, 89
〈caseless〉f : 67c

D ··
〈debug〉f : 43d, 68a, 88c

E ···
〈EOF〉: 45, 45◦, 47f, 48d, 49e, 49f, 49g,

50a, 50c, 50e, 51c, 51e, 52c, 52e, 70,
73b, 80, 80b

〈ESCSEQ〉: 68c, 68c, 80
EXTENDED_COMMENT: 68b, 70, 76e, 80
〈eqopt〉: 42b, 45

F ···
〈FIRST_CCL_CHAR〉: 68c, 74
FIRSTCCL: 68b, 76b, 77b, 80

G ···
GROUP_MINUS_PARAMS: 68b, 77b, 80
GROUP_WITH_PARAMS: 68b, 77a, 77b, 80

I ··
INITIAL: 43f, 44a, 45◦, 46a, 48a, 48b,

48c, 48f, 49d, 50b, 50d, 50f, 52a, 52b,
52d, 53a, 69a, 70, 71a, 71b, 73a
〈id〉: 41b, 45, 48d, 87b
〈id_strict〉: 87b, 87b, 89
〈int〉: 41b, 44, 45, 87b, 89

L ···
〈LEXOPT〉: 68c, 69a
LINEDIR: 68b, 69a, 70
〈letter〉: 41b, 41b, 87b, 87b, 89

M ··
〈M4QEND〉: 68c, 70, 78b, 79b, 80b
〈M4QSTART〉: 68c, 69f, 70, 78b, 79b, 80b
〈meta_id〉: 87b, 89

N ··
〈NAME〉: 68c, 68c, 69a, 74, 79b
〈NOT_NAME〉: 68c
〈NOT_WS〉: 68c, 70b, 73b
NUM: 68b, 74b, 78
〈←↩〉: 68c, 69a, 70, 70b, 71b, 73a, 73b,

73f, 77b, 78, 78b, 79b, 80
〈nodefault〉f : 67c
〈noinput〉f : 43d, 68a, 88c
〈nostdinit〉f : 67c
〈notletter〉: 41b, 45
〈nounput〉f : 43d, 68a, 88c
〈noyy_top_state〉f : 43d, 67c, 88c
〈noyywrap〉f : 43d, 68a, 88c

O ··
OPTION: 68b, 69a, 71b
〈outfile〉f : 43d, 68a, 88c

P ···
PERCENT_BRACE_ACTION: 68b, 74a, 74c,

78b, 79b◦

PICKUPDEF: 68b, 69e, 70b

Q ··
QUOTE: 68b, 73f, 77b, 80

R ···
RECOVER: 68b, 73a, 73a◦

〈reentrant〉f : 43d, 68a, 88c

S ···
SC: 68b, 73f, 77b
SC_AFTER_IDENTIFIER: 42f, 43f, 47b, 47f
SC_BRACED_CODE: 42h, 45, 51d, 51e, 52,

53b
SC_BRACKETED_ID: 43b, 43f, 45, 47g, 48d
SC_CHARACTER: 43a, 51c, 51d, 53b
SC_COMMENT: 42i, 49f, 51d, 53b
SC_EPILOGUE: 42h, 47c, 51d, 52e, 53b
SC_ESCAPED_CHARACTER: 42e, 45, 47e,

50c, 51b, 53b, 88a
SC_ESCAPED_STRING: 42e, 45, 47e, 50a,

51b, 53b, 88a
SC_LINE_COMMENT: 42i, 49g, 51d, 53b
SC_PREDICATE: 42h, 45, 51d, 51e, 52,

53b

 INDEX SPLINT 508
508

SC_PROLOGUE: 42h, 47d, 51d, 52c, 53b
SC_RETURN_BRACKETED_ID: 43b, 43f, 47g,

48a, 48b, 48c, 49c
SC_STRING: 43a, 51c, 51d, 53b
SC_TAG: 42g, 45, 47e, 50e
SC_YACC_COMMENT: 42d, 44, 49e
〈SCNAME〉: 68c, 69a, 77b
SECT2: 68b, 73e, 73f, 77b, 78a, 79a, 79c,

80
SECT2PROLOG: 68b, 69d, 73b
SECT3: 68b, 76a, 80b
〈splice〉: 42a, 49f, 49g, 51c, 51d, 51e
〈stack〉f : 43d, 67c, 68a, 88c

W ··
〈wc〉: 87b, 89

TEX INDEX

\/ : 75a, 76d
\$: 73f, 83k
%: 45, 69a, 72
{ (\lbchar): 70
\} : 76c, 78
\(: 74
\) : 74
−1R (\m@ne): 50f, 51e, 52a, 52b
\: 51b
0R (\z@): 45, 50f, 52a, 52b, 70a, 73e,

79a, 79c
1R (\@ne): 47c, 51a, 51e, 73e
2R (\tw@): 47c

A ···
\actbraces : 35c, 36, 36a, 37c
add (\advance): 47c, 50f, 51a, 51e, 52a,

52b
\anint : 45
A← A+sx B (\appendr): 37b, 37c, 37d,

38, 84a
\arhssep : 37c, 37d
\astarray : 36a, 36a◦, 61a
\astarraylastcs : 36a, 61a
\astformat@flaction : 61a
\astformat@flnametok : 76c
\astformat@flparens : 65d
\astformat@flrule : 62g, 62h

B ···
\bdend : 35c, 36, 36a, 37c, 37d
\bidstr : 83k
\bpredicate : 37d
\bracedvalue : 40
\braceit : 30b
\bracketedidcontextstate : 45, 47g, 48f,

49b
\bracketedidstr : 45, 47b, 47g, 48a, 48b,

48c, 48e, 48f, 49, 49d

C ···
\charit : 39g
\chstr : 83c, 83d, 83e, 83f, 83g, 83h, 83i,

83j
\codeassoc : 31f, 32d
\codepropstype : 32a
A← A+s B (\concat): 34e, 84a
\contextstate : 44, 49e, 49f, 49g, 51c,

51d
continue (\yylexnext): several refs.
\csname : 46b, 80a

D ··
def (\def): 47g, 48e, 48f, 49, 50f, 52a,

52b, 69c, 69d, 71a, 73b, 73e, 74a, 74b,
74c, 75a, 75b, 75c, 76a, 76e, 77a, 78a,
78b, 80b

defx (\edef): 34e, 35c, 36, 36a, 37b, 37c,
37d, 38, 45, 46b, 46c, 46d, 46e, 46f,
46g, 46h, 47b, 47d, 48e, 50b, 50d, 50f,
52a, 52b, 52d, 70c, 72, 75, 76b, 76c

\default : 34e
deprecated (\yypdeprecated): 45
\do : 131a◦

\doing@codeblocktrue : 74a
\dotsp : 82, 84c, 84f, 85a
\dprecop : 38b

E ···
else (\else): several refs.
∅ (\empty): 30, 30b, 35c, 36, 36a, 37b,

37c, 37d, 38, 45, 47b, 47g, 48a, 48b,
48c, 48e, 48f, 49, 49d, 61a, 62g, 62h,
65d, 76c

p. . .q (\emptyterm): 35c, 36, 36a, 37c,
37d, 38

\endcsname : 46b, 80a
enter (\yyBEGIN): several refs.
enterx (\yyBEGINr): 48f, 49b, 49e, 49f,

49g, 51c
\errmessage : 34c
\expandafter : 46b, 49, 49d, 58d, 61a,

62g, 62h, 65d, 71a, 76c

F ···
fatal (\yyfatal): 45, 46b, 49a, 49b, 49e,

49f, 50a, 50c, 50e, 51b, 51c, 51e, 52c,
69a, 70, 71a, 72, 77b, 78, 80, 80b, 90c

fi (\fi): several refs.
\flaction : 61a
\flactionc : 61a
\flactiongroup : 61b
\flarrayopt : 59g
\flbareaction : 61d
\flbolrule : 62g
\flbrace@depth : 69c, 70, 70a
\flbraceccl : 65j
\flbracecclneg : 65k
\flbracelevel : 69d, 73c, 73d, 73e, 74a,

74c, 75a, 75b, 75c, 78b, 79a, 79b, 79c
\flccldiff : 65g
\flcclexpr : 66c
\flcclrnge : 66a
\flcclunion : 65h
\flchar : 65e, 66a, 66b, 66g
\flcontinued@actionfalse : 75a, 75b,

75c
\flcontinued@actiontrue : 75
\fldec : 70a, 73d, 79b
\fldidadeffalse : 69e
\fldidadeftrue : 70c
\fldoing@codeblockfalse : 79a
\fldoing@rule@actionfalse : 79a, 79c
\fldoing@rule@actiontrue : 74c, 74d,

75b, 75c
\fldot : 64k
\flend@ch : 76c
\flend@is@wsfalse : 76c
\flend@is@wstrue : 76c
\fleof : 62i
\flexoptiondecls : 31c

\flexoptionpair : 31b
\flexsstatedecls : 31b
\flexxstatedecls : 31b
\flin@rulefalse : 74c, 74d, 75b, 75c
\flin@ruletrue : 60l
\flinc : 70, 73c, 79b
\flinc@linenum : 69a, 69b, 69c, 70, 71a,

71b, 73a, 73b, 73f, 74d, 75c, 77b, 79a,
79c, 80

\flindented@codefalse : 69b
\flindented@codetrue : 69a
\fllex@compatfalse : 72b
\fllex@compattrue : 72b
\fllinenum : 70
\flname : 59a, 59b, 62b
\flnamesep : 59a, 61i
\flnametok : 76c
\flnmdef : 70c, 71a
\flnmstr : 72, 76b
\flopt : 60b, 60c, 60d, 60e, 60f, 60g, 60h,

60i
\floption@sensefalse : 72a
\floption@sensetrue : 71b, 72a
\floptions : 59e
\flor : 63f
\flparens : 65d
\flposix@compatfalse : 72c
\flposix@compattrue : 72c
\flptropt : 59f
\flquotechar : 73f, 77b
\flreateol : 63d
\flredef : 59i
\flrepeat : 64e
\flrepeatgen : 64i
\flrepeatn : 64j
\flrepeatnm : 64h
\flrepeatonce : 64g
\flrepeatstrict : 64f
\flretrail : 63b
\flrule : 62h
\flscondecl : 58f
\flsconlist : 61f
\flsconuniv : 61g
\flsectnum : 69d, 73b, 76a, 80b
\flsf@case@insfalse : 77b
\flsf@case@instrue : 77b
\flsf@dot@allfalse : 77b
\flsf@dot@alltrue : 77b
\flsf@pop : 74
\flsf@push : 74, 76e, 77a
\flsf@skip@wsfalse : 77b
\flsf@skip@wstrue : 77b
\flstring : 65c
\fltopopt : 59h
\fltrail : 63h

G ···
\getfirst : 131a◦

\grammar : 30, 34d, 34e
\greaterthan : 83f

H ··
\hexint : 45
 (\hspace): 31e, 33b, 33d, 33e, 34a,

37b, 38

I ··
\idit : 31b, 31f, 39f
\idstr : 82b, 83a, 83b, 84a, 84d
\ifflcontinued@action : 61a

508
508 SPLINT INDEX

\iffldidadef : 71a
\iffldoing@codeblock : 79a
\iffldoing@rule@action : 79a, 79c
\ifflend@is@ws : 76c
\ifflin@rule : 74c, 75b, 75c
\ifflindented@code : 70, 79a
\iffllex@compat : 74b, 76e, 77a, 78a
\iffloption@sense : 72a, 72b, 72c
\ifflposix@compat : 74b, 76e, 77a, 78a
\ifflsf@skip@ws : 73f, 74d, 75a, 75b,

75c, 76d
ifω (\ifnum): 47c, 48f, 50f, 52a, 52b, 70a,

73e, 76c, 79a, 79c, 80a
if (rhs = full) (\ifrhsfull): 35c, 35f,

36a, 37c, 37d, 38a, 38b, 38c
ift [bad char] (\iftracebadchars): 46b,

47a, 90c
ifx (\ifx): 34e, 35c, 36, 36a, 37b, 37c,

37d, 38, 46b, 47g, 48a, 48b, 48c, 48e,
48f

ε (\in): 34e
\indented@codefalse : 74a
\initaction : 30b
\inmath : 22b◦

L ···
\laststring : 50b, 50d, 50f, 52a, 52b,

52d, 53a
\laststringraw : 50b, 50d, 50f
\let : 34e, 45, 47b, 47g, 48e, 49, 49d, 50f,

52a, 52b, 61a, 62g, 62h, 65d, 73e, 74c,
74d, 75b, 75c, 76c

\lexspecialchar : 46b
\lonesting : 45, 50f, 51a, 51e, 52a, 52b

M ··
\mergeop : 38c
\midf : 35d, 35e

N ··
\n : 70a, 74c, 75, 75b, 75c, 79a, 79c
\namechars : 82a, 82b
\next : several refs.
\noexpand : 22b◦

\ntermdecls : 33a
\number : 70, 80a
nx (\nx): several refs.

O ··
Ω (\table): 29, 29a, 29b, 29d, 58d, 60k,

62e
\on : 36a, 61a
\oneparametricoption : 30c, 30d
\oneproduction : 35a
\onesymbol : 33f
\optionflag : 30b, 31f
\optstr : 82c, 84e

P ···
\paramdef : 30b
\parsernamespace : 80a
\pcluster : 35b
\percentpercentcount : 47c
π1 (\getfirst): 31d, 32a, 34d, 34e, 37c,

37d, 82b, 82c, 83a, 83b, 83c, 84a, 84d,
84e, 131a◦, 132◦

π2 (\getsecond): 29, 29a, 29d, 31d, 31e,
32a, 32f, 34a, 34e, 35a, 37c, 37d, 63b,
82b, 82c, 83a, 83b, 83c, 83d, 84a, 84d,
84e

π3 (\getthird): 31d, 32a, 32f, 34e, 35a,

35c, 37c, 37d, 63b, 84a
π4 (\getfourth): 31e, 32f, 34a, 35a, 35b,

35c, 37b, 38
π5 (\getfifth): 31e, 34a, 35a, 35b, 37b,

38
π↔ (\rhscnct): 37b, 37e, 38a, 38b, 38c
π{} (\rhscont): 35c, 35d, 35e, 36, 36a,

37b, 37c, 37d, 37e, 38a, 38b, 38c
π` (\rhsbool): 35c, 35f, 36a, 37c, 37d,

38a, 38b, 38c
pop state (\yypopstate): 69f, 70, 70a
\positionswitch : 34e
\positionswitchdefault : 34e
\postoks : 34e, 47d, 52d
\precdecls : 32f
\preckind : 32c
\prodheader : 35b
\prologuecode : 30b
push state (\yypushstate): 69a, 69c,

75a, 76d, 76e, 78b

Q ··
\qual : 85d, 85e

R ···
\RETURNCHAR : 74, 77b, 80a
\RETURNNAME : 69a, 77b
\ROLLBACKCURRENTTOKEN : 47g, 48b, 48c,

49d, 49g, 53a
\rarhssep : 35c, 36, 36a, 37c, 37d
◦ (\relax): 46b, 48f, 70a, 76c, 80a
returnopt (\yyflexoptreturn): 69a,

71b, 72, 72b, 72c
returnc (\yylexreturnchar): 71b, 74,

77b, 78, 89
returnl (\yylexreturn): 45, 46c, 46d,

46e, 46f, 46g, 46h, 47g, 48a, 48b, 48c,
49, 49d, 50b, 50d, 50f, 52a, 52b, 52d,
53a, 69a, 71a, 72, 74, 74b, 76c, 78a

returnp (\yylexreturnptr): 44a, 45,
46a, 47c, 69a, 69d, 73f

returnv (\yylexreturnval): 78, 88f, 89,
90a, 90b

returnvp (\yylexreturnsym): 69e, 72

returnx (\yylexreturnxchar): 70a, 73f,
74c, 75, 75b, 75c, 77b, 79a, 79c

\rhs : 35c, 36, 36a, 37a, 37b, 37c, 37d,
38, 38a, 38b, 38c

rhs = not full (\rhsfullfalse): 37a, 37b,
38, 38a, 38b, 38c

rhs = full (\rhsfulltrue): 35c, 36, 36a,
37c, 37d, 38a, 38b, 38c

\rrhssep : 35f, 36, 36a
\rules : 35c, 35f, 36, 36a

S ···
\STRINGFINISH : 50b, 50d, 50f, 52a, 52b,

52d, 53a
\STRINGFREE : 50d, 50f
\STRINGGROW : 49f, 49g, 50e, 50f, 51a,

51b, 51c, 51d, 51e, 52a, 52b, 53b
\safemath : 83i, 83k
\sansfirst : 83c
\separatorswitchdefaulteq : 34e
\separatorswitchdefaultneq : 34e
\separatorswitcheq : 34e
\separatorswitchneq : 34e
set Υ and returnccl (\xcclreturn):

77b, 78
\sfxi : 84c, 84i, 85b

\sfxn : 82, 84h, 85c
\sfxnone : 82
\something : 131a◦

 (\space): 84a
\sprecop : 38a
state (\yylexstate): 48f
\stringify : 30c, 39k
\supplybdirective : 38a, 38b, 38c
switch (\switchon): 34e
\symbolprec : 33b

T ···
\tagit : 32e, 32h, 38c
\termname : 37b
\termvstring : 83c, 83d, 83e, 83f, 83g,

83h, 83i, 83j, 84d, 84e
7→ (\to): 29, 29a, 29d, 31d, 31e, 32a, 32f,

34a, 34d, 34e, 35a, 35b, 35c, 35d, 35e,
35f, 36, 36a, 37b, 37c, 37d, 37e, 38,
38a, 38b, 38c, 63b, 82b, 82c, 83a, 83b,
83c, 83d, 84a, 84d, 84e

\tokendecls : 33a
\typedecls : 32e

U ··
\unput : 75, 75a, 75c, 76c
\uscoreletter : 83g

V ···
va (\toksa): 30b, 30c, 30d, 31d, 31e, 31f,

32a, 32f, 34a, 34d, 34e, 35a, 35b, 35c,
35e, 35f, 36, 36a, 37b, 37c, 37d, 37e,
38, 38a, 38b, 38c, 61a, 62g, 62h, 63b,
65d, 76c, 82b, 82c, 83a, 83b, 83c, 84a,
84d, 84e

val · or x·y (\the): several refs.
\vardef : 30b
vb (\toksb): 31d, 31e, 32a, 32f, 34a, 34e,

35a, 35b, 35c, 35e, 37b, 37c, 37d, 37e,
38, 38a, 38b, 38c, 61a, 63b, 82b, 82c,
83a, 83b, 83c, 83d, 84a, 84d, 84e

vc (\toksc): 31d, 31e, 32a, 32f, 34a, 34e,
35a, 35c, 37b, 37c, 37d, 38, 38a, 38b,
38c, 84a

vd (\toksd): 32a, 34e, 35a, 37b, 37c, 37d,
38

ve (\tokse): 32a
vf (\toksf): 32a

\visflag : 83c, 83d, 83e, 83f, 83g, 83h,
83i, 83j, 84d, 84e

W ··
warn (\yywarn): 44, 47a, 47e, 48e, 48f

Y ···
Υ (\yyval): 38a, 38b, 38c, 82a, 82b
Υ? (\yy): several refs.

?Υ (\bb): 35e
\YYSTART : 44, 45, 47g, 51d, 80a
\yy : several refs.
\yyerror : 58i, 59c, 62a, 62j, 63c
\yyfmark : 45, 46b, 46c, 46d, 46e, 46f,

46g, 46h, 47b, 47d, 48e, 50b, 50d, 50f,
52a, 52b, 52d, 70c, 76c

\yyless : 73c, 73d, 73e, 73f, 74b, 76b,
76d, 76e, 77a, 77b

\yylessafter : 74d
\yylexreturnraw : 73f, 74, 76b, 76d, 76e,

77a, 77b
\yylval : 45, 46c, 46d, 46e, 46f, 46g, 46h,

47b, 49, 49d, 50b, 50d, 50f, 52a, 52b,

 NAMES OF THE SECTIONS SPLINT 508

52d, 53a, 71a, 76c
\yypushx : 36a, 61a
\yysetbol : 73e
\yysmark : 45, 46b, 46c, 46d, 46e, 46f,

46g, 46h, 47b, 47d, 48e, 50b, 50d, 50f,
52a, 52b, 52d, 70c, 76c

\yyterminate : 45, 73b, 76a, 80b
\yytext : 45, 46b, 47a, 47b, 48e, 49a,

51b, 69a, 70, 70c, 72, 76b, 76c, 77b, 78,
80b, 90c

\yytextlastchar : 76c
\yytextpure : 46b, 47b, 48e, 70c, 72

A LIST OF ALL SECTIONS

〈A production 8a, 8d 〉 Cited in sections 3b and 8a. Used in sections 7c and 8c.

〈A silly example 6a, 7a, 7c, 8c 〉 Used in section 8f.

〈Add 〈empty〉 to the right hand side 37e 〉 Used in section 36d.

〈Add a flex option 31e 〉 Used in section 31b.

〈Add a 〈top〉 directive 59h 〉 Used in section 59d.

〈Add a 〈dprec〉 directive to the right hand side 38b 〉 Used in section 36d.

〈Add a 〈merge〉 directive to the right hand side 38c 〉 Used in section 36d.

〈Add a bare action 61d 〉 Used in section 60l.

〈Add a character to a character class 66b 〉 Used in section 65f.

〈Add a dot separator 85a 〉 Used in section 81d.

〈Add a group of rules to section 2 61b 〉 Used in section 60l.

〈Add a name to a list 59a 〉 Used in section 58e.

〈Add a pointer option 59f 〉 Used in section 59d.

〈Add a precedence directive to the right hand side 38a 〉 Used in section 36d.

〈Add a predicate to the right hand side 37d 〉 Used in section 36d.

〈Add a productions cluster 35a 〉 Used in section 34c.

〈Add a range to a character class 66a 〉 Used in section 65f.

〈Add a regular expression definition 59i 〉 Used in section 59d.

〈Add a right hand side to a production 36a 〉 Used in section 34c.

〈Add a rule to section 2 61a 〉 Used in section 60l.

〈Add a start condition to a list 61i 〉 Used in section 61e.

〈Add a symbol definition 34a 〉 Used in section 33g.

〈Add a term to the right hand side 37b 〉 Used in section 36d.

〈Add an action to the right hand side 37c 〉 Used in section 36d.

〈Add an array option 59g 〉 Used in section 59d.

〈Add an expression to a character class 66c 〉 Used in section 65f.

〈Add an option to a list 59j 〉 Used in section 59d.

〈Add an optional semicolon 36b 〉 Used in section 34c.

〈Add closing brace to a predicate 52b 〉 Used in section 51e.

〈Add closing brace to the braced code 52a 〉 Used in section 51e.

〈Add options to section 1 58g 〉 Used in section 58e.

〈Add start condition declarations 58f 〉 Used in section 58e.

〈Add the scanned symbol to the current string 53b 〉 Used in section 43e.

〈Additional options for flex input lexer 68a 〉 Used in section 67a.

〈Assemble a flex input file 58a 〉 Used in section 57d.

〈Assemble a flex section 1 file 58d 〉 Used in section 58c.

〈Assign a code fragment to symbols 32a 〉 Used in section 31f.

〈Attach a named suffix 85c 〉 Used in section 81d.

〈Attach a productions cluster 34e 〉 Used in sections 30a and 34b.

〈Attach a prologue declaration 30a 〉 Used in section 29e.

〈Attach a qualifier 85d 〉 Used in section 81d.

〈Attach an identifier 84a 〉 Used in sections 81d and 84b.

〈Attach an integer 84c 〉 Used in section 81d.

〈Attach integer suffix 85b 〉 Used in section 81d.

〈Attach option name 82c 〉 Used in section 81d.

〈Attach qualified suffixes 84g 〉 Used in section 81d.

〈Attach qualifier to a name 84b 〉 Used in section 81d.

508 SPLINT NAMES OF THE SECTIONS

〈Attach suffixes 84f 〉 Used in sections 81d and 84g.

〈Auxilary code for flex lexer 80c 〉 Used in section 67a.

〈Auxiliary function declarations 99f 〉 Used in section 97f.

〈Auxiliary function definitions 99g 〉 Used in section 91b.

〈Begin section 2, prepare to reread, or ignore braced code 73e 〉 Used in section 73b.

〈Begin the 〈top〉 directive 69c 〉 Used in section 69a.

〈Bison options 81b 〉 Used in section 81a.

〈Bootstrap parser C postamble 40d 〉 Used in section 26a.

〈Bootstrap token list 40f 〉 Used in section 40e.

〈Bootstrap token output 40e 〉 Used in section 40d.

〈Carry on 29c 〉 Used in sections 29b, 30b, 31a, 31b, 31f, 33b, 33d, 33e, 33g, 34c, 36b, 39h, and 39i.

〈Cases affecting the whole program 102f 〉 Used in section 101e.

〈Cases involving specific modes 102g 〉 Used in section 101e.

〈Clean up 93b 〉 Used in section 91b.

〈Collect all state definitions 87c 〉 Used in section 87a.

〈Collect state definitions for the flex lexer 80d 〉 Used in section 80c.

〈Collect state definitions for the grammar lexer 42c 〉 Used in section 41a.

〈Command line processing variables 101d 〉 Used in section 91b.

〈Common code for C preamble 93a 〉
〈Complain about improper identifier characters 49a 〉 Used in section 48d.

〈Complain about unexpected end of file inside brackets 49b 〉 Used in section 48d.

〈Complain if not inside a definition, continue otherwise 71a 〉 Used in section 70b.

〈Complete a production 35b 〉 Used in section 34c.

〈Compose the full name 82a 〉 Used in section 81d.

〈Compute exotic scanner constants 112f 〉
〈Compute magic constants 114c 〉 Used in section 113a.

〈Configure parser output modes 107e 〉
〈Constant names 99a 〉 Used in sections 98c, 98d, 98e, and 98g.

〈Consume the brace and decrement the brace level 73d 〉 Used in section 73b.

〈Consume the brace and increment the brace level 73c 〉 Used in section 73b.

〈Copy the name and start a definition 69e 〉 Used in section 69a.

〈Copy the value 66f 〉 Used in sections 57d, 61j, 63e, 63g, 63k, 65a, 65b, 65i, and 66e.

〈Create a character class 65j 〉 Used in section 65f.

〈Create a complementary character class 65k 〉 Used in section 65f.

〈Create a lazy series match 64e 〉 Used in section 64d.

〈Create a list of start conditions 61f 〉 Used in section 61e.

〈Create a named reference 38e 〉 Used in section 36d.

〈Create a nonempty series match 64f 〉 Used in section 64d.

〈Create a possible single match 64g 〉 Used in section 64d.

〈Create a series of exact length 64j 〉 Used in sections 64c and 64d.

〈Create a series of minimal length 64i 〉 Used in sections 64b and 64d.

〈Create a series of specific length 64h 〉 Used in sections 64a and 64d.

〈Create a union of character classes 65h 〉 Used in section 65f.

〈Create a universal start condition 61g 〉 Used in section 61e.

〈Create an empty character class 66d 〉 Used in section 65f.

〈Create an empty named reference 38d 〉 Used in section 36d.

〈Create an empty section 1 58h 〉 Used in section 58e.

〈Create an empty start condition 61h 〉 Used in section 61e.

〈Decide if this is a comment 76d 〉 Used in section 73f.

〈Decide whether to start an action or skip whitespace inside a rule 75b 〉 Used in section 73f.

〈Declare a class 60e 〉 Used in section 59d.

〈Declare a prefix 60d 〉 Used in section 59d.

 NAMES OF THE SECTIONS SPLINT 508

〈Declare an extra type 60c 〉 Used in section 59d.

〈Declare the name for the tables 60g 〉 Used in section 59d.

〈Declare the name of a header 60f 〉 Used in section 59d.

〈Decode escaped characters 51b 〉 Used in section 43e.

〈Default outputs 94a, 97c, 98e 〉 Used in section 93c.

〈Define flex option list 31c 〉 Used in section 31b.

〈Define flex states 31d 〉 Used in section 31b.

〈Define symbol precedences 32f 〉 Used in section 32c.

〈Define symbol types 32e 〉 Used in section 32c.

〈Definition of symbol 39c 〉 Used in sections 26a and 39b.

〈Definitions for flex input lexer 68c 〉 Used in section 67a.

〈Determine if this is a parametric group or return a parenthesis 77a 〉 Used in section 73f.

〈Determine if this is extended syntax or return a parenthesis 76e 〉 Used in section 73f.

〈Disallow a repeated trailing context 63c 〉 Used in section 63a.

〈Do not support zero characters 47e 〉 Used in section 43e.

〈End the scan with an identifier 48c 〉 Used in section 47f.

〈Error codes 99e, 114a 〉 Used in section 99d.

〈Establish defaults 101a 〉 Used in section 91b.

〈Exclusive productions for flex section 1 parser 58c 〉 Used in section 56a.

〈Extend a flex string by a character 66g 〉 Used in section 66e.

〈Extend a series by a singleton 63j 〉 Used in section 63i.

〈Fake start symbol for bootstrap grammar 29b 〉 Used in section 26a.

〈Fake start symbol for prologue grammar 29d 〉 Used in section 27a.

〈Fake start symbol for rules only grammar 29a 〉 Used in section 25a.

〈Find the rule that defines it and set yyrthree 104b 〉 Used in section 103d.

〈Finish a bison string 50b 〉 Used in section 50a.

〈Finish a tag 50f 〉 Used in section 50e.

〈Finish braced code 52d 〉 Used in section 52c.

〈Finish processing bracketed identifier 48f 〉 Used in section 48d.

〈Finish the line and/or action 75c 〉 Used in section 73f.

〈Finish the repeat pattern 78a 〉 Used in section 77b.

〈Generic table desciptor fields 95a 〉 Used in section 94e.

〈Global Declarations 28b 〉 Used in section 28a.

〈Global variables and types 94c, 94e, 96d, 97a, 98b, 99d 〉 Used in section 97f.

〈Grammar lexer C preamble 43c 〉 Used in section 41a.

〈Grammar lexer definitions 41b, 42a, 42b 〉 Used in section 41a.

〈Grammar lexer options 43d 〉 Used in section 41a.

〈Grammar lexer states 42d, 42e, 42f, 42g, 42h, 42i, 43a, 43b 〉 Used in section 41b.

〈Grammar parser C postamble 40c 〉 Used in sections 25a, 27a, 27b, and 40d.

〈Grammar parser C preamble 40b 〉 Used in sections 25a, 26a, 27a, and 27b.

〈Grammar parser bison options 27c 〉 Used in sections 25a, 26a, 27a, and 27b.

〈Grammar token regular expressions 43e 〉 Used in section 41a.

〈Handle end of file in the epilogue 53a 〉 Used in section 52e.

〈Handle parser output options 105d, 111e, 112b 〉
〈Handle parser related output modes 107c, 107h, 108a 〉
〈Handle scanner output modes 116d, 116f 〉
〈Handle scanner output options 118d, 118g 〉
〈Helper functions declarations for for parser output 108c 〉
〈Helper functions for parser output 108d, 110a 〉
〈Higher index options 102c 〉 Used in section 101d.

〈 Insert local formatting 35e 〉 Used in section 34c.

〈Lexer C preamble 88b 〉 Used in section 87a.

508 SPLINT NAMES OF THE SECTIONS

〈Lexer definitions 87b 〉 Used in section 87a.

〈Lexer options 88c 〉 Used in section 87a.

〈Lexer states 88a 〉 Used in section 87b.

〈List of symbols 33d 〉 Cited in section 33c. Used in sections 26a and 33c.

〈Local variable and type declarations 93c, 94b, 97d, 98c, 100a, 101c 〉 Used in section 91b.

〈Long options array 102a 〉 Used in section 101d.

〈Make a ýnameþ into a start condition 62b 〉 Used in section 61e.

〈Make an empty option list 60a 〉 Used in section 59d.

〈Make an empty regular expression string 66h 〉 Used in section 66e.

〈Make an empty right hand side 37a 〉 Used in section 36d.

〈Match (almost) any character 64k 〉 Used in section 64d.

〈Match a PREVCCL 65b 〉 Used in section 64d.

〈Match a character class 65a 〉 Used in section 64d.

〈Match a regular expression at the end of the line 63d 〉 Used in section 63a.

〈Match a regular expression with a trailing context 63b 〉 Used in section 63a.

〈Match a rule at the beginning of the line 62g 〉 Used in section 62f.

〈Match a sequence of alternatives 63f 〉 Used in section 63a.

〈Match a sequence of singletons 63g 〉 Used in section 63a.

〈Match a series of exact length 64c 〉 Used in section 63i.

〈Match a series of minimal length 64b 〉 Used in section 63i.

〈Match a series of specific length 64a 〉 Used in section 63i.

〈Match a singleton 63k 〉 Used in section 63i.

〈Match a specific character 65e 〉 Used in section 64d.

〈Match a string 65c 〉 Used in section 64d.

〈Match an atom 65d 〉 Used in section 64d.

〈Match an end of file 62i 〉 Used in section 62f.

〈Match an ordinary regular expression 63e 〉 Used in section 63a.

〈Match an ordinary rule 62h 〉 Used in section 62f.

〈Name parser C postamble 85g 〉 Used in section 81a.

〈Name parser C preamble 85f 〉 Used in section 81a.

〈Old ‘Add a right hand side to a production’ 35f 〉
〈Old ‘Insert local formatting’ 35d 〉
〈Options for flex input lexer 67c 〉 Used in section 67a.

〈Options for flex parser 55b 〉 Used in sections 55a, 56a, 56b, and 56c.

〈Options with shortcuts 102d 〉 Used in sections 102a and 102b.

〈Options without arguments 94d, 96e 〉 Used in section 102a.

〈Options without shortcuts 102e 〉 Used in sections 102a and 102c.

〈Outer definitions 92b, 101b 〉 Used in section 97f.

〈Output a deprecated option 60i 〉 Used in section 59d.

〈Output a non-parametric option 60h 〉 Used in section 59d.

〈Output a regular expression 62e 〉 Used in section 62d.

〈Output action switch, if any 99c 〉 Used in section 91b.

〈Output all tables 96b 〉 Used in section 96a.

〈Output constants 98g 〉 Used in section 98f.

〈Output descriptor fields 93d, 97b, 98d 〉 Used in section 93c.

〈Output exotic scanner constants 117c 〉
〈Output modes 100b 〉 Used in section 100a.

〈Output parser constants 106d 〉
〈Output parser semantic actions 104d 〉
〈Output parser tokens 106c 〉
〈Output scanner actions 113a 〉
〈Output section 2 60k 〉 Used in section 60j.

 NAMES OF THE SECTIONS SPLINT 508

〈Output states 115b 〉 Used in section 113a.

〈Parser bootstrap productions 33a, 33f, 33g, 39a, 39e 〉 Used in sections 26a and 32g.

〈Parser common productions 31f, 32c, 32g, 33b, 33c, 33e, 39b, 40a 〉 Used in sections 25a, 27a, and 27b.

〈Parser constants 105a 〉 Used in section 110b.

〈Parser defaults 103d 〉
〈Parser full productions 28d 〉 Used in section 27b.

〈Parser grammar productions 34b, 34c, 36d, 39d 〉 Used in sections 25a and 27b.

〈Parser productions 81d 〉 Used in section 81a.

〈Parser prologue productions 29e, 30b, 31a, 39l 〉 Used in sections 27a and 27b.

〈Parser specific default outputs 106b 〉
〈Parser specific options with shortcuts 111f 〉
〈Parser specific options without shortcuts 105c, 107d, 111c 〉
〈Parser specific output descriptor fields 106a 〉
〈Parser specific output modes 107b, 107g, 107i 〉
〈Parser table names 103b, 104c 〉
〈Patterns for flex lexer 69a, 69f, 70b, 71b, 73a, 73b, 73f, 77b, 78b, 79b, 79d, 80b 〉 Used in section 67a.

〈Perform output 96a, 98f 〉 Used in section 91b.

〈Pop state if code braces match 70a 〉 Used in section 69f.

〈Possibly complain about a bad directive 47a 〉 Used in section 44a.

〈Postamble for flex input lexer 68d 〉 Used in section 67a.

〈Postamble for flex parser 66i 〉 Used in sections 55a, 56a, 56b, and 56c.

〈Preamble for flex lexer 67b 〉 Used in section 67a.

〈Preamble for the flex parser 57c 〉 Used in sections 55a, 56a, 56b, and 56c.

〈Prepare TEX format for parser constants 110b 〉 Used in section 108a.

〈Prepare TEX format for parser tokens 111a 〉 Used in section 108a.

〈Prepare TEX format for scanner constants 117b 〉 Used in section 116f.

〈Prepare TEX format for semantic action output 109b 〉 Used in section 108a.

〈Prepare a bison stack name 83k 〉 Used in section 81d.

〈Prepare a <tag> 32h 〉 Used in sections 32c, 33e, and 33f.

〈Prepare a generic one parametric option 30d 〉 Used in sections 30b and 31f.

〈Prepare a state declaration 58j 〉 Used in section 58e.

〈Prepare a string for use 39k 〉 Used in sections 39e and 39l.

〈Prepare an exclusive state declaration 58k 〉 Used in section 58e.

〈Prepare an identifier 47b 〉 Used in section 44a.

〈Prepare one parametric option 30c 〉 Used in section 30b.

〈Prepare the left hand side 39j 〉 Used in section 39d.

〈Prepare to match a trailing context 63h 〉 Used in section 63a.

〈Prepare to process a meta-identifier 90b 〉 Used in section 88f.

〈Prepare to process an identifier 90a 〉 Used in section 88f.

〈Prepare token only output environment 107f 〉 Used in section 107c.

〈Prepare union definition 32d 〉 Used in section 32c.

〈Process a bad character 46b 〉 Used in section 44a.

〈Process a character after an identifier 48b 〉 Used in section 47f.

〈Process a colon after an identifier 48a 〉 Used in section 47f.

〈Process a comment inside a pattern 75a 〉 Used in section 73f.

〈Process a deferred action 74d 〉 Used in section 73f.

〈Process a named expression after checking for whitespace at the end 76c 〉 Used in section 73f.

〈Process a newline inside a braced group 79a 〉 Used in section 78b.

〈Process a newline inside an action 79c 〉 Used in section 79b.

〈Process a repeat pattern 74b 〉 Used in section 73f.

〈Process an escaped sequence 80a 〉 Used in section 79d.

〈Process braced code in the middle of section 2 74c 〉 Used in section 73f.

508 SPLINT NAMES OF THE SECTIONS

〈Process bracketed identifier 48e 〉 Used in section 48d.

〈Process command line options 101e 〉 Used in section 91b.

〈Process quoted name 84d 〉 Used in section 81d.

〈Process quoted option 84e 〉 Used in section 81d.

〈Process the bracketed part of an identifier 47g 〉 Used in section 47f.

〈Productions for flex parser 57d, 58b 〉 Used in section 55a.

〈Productions for flex section 1 parser 58e, 59d 〉 Used in sections 56a and 58b.

〈Productions for flex section 2 parser 60l, 61e, 62c 〉 Used in sections 56b and 58b.

〈Raise nesting level 51a 〉 Used in section 50e.

〈React to a bad character 90c 〉 Used in section 88f.

〈Record the name of the output file 60b 〉 Used in section 59d.

〈Regular expressions 88d 〉 Used in section 87a.

〈Report an error and quit 62j 〉 Used in section 62f.

〈Report an error compiling a start condition list 62a 〉 Used in section 61e.

〈Report an error in namelist1 and quit 59c 〉 Used in section 58e.

〈Report an error in section 1 and quit 58i 〉 Used in section 58e.

〈Rest of line 8b, 8e 〉 Cited in section 8a. Used in sections 7c and 8c.

〈Return a bracketed identifier 49d 〉 Used in section 49c.

〈Return an escaped character 50d 〉 Used in section 50c.

〈Return lexer and parser parameters 46f 〉 Used in section 44a.

〈Return lexer parameters 46d 〉 Used in section 44a.

〈Return parser parameters 46g 〉 Used in section 44a.

〈Rules for flex regular expressions 62f, 63a, 63i, 64d, 65f, 66e 〉 Used in sections 56c and 62c.

〈Scan bison directives 44a 〉 Used in section 43e.

〈Scan flex directives and options 46a 〉 Used in section 43e.

〈Scan a C comment 49f 〉 Used in section 43e.

〈Scan a bison string 50a 〉 Used in section 43e.

〈Scan a yacc comment 49e 〉 Used in section 43e.

〈Scan a character literal 50c 〉 Used in section 43e.

〈Scan a line comment 49g 〉 Used in section 43e.

〈Scan a tag 50e 〉 Used in section 43e.

〈Scan after an identifier, check whether a colon is next 47f 〉 Used in section 43e.

〈Scan bracketed identifiers 48d, 49c 〉 Used in section 43e.

〈Scan code in braces 51e 〉 Used in section 43e.

〈Scan grammar white space 43f 〉 Used in section 43e.

〈Scan identifiers 88f 〉 Used in section 88d.

〈Scan prologue 52c 〉 Used in section 43e.

〈Scan the epilogue 52e 〉 Used in section 43e.

〈Scan user-code characters and strings 51c 〉 Used in section 43e.

〈Scan white space 88e 〉 Used in section 88d.

〈Scanner constants 116a 〉 Used in section 117b.

〈Scanner specific options with shortcuts 118e 〉
〈Scanner specific options without shortcuts 118b 〉
〈Scanner specific output modes 116c, 116e 〉
〈Scanner table names 112d 〉
〈Scanner variables and types for C preamble 115a 〉
〈Set 〈debug〉 flag 46c 〉 Used in section 44a.

〈Set 〈locations〉 flag 46e 〉 Used in section 44a.

〈Set 〈pure-parser〉 flag 46h 〉 Used in section 44a.

〈Set up TEX format for scanner actions 117a 〉 Used in section 116f.

〈Set up TEX format for scanner tables 116g 〉 Used in section 116f.

〈Set up TEX table output for parser tables 108b, 109a 〉 Used in section 108a.

 NAMES OF THE SECTIONS SPLINT 508

〈Set lex compat 72b 〉 Used in section 71b.

〈Set posix compat 72c 〉 Used in section 71b.

〈Short option list 102b 〉 Used in section 101e.

〈Shortcuts for command line options affecting parser output 111d 〉
〈Shortcuts for command line options affecting scanner output 118c 〉
〈Skip trailing whitespace, save the definition 70c 〉 Used in section 70b.

〈Special flex section 2 parser productions 60j 〉 Used in section 56b.

〈Special productions for regular expressions 62d 〉 Used in section 56c.

〈Start a C code section 69b 〉 Used in section 69a.

〈Start a namelist1 with a name 59b 〉 Used in section 58e.

〈Start a list with a start condition name 61j 〉 Used in section 61e.

〈Start an empty section 2 61c 〉 Used in section 60l.

〈Start an options list 59e 〉 Used in section 59d.

〈Start assembling prologue code 47d 〉 Used in section 44a.

〈Start braced code in section 2 74a 〉 Used in section 73f.

〈Start processing a character class 76b 〉 Used in section 73f.

〈Start section 2 69d 〉 Used in section 69a.

〈Start section 3 76a 〉 Used in section 73f.

〈Start suffixes with a qualifier 85e 〉 Used in section 81d.

〈Start the right hand side 35c 〉 Used in section 34c.

〈Start with a - string 83h 〉 Used in section 81d.

〈Start with a . string 83j 〉 Used in section 81d.

〈Start with a < string 83e 〉 Used in section 81d.

〈Start with a > string 83f 〉 Used in section 81d.

〈Start with a $ string 83i 〉 Used in section 81d.

〈Start with a named suffix 84h 〉 Used in section 81d.

〈Start with a numeric suffix 84i 〉 Used in section 81d.

〈Start with a production cluster 34d 〉 Used in section 34b.

〈Start with a quoted string 83c 〉 Used in section 81d.

〈Start with a tag 83b 〉 Used in section 81d.

〈Start with an _ string 83g 〉 Used in section 81d.

〈Start with an escaped character 83d 〉 Used in section 81d.

〈Start with an identifier 83a 〉 Used in sections 81d and 83l.

〈State definitions for flex input lexer 68b 〉 Used in section 67a.

〈Strings, comments etc. found in user code 51d 〉 Used in section 43e.

〈Subtract a character class 65g 〉 Used in section 65f.

〈Switch sections 47c 〉 Used in section 44a.

〈Table names 96c 〉 Used in sections 93d, 94a, 94b, 96b, and 108b.

〈This is an implicit term 104a 〉 Used in section 103d.

〈Toggle option sense 72a 〉 Used in section 71b.

〈Token and types declarations 81c 〉 Used in section 81a.

〈Token definitions for flex input parser 56d, 57a, 57b 〉 Used in sections 55a, 56a, 56b, and 56c.

〈Tokens and types for the grammar parser 28a, 28c, 32b, 36c 〉 Used in sections 25a, 26a, 27a, and 27b.

〈Turn a ýmeta identifierþ into a full name 82b 〉 Used in section 81d.

〈Turn a basic character class into a character class 65i 〉 Used in section 65f.

〈Turn a character into a term 39g 〉 Used in section 39a.

〈Turn a qualifier into an identifier 83l 〉 Used in section 81d.

〈Turn a string into a symbol 39i 〉 Used in section 39c.

〈Turn an identifier into a symbol 39h 〉 Used in section 39c.

〈Turn an identifier into a term 39f 〉 Used in sections 32c, 38e, 39a, 39j, and 39l.

〈Union of grammar parser types 40g 〉 Used in sections 25a, 26a, 27a, and 27b.

〈Union of parser types 85h 〉 Used in section 81a.

508 SPLINT NAMES OF THE SECTIONS

〈Variables and types local to the parser 103c, 105b, 112a 〉
〈Variables and types local to the scanner driver 112e, 114b, 118f 〉
〈Various output modes 92a 〉 Used in section 91b.

〈C postamble 91b 〉 Cited in section 91b.

〈C preamble 97e, 97f 〉
〈 flex options parser productions 31b 〉 Used in sections 26a and 31a.

〈 bb.yy 26a 〉 Cited in section 29d.

〈 bd.yy 27a 〉
〈 bf.yy 27b 〉
〈 bg.yy 25a 〉
〈 ddp.yy 56a 〉
〈 fil.ll 67a 〉
〈 fip.yy 55a 〉
〈 lo.ll 41a 〉
〈 rap.yy 56b 〉
〈 rep.yy 56c 〉
〈 sill.y 8f 〉
〈 small_lexer.ll 87a 〉
〈 small_parser.yy 81a 〉

CONTENTS (SPLINT)

Section Page
Introduction . 1 3

CWEB and literate programming . 2 3
Pretty (and not so pretty) printing . 3 4
Parsing and parsers . 4 5
Using the bison parser . 5 6
On debugging . 15 9

Terminology . 16 11
Languages, scanners, parsers, and TEX . 17 13

Arrays, stacks and the parser . 18 14
TEX into tokens . 19 15
Lexing in TEX . 20 17
Inside semantic actions: switch statements and ‘functions’ in TEX . 21 20
‘Optimization’ . 22 22
TEX with a different slant or do you C an escape? . 23 22

The bison parser stack . 24 25
Token declarations . 29 28
Grammar productions . 32 28

The scanner for bison syntax . 107 41
Definitions and state declarations . 108 41
Tokenizing with regular expressions . 122 43

The flex parser stack . 171 55
Token and state declarations for the flex input scanner . 176 56
The grammar for flex input . 179 57

The lexer for flex syntax . 276 67
Regular expression and state definitions . 280 68
Regular expressions for flex input scanner . 283 69

The name parser . 327 81
The name scanner . 363 87
Forcing bison and flex to output TEX . 375 91

Common routines . 376 91
Error codes . 411 99
Initial setup . 415 100
Command line processing . 418 101

bison specific routines . 429 103
Tables . 430 103
Actions . 436 104
Constants . 437 105
Tokens . 438 105
Output modes . 445 107

Token only mode . 446 107
Generic output . 451 107
TEX output . 453 107

Command line options . 463 111
flex specific routines . 471 112

Tables . 472 112
Actions . 473 112
State names . 479 115
Constants . 481 116
Output modes . 482 116

Generic output . 483 116

508 SPLINT TABLE OF CONTENTS

TEX mode . 485 116
Command line options . 491 118

Philosophy . 498 121
On typographic convention . 499 121
Why GPL . 500 122
Why not C++ or OOP in general . 501 123
Why not ∗TEX . 502 123
Why CWEB . 503 123

Some CWEB idiosynchrasies . 504 124
Why not GitHub c©, Bitbucket c©, etc . 505 125

Checklists . 506 127
Bibliography . 507 129
Index . 508 131

	Introduction
	CWEB and literate programming
	Pretty (and not so pretty) printing
	Parsing and parsers
	Using the bison parser
	On debugging
	Terminology
	Languages, scanners, parsers, and TeX
	Arrays, stacks and the parser
	TeX into tokens
	Lexing in TeX
	Inside semantic actions: switch statements and `functions' in TeX
	`Optimization'
	TeX with a different slant or do you C an escape?
	The bison parser stack
	Token declarations
	Grammar productions
	The scanner for bison syntax
	Definitions and state declarations
	Tokenizing with regular expressions
	The flex parser stack
	Token and state declarations for the flex input scanner
	The grammar for flex input
	The lexer for flex syntax
	Regular expression and state definitions
	Regular expressions for input scanner
	The name parser
	The name scanner
	Forcing bison and flex to output TeX
	Common routines
	Error codes
	Initial setup
	Command line processing

	Bison specific routines
	Tables
	Actions
	Constants
	Tokens
	Output modes
	Token only mode
	Generic output
	TeX output

	Command line options

	Flex specific routines
	Tables
	Actions
	State names
	Constants
	Output modes
	Generic output
	TeX mode

	Command line options

	Philosophy
	On typographic convention
	Why GPL
	Why not C++ or OOP in general
	Why not *TeX
	Why CWEB
	Some CWEB idiosynchrasies

	Why not GitHub^, Bitbucket^, etc
	Checklists
	Bibliography
	Index
	Names of the sections
	A production
	A silly example
	Add %empty to the right hand side
	Add a option
	Add a %top directive
	Add a %dprec directive to the right hand side
	Add a %merge directive to the right hand side
	Add a bare action
	Add a character to a character class
	Add a dot separator
	Add a group of rules to section 2
	Add a name to a list
	Add a pointer option
	Add a precedence directive to the right hand side
	Add a predicate to the right hand side
	Add a productions cluster
	Add a range to a character class
	Add a regular expression definition
	Add a right hand side to a production
	Add a rule to section 2
	Add a start condition to a list
	Add a symbol definition
	Add a term to the right hand side
	Add an action to the right hand side
	Add an array option
	Add an expression to a character class
	Add an option to a list
	Add an optional semicolon
	Add closing brace to a predicate
	Add closing brace to the braced code
	Add options to section 1
	Add start condition declarations
	Add the scanned symbol to the current string
	Additional options for input lexer
	Assemble a input file
	Assemble a section 1 file
	Assign a code fragment to symbols
	Attach a named suffix
	Attach a productions cluster
	Attach a prologue declaration
	Attach a qualifier
	Attach an identifier
	Attach an integer
	Attach integer suffix
	Attach option name
	Attach qualified suffixes
	Attach qualifier to a name
	Attach suffixes
	Auxilary code for lexer
	Auxiliary function declarations
	Auxiliary function definitions
	Begin section 2, prepare to reread, or ignore braced code
	Begin the %top directive
	Bison options
	Bootstrap parser C postamble
	Bootstrap token list
	Bootstrap token output
	Carry on
	Cases affecting the whole program
	Cases involving specific modes
	Clean up
	Collect all state definitions
	Collect state definitions for the lexer
	Collect state definitions for the grammar lexer
	Command line processing variables
	Common code for C preamble
	Complain about improper identifier characters
	Complain about unexpected end of file inside brackets
	Complain if not inside a definition, continue otherwise
	Complete a production
	Compose the full name
	Compute exotic scanner constants
	Compute magic constants
	Configure parser output modes
	Constant names
	Consume the brace and decrement the brace level
	Consume the brace and increment the brace level
	Copy the name and start a definition
	Copy the value
	Create a character class
	Create a complementary character class
	Create a lazy series match
	Create a list of start conditions
	Create a named reference
	Create a nonempty series match
	Create a possible single match
	Create a series of exact length
	Create a series of minimal length
	Create a series of specific length
	Create a union of character classes
	Create a universal start condition
	Create an empty character class
	Create an empty named reference
	Create an empty section 1
	Create an empty start condition
	Decide if this is a comment
	Decide whether to start an action or skip whitespace inside a rule
	Declare a class
	Declare a prefix
	Declare an extra type
	Declare the name for the tables
	Declare the name of a header
	Decode escaped characters
	Default outputs
	Define option list
	Define states
	Define symbol precedences
	Define symbol types
	Definition of symbol
	Definitions for input lexer
	Determine if this is a parametric group or return a parenthesis
	Determine if this is extended syntax or return a parenthesis
	Disallow a repeated trailing context
	Do not support zero characters
	End the scan with an identifier
	Error codes
	Establish defaults
	Exclusive productions for section 1 parser
	Extend a string by a character
	Extend a series by a singleton
	Fake start symbol for bootstrap grammar
	Fake start symbol for prologue grammar
	Fake start symbol for rules only grammar
	Find the rule that defines it and set yyrthree
	Finish a string
	Finish a tag
	Finish braced code
	Finish processing bracketed identifier
	Finish the line and/or action
	Finish the repeat pattern
	Generic table desciptor fields
	Global Declarations
	Global variables and types
	Grammar lexer C preamble
	Grammar lexer definitions
	Grammar lexer options
	Grammar lexer states
	Grammar parser C postamble
	Grammar parser C preamble
	Grammar parser options
	Grammar token regular expressions
	Handle end of file in the epilogue
	Handle parser output options
	Handle parser related output modes
	Handle scanner output modes
	Handle scanner output options
	Helper functions declarations for for parser output
	Helper functions for parser output
	Higher index options
	Insert local formatting
	Lexer C preamble
	Lexer definitions
	Lexer options
	Lexer states
	List of symbols
	Local variable and type declarations
	Long options array
	Make a NAME into a start condition
	Make an empty option list
	Make an empty regular expression string
	Make an empty right hand side
	Match (almost) any character
	Match a PREVCCL
	Match a character class
	Match a regular expression at the end of the line
	Match a regular expression with a trailing context
	Match a rule at the beginning of the line
	Match a sequence of alternatives
	Match a sequence of singletons
	Match a series of exact length
	Match a series of minimal length
	Match a series of specific length
	Match a singleton
	Match a specific character
	Match a string
	Match an atom
	Match an end of file
	Match an ordinary regular expression
	Match an ordinary rule
	Name parser C postamble
	Name parser C preamble
	Old `Add a right hand side to a production'
	Old `Insert local formatting'
	Options for input lexer
	Options for parser
	Options with shortcuts
	Options without arguments
	Options without shortcuts
	Outer definitions
	Output a deprecated option
	Output a non-parametric option
	Output a regular expression
	Output action switch, if any
	Output all tables
	Output constants
	Output descriptor fields
	Output exotic scanner constants
	Output modes
	Output parser constants
	Output parser semantic actions
	Output parser tokens
	Output scanner actions
	Output section 2
	Output states
	Parser bootstrap productions
	Parser common productions
	Parser constants
	Parser defaults
	Parser full productions
	Parser grammar productions
	Parser productions
	Parser prologue productions
	Parser specific default outputs
	Parser specific options with shortcuts
	Parser specific options without shortcuts
	Parser specific output descriptor fields
	Parser specific output modes
	Parser table names
	Patterns for lexer
	Perform output
	Pop state if code braces match
	Possibly complain about a bad directive
	Postamble for input lexer
	Postamble for parser
	Preamble for lexer
	Preamble for the parser
	Prepare TeX format for parser constants
	Prepare TeX format for parser tokens
	Prepare TeX format for scanner constants
	Prepare TeX format for semantic action output
	Prepare a stack name
	Prepare a TAG
	Prepare a generic one parametric option
	Prepare a state declaration
	Prepare a string for use
	Prepare an exclusive state declaration
	Prepare an identifier
	Prepare one parametric option
	Prepare the left hand side
	Prepare to match a trailing context
	Prepare to process a meta-identifier
	Prepare to process an identifier
	Prepare token only output environment
	Prepare union definition
	Process a bad character
	Process a character after an identifier
	Process a colon after an identifier
	Process a comment inside a pattern
	Process a deferred action
	Process a named expression after checking for whitespace at the end
	Process a newline inside a braced group
	Process a newline inside an action
	Process a repeat pattern
	Process an escaped sequence
	Process braced code in the middle of section 2
	Process bracketed identifier
	Process command line options
	Process quoted name
	Process quoted option
	Process the bracketed part of an identifier
	Productions for parser
	Productions for section 1 parser
	Productions for section 2 parser
	Raise nesting level
	React to a bad character
	Record the name of the output file
	Regular expressions
	Report an error and quit
	Report an error compiling a start condition list
	Report an error in namelist1 and quit
	Report an error in section 1 and quit
	Rest of line
	Return a bracketed identifier
	Return an escaped character
	Return lexer and parser parameters
	Return lexer parameters
	Return parser parameters
	Rules for regular expressions
	Scan directives
	Scan directives and options
	Scan a C comment
	Scan a string
	Scan a comment
	Scan a character literal
	Scan a line comment
	Scan a tag
	Scan after an identifier, check whether a colon is next
	Scan bracketed identifiers
	Scan code in braces
	Scan grammar white space
	Scan identifiers
	Scan prologue
	Scan the epilogue
	Scan user-code characters and strings
	Scan white space
	Scanner constants
	Scanner specific options with shortcuts
	Scanner specific options without shortcuts
	Scanner specific output modes
	Scanner table names
	Scanner variables and types for C preamble
	Set %debug flag
	Set %locations flag
	Set %pure-parser flag
	Set up TeX format for scanner actions
	Set up TeX format for scanner tables
	Set up TeX table output for parser tables
	Set lex_compat
	Set posix_compat
	Short option list
	Shortcuts for command line options affecting parser output
	Shortcuts for command line options affecting scanner output
	Skip trailing whitespace, save the definition
	Special section 2 parser productions
	Special productions for regular expressions
	Start a C code section
	Start a namelist1 with a name
	Start a list with a start condition name
	Start an empty section 2
	Start an options list
	Start assembling prologue code
	Start braced code in section 2
	Start processing a character class
	Start section 2
	Start section 3
	Start suffixes with a qualifier
	Start the right hand side
	Start with a '-' string
	Start with a '.' string
	Start with a '<' string
	Start with a '>' string
	Start with a '$' string
	Start with a named suffix
	Start with a numeric suffix
	Start with a production cluster
	Start with a quoted string
	Start with a tag
	Start with an '_' string
	Start with an escaped character
	Start with an identifier
	State definitions for input lexer
	Strings, comments etc. found in user code
	Subtract a character class
	Switch sections
	Table names
	This is an implicit term
	Toggle option_sense
	Token and types declarations
	Token definitions for input parser
	Tokens and types for the grammar parser
	Turn a META_IDENTIFIER into a full name
	Turn a basic character class into a character class
	Turn a character into a term
	Turn a qualifier into an identifier
	Turn a string into a symbol
	Turn an identifier into a symbol
	Turn an identifier into a term
	Union of grammar parser types
	Union of parser types
	Variables and types local to the parser
	Variables and types local to the scanner driver
	Various output modes
	C postamble
	C preamble
	 options parser productions
	bb.yy
	bd.yy
	bf.yy
	bg.yy
	ddp.yy
	fil.ll
	fip.yy
	lo.ll
	rap.yy
	rep.yy
	sill.y
	small_lexer.ll
	small_parser.yy

